JP2007308770A - Low core loss grain-oriented electrical steel sheet and method of manufacturing the same - Google Patents

Low core loss grain-oriented electrical steel sheet and method of manufacturing the same Download PDF

Info

Publication number
JP2007308770A
JP2007308770A JP2006139711A JP2006139711A JP2007308770A JP 2007308770 A JP2007308770 A JP 2007308770A JP 2006139711 A JP2006139711 A JP 2006139711A JP 2006139711 A JP2006139711 A JP 2006139711A JP 2007308770 A JP2007308770 A JP 2007308770A
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
electrical steel
grain
shot blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006139711A
Other languages
Japanese (ja)
Other versions
JP5023552B2 (en
Inventor
Misao Namikawa
操 浪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006139711A priority Critical patent/JP5023552B2/en
Publication of JP2007308770A publication Critical patent/JP2007308770A/en
Application granted granted Critical
Publication of JP5023552B2 publication Critical patent/JP5023552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low core loss grain-oriented electrical steel sheet requiring no application of insulation film restoration treatment even after the application of small strain for magnetic domain refinement and to provide a method of inexpensively manufacturing the steel sheet. <P>SOLUTION: In the method for manufacturing a grain-oriented electrical steel sheet by forming an insulation film on the surface of a finish annealed grain-oriented electrical steel sheet and then applying shot blasting treatment onto the surface of the insulation film to form a linear strain region at the surface of the steel sheet and carry out magnetic domain refinement, the shot blasting treatment is performed while regulating the average particle size of projection particles and projection air pressure to ≤100 μm and 0.025 to 0.15 MPa, respectively. This method provides the low core loss grain-oriented electrical steel sheet in which the linear strain region resulting from the shot blasting treatment is formed on the surface of the steel sheet and the insulation film formed in the strain region is free from damage due to the shot blasting treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、方向性電磁鋼板およびその製造方法に関し、特に、磁区細分化処理を施した鉄損特性に優れる方向性電磁鋼板とその安価な製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet, and more particularly to a grain-oriented electrical steel sheet excellent in iron loss characteristics subjected to magnetic domain refinement and a method for producing the same.

方向性電磁鋼板は、励磁特性や鉄損特性等が良好であるため、変圧器や大型発電機の鉄心材料として広く用いられている。この方向性電磁鋼板は、仕上焼鈍における二次再結晶現象を利用して、圧延面に{110}面、圧延方向に磁化容易軸である<001>軸をもつ、いわゆるゴス粒を発達させたものであり、基本的にストライプ状の磁区構造を有しているのが特徴である。そして、従来の方向性電磁鋼板の開発は、上記{110}<001>方位(ゴス方位)の集積度を高めるとともに、圧延方向からの偏りをできるだけ減少させることにより、励磁特性や鉄損特性等の改善を図ることに主眼が置かれてきた。   Oriented electrical steel sheets are widely used as iron core materials for transformers and large generators because they have good excitation characteristics and iron loss characteristics. This grain-oriented electrical steel sheet developed so-called goth grains having a {110} plane on the rolling surface and a <001> axis that is the easy axis of magnetization in the rolling direction, utilizing the secondary recrystallization phenomenon in finish annealing. It has a stripe-like magnetic domain structure. And the development of the conventional grain-oriented electrical steel sheet increases the degree of integration of the {110} <001> orientation (Goss orientation) and reduces the deviation from the rolling direction as much as possible, so that the excitation characteristics, iron loss characteristics, etc. The main focus has been on improving this.

しかし、上記ゴス方位への集積度をより高めようとすると、ゴス粒が粗大化してストライプ状の磁区幅が広くなる。そのため、渦電流損失が増加し、却って鉄損特性が劣化してしまうという問題がある。   However, if the degree of integration in the Goth direction is further increased, the Goth grains become coarse and the stripe-shaped magnetic domain width becomes wider. Therefore, there is a problem that eddy current loss increases and the iron loss characteristic deteriorates on the contrary.

この問題に対する対応策については、従来からさまざまな方法が提案されている。例えば、特許文献1には、仕上焼鈍済みまたは絶縁被膜処理済みの鋼板に、歯車型ロール等により点線状あるいは破線状の加工歪み(溝)を加え、その後、焼鈍することにより微細再結晶粒を生じさせて磁区を細分化する方法が、また、特許文献2には、最終仕上焼鈍工程の前に、鋼板表面に線状の刻み目を導入することにより磁区幅を減少させる方法が提案されている。これらの方法は、歪取焼鈍を施しても、磁区細分化効果が消失しないという点で優れているが、生産効率が低く、製造コストが高いといった問題がある。   Various methods have been proposed for dealing with this problem. For example, Patent Document 1 discloses that fine recrystallized grains are added to a steel plate that has been finish-annealed or treated with an insulation coating by applying a processing strain (groove) in the form of a dotted line or a broken line with a gear roll or the like, and then annealing. A method for generating a magnetic domain and subdividing the magnetic domain is proposed in Patent Document 2, and a method for reducing the magnetic domain width by introducing a linear notch on the surface of the steel plate before the final finish annealing step is proposed. . These methods are excellent in that the magnetic domain refinement effect does not disappear even if strain relief annealing is performed, but there is a problem that the production efficiency is low and the production cost is high.

また、特許文献3や特許文献4等には、レーザビームや電子ビーム、イオンビーム等を用いて鋼板表面に局部的に熱エネルギーを加えることによって熱歪領域を形成し、磁区幅を減少させる方法が提案されている。しかし、この方法は、生産効率や製造コストの面では、上記の溝を形成する方法よりは優れているものの、磁区制御のために大掛りな設備を必要とするため、設備コストがかかるという問題がある。   Patent Documents 3 and 4 disclose a method in which a thermal strain region is formed by locally applying thermal energy to a steel plate surface using a laser beam, an electron beam, an ion beam, etc., and the magnetic domain width is reduced. Has been proposed. However, although this method is superior to the above-described method for forming the groove in terms of production efficiency and manufacturing cost, it requires a large amount of equipment for magnetic domain control, so that the equipment cost is high. There is.

一方、生産性が高くかつ低コストで磁区制御を行う方法として、方向性電磁鋼板の表面にショットブラスト処理を施して微小歪を導入することにより、磁区幅を減少させる方法が提案されている。例えば、特許文献5には、スチールショットにより直径60〜80μm、深さ3〜5μmの圧痕を形成して磁区幅を減少させる方法が開示されている。   On the other hand, as a method of performing magnetic domain control with high productivity and low cost, a method of reducing the magnetic domain width by performing shot blasting on the surface of a grain-oriented electrical steel sheet to introduce micro strains has been proposed. For example, Patent Document 5 discloses a method of reducing the magnetic domain width by forming indentations having a diameter of 60 to 80 μm and a depth of 3 to 5 μm by steel shot.

しかし、特許文献5に代表されるショットブラスト処理を施す方法は、該ショットブラストを、方向性電磁鋼板の製造プロセスで通常施す張力絶縁被膜の焼付けや鋼板の形状矯正のためのフラットニング焼鈍などの熱処理前に施したのでは、磁区細分化効果が低減してしまう。一方、上記熱処理後にショットブラストを施した場合には、磁区細分化の効果は得られるものの、張力絶縁被膜が損傷を受けるため、鋼板の耐食性が劣化するという別の問題が発生する。   However, the method of performing the shot blasting process represented by Patent Document 5 is such that the shot blasting is usually performed in the manufacturing process of the grain-oriented electrical steel sheet, such as baking of a tension insulating film or flattening annealing for correcting the shape of the steel sheet. If applied before the heat treatment, the magnetic domain refinement effect is reduced. On the other hand, when the shot blasting is performed after the heat treatment, although the effect of subdividing the magnetic domain can be obtained, the tensile insulating coating is damaged, and another problem that the corrosion resistance of the steel sheet is deteriorated occurs.

上記問題点を改善する技術として、特許文献6には、張力絶縁被膜を損傷させることなく鋼板に微小歪を付与して磁区幅を減少させて、鉄損を改善した方向性電磁鋼板が開示されている。しかし、特許文献6の技術では、磁区幅を減少させるための歪付与方法として、レーザ照射を採用しており、設備コストが高いという問題点がある上、張力絶縁被膜上からの微小歪の付与による圧縮応力の発生により、トランス等に組立後の実機特性が劣化しやすく、これを回避するためには、500℃を超えない温度域で、微小歪付与後の鋼板を加熱処理することが必要とされるという問題がある。
特開昭61−117218号公報 特公平03−069968号公報 特公昭57−002252号公報 特開昭59−229419号公報 特公昭60−056404号公報 特公平06−017511号公報
As a technique for improving the above problems, Patent Document 6 discloses a grain-oriented electrical steel sheet in which iron loss is improved by applying a small strain to the steel sheet without damaging the tension insulating coating to reduce the magnetic domain width. ing. However, in the technique of Patent Document 6, laser irradiation is employed as a strain imparting method for reducing the magnetic domain width, and there is a problem that the equipment cost is high, and minute strain is imparted from the tension insulating coating. Due to the generation of compressive stress, the actual machine characteristics after assembly to a transformer or the like are likely to deteriorate, and in order to avoid this, it is necessary to heat treat the steel sheet after applying microstrain in a temperature range not exceeding 500 ° C. There is a problem that it is said.
JP 61-117218 A Japanese Examined Patent Publication No. 03-069968 Japanese Patent Publication No.57-002252 JP 59-229419 A Japanese Patent Publication No. 60-056404 Japanese Patent Publication No. 06-017511

そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、磁区細分化のための微小歪付与後においても絶縁被膜修復処理を施す必要がない低鉄損方向性電磁鋼板と、該鋼板を安価に製造する方法を提案することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a low iron loss direction-oriented electrical steel sheet that does not need to be subjected to an insulating coating repair treatment even after application of micro strain for magnetic domain subdivision, The object is to propose a method for producing a steel sheet at low cost.

発明者らは、上記課題を達成するため、設備コストやランニングコストが安価なショットブラスト処理を用いた磁区細分化方法について検討を重ねた。その結果、絶縁被膜を形成した方向性電磁鋼板にショットブラスト処理を施すに当たり、ショットブラストの処理条件(粒子材質、粒子径および投射圧)を適正化すれば、鋼板表面の絶縁被膜に損傷を引き起こすことなく磁区細分化することができ、ひいてはショットブラスト処理後においても、耐食性確保のための絶縁被膜修復処理を施すことなく、低鉄損の方向性電磁鋼板を製造することができることを見出し、本発明を完成させた。   In order to achieve the above-mentioned problems, the inventors have repeatedly studied a magnetic domain subdivision method using a shot blasting process in which equipment costs and running costs are low. As a result, when the shot blasting process (particle material, particle diameter, and projection pressure) is optimized in performing shot blasting on the grain-oriented electrical steel sheet on which the insulating film is formed, the insulating film on the steel sheet surface is damaged. It has been found that a directional electrical steel sheet with low iron loss can be produced without applying an insulating coating repairing process for ensuring corrosion resistance even after shot blasting. Completed the invention.

すなわち、本発明は、仕上焼鈍後に絶縁被膜を形成してなる方向性電磁鋼板において、該鋼板の表面には、ショットブラスト処理による線状の歪領域が形成され、かつ、該歪領域に形成された絶縁被膜には、ショットブラスト処理による損傷がないことを特徴とする低鉄損方向性電磁鋼板である。   That is, the present invention relates to a grain-oriented electrical steel sheet in which an insulating film is formed after finish annealing, and a linear strain region is formed by shot blasting on the surface of the steel plate, and is formed in the strain region. The insulating coating film is a low iron loss grain-oriented electrical steel sheet characterized in that it is not damaged by shot blasting.

また、本発明は、仕上焼鈍後の方向性電磁鋼板の表面に絶縁被膜を形成し、その絶縁被膜の上からショットブラスト処理を施して、鋼板表面に線状の歪領域を形成して磁区細分化する方向性電磁鋼板の製造方法において、投射粒子の平均粒径を100μm以下、投射空気圧を0.025〜0.15MPaとしてショットブラスト処理することを特徴とする低鉄損方向性電磁鋼板の製造方法を提案する。   In addition, the present invention forms an insulating coating on the surface of the grain-oriented electrical steel sheet after finish annealing, and performs shot blasting on the insulating coating to form a linear strain region on the surface of the steel sheet to form a magnetic domain subdivision. In the method for producing a grain-oriented electrical steel sheet, the shot-blasting process is carried out with an average particle size of the projected particles of 100 μm or less and a projection air pressure of 0.025 to 0.15 MPa. Suggest a method.

本発明における上記投射粒子は、アルミナ粒子であることを特徴とする。   The projected particles in the present invention are alumina particles.

本発明によれば、絶縁被膜の上から特定の条件で微粒子のショットブラスト処理を施することで、鋼板の極表層にのみ線状の微小歪領域を付与するようにしたので、絶縁被膜に損傷を引き起こすことなく磁区細分化を実現することができる。したがって、本発明によれば、低鉄損特性を有すると共に、耐食性に優れた方向性電磁鋼板を得ることができる。また、本発明によれば、磁区細分化方法として、設備コストやランニングコストの安価なショットブラスト処理を用いると共に、得られる鋼板も絶縁被膜の修復処理を施す必要がないので、鉄損特性に優れた向性電磁鋼板を安価に提供することができる。   According to the present invention, by applying a shot blast treatment of fine particles under specific conditions from above the insulating coating, a linear micro-strain region is applied only to the extreme surface layer of the steel sheet, so that the insulating coating is damaged. Domain subdivision can be realized without causing Therefore, according to the present invention, a grain-oriented electrical steel sheet having low iron loss characteristics and excellent corrosion resistance can be obtained. In addition, according to the present invention, as the magnetic domain subdivision method, an inexpensive shot blasting process with low equipment cost and running cost is used, and the obtained steel sheet does not need to be subjected to a repair process of the insulating film, so that it has excellent iron loss characteristics. The oriented electrical steel sheet can be provided at low cost.

本発明に係る方向性電磁鋼板は、鋼板の表面に形成された絶縁被膜の上から、微粒子をショットブラスト処理して、鋼板の極表層にのみ線状の微小歪領域を形成することによって磁区細分化し、もって、ショットブラスト処理前に比較して3%以上の鉄損の低減を図ったものである。   The grain-oriented electrical steel sheet according to the present invention is obtained by subjecting fine particles to shot blasting from an insulating coating formed on the surface of the steel sheet to form a linear microstrain region only on the pole surface layer of the steel sheet. Therefore, the iron loss is reduced by 3% or more as compared with that before the shot blasting process.

上記方向性電磁鋼板は、従来公知の方向性電磁鋼板であれば、いずれでも構わない。また、電磁鋼板の表面に形成された絶縁被膜は、従来公知の絶縁被膜で構わないが、好ましくは、リン酸アルミニウムまたはリン酸マグネシウムからなるガラス質の張力絶縁被膜であることが望ましい。なお、ショットブラスト処理は、鋼板のいずれか一方の面でもよく、あるいは両方の面に施してもよい。   The grain-oriented electrical steel sheet may be any conventional grain-oriented electrical steel sheet. The insulating coating formed on the surface of the electrical steel sheet may be a conventionally known insulating coating, but is preferably a glassy tension insulating coating made of aluminum phosphate or magnesium phosphate. Note that the shot blasting may be performed on one or both surfaces of the steel plate.

ショットブラスト処理の方法は、高圧空気を用いて粒子を投射する方法であれば、従来公知のいずれの方法を用いることができる。また、ショットブラスト処理で線状の微小歪領域を形成する方法は、特に限定しないが、投射領域を絞ったノズルを鋼板上で走査する方法、線状スリットを設けたマスクを鋼板上に載置してマスク上から粒子を射出する方法等を好適に用いることができる。   As the shot blasting method, any conventionally known method can be used as long as it is a method of projecting particles using high-pressure air. In addition, the method of forming a linear micro-distortion region by shot blasting is not particularly limited, but a method of scanning a nozzle with a narrowed projection region on the steel plate, and placing a mask provided with a linear slit on the steel plate Thus, a method of ejecting particles from the mask can be suitably used.

ショットトブラスト処理に用いる微粒子は、ガラス質の絶縁被膜と硬さが比較的近いものが好ましく、例えば、アルミナ、シリカ、アルミナシリカコンパウンド等の粒子およびガラス粒子などが好適である。というのは、従来から用いられている鋼球やSUS球では、鉄損がショットブラスト処理前に比べて3%以上低減する条件で投射した場合には、絶縁被膜の表面に圧痕が形成されて損傷を起こし、被膜の耐食性が著しく低下してしまうからである。   The fine particles used for the shot blast treatment are preferably those having a hardness that is relatively close to that of the glassy insulating coating, and for example, particles such as alumina, silica, alumina silica compound, and glass particles are suitable. This is because in conventional steel balls and SUS balls, indentations are formed on the surface of the insulating coating when the iron loss is projected at 3% or more compared to before shot blasting. This is because damage is caused and the corrosion resistance of the coating is significantly reduced.

また、上記微粒子の粒径は、平均粒子径が100μm以下であることが必要である。100μm超えでは、鉄損の低減と被膜の耐食性確保との両立が困難となるからである。好ましくは、30〜50μmの範囲である。   The average particle size of the fine particles must be 100 μm or less. This is because if it exceeds 100 μm, it is difficult to achieve both reduction in iron loss and ensuring corrosion resistance of the coating. Preferably, it is the range of 30-50 micrometers.

また、上記微粒子を投射するのに用いる高圧空気の空気圧(投射圧)は、0.025〜0.15MPaの範囲であることが必要である。0.025MPa未満では、磁区細分化効果が小さく、逆に、0.15MPa超えでは、絶縁被膜表面に圧痕が形成されて、耐食性の劣化を招くが、投射圧が0.025〜0.15MPaの範囲であれば、絶縁被膜に損傷を起こすことなく3%以上の鉄損低減効果が得られるからである。   Moreover, the air pressure (projection pressure) of the high-pressure air used for projecting the fine particles needs to be in the range of 0.025 to 0.15 MPa. If it is less than 0.025 MPa, the magnetic domain fragmentation effect is small. Conversely, if it exceeds 0.15 MPa, an indentation is formed on the surface of the insulating coating, resulting in deterioration of corrosion resistance, but the projection pressure is 0.025 to 0.15 MPa. This is because if it is within the range, an iron loss reduction effect of 3% or more can be obtained without causing damage to the insulating coating.

上記のように、ショットブラスト処理による絶縁被膜表面の損傷が無いにも拘わらず鉄損が低減できるメカニズムは必ずしも明らかとはなっていないが、投射する微粒子として、ガラス質の絶縁被膜と比較的近い硬さのものを用いることにより、絶縁被膜には損傷を起こすことなく地鉄表面にのみ局所的な歪みを導入できるからと考えられる。   As described above, the mechanism by which iron loss can be reduced despite the absence of damage to the surface of the insulating film by shot blasting is not necessarily clear, but it is relatively close to the vitreous insulating film as fine particles to be projected. By using a hard material, it is considered that local strain can be introduced only on the surface of the iron core without causing damage to the insulating coating.

鋼板表面に発生させる微小歪領域は、従来の磁区細分化処理と同様、鋼板の圧延方向に対して直角方向、即ち、板幅方向に沿って線状に付与するのが最も効果的である。ただし、必ずしも圧延方向に直角である必要はなく、圧延方向に直角方向から15度以内の範囲であれば、本発明の効果を十分に得ることができる。   As in the conventional magnetic domain refinement process, it is most effective to apply the fine strain region generated on the steel plate surface linearly in the direction perpendicular to the rolling direction of the steel plate, that is, along the plate width direction. However, it is not necessarily perpendicular to the rolling direction, and the effect of the present invention can be sufficiently obtained as long as it is within a range of 15 degrees from the direction perpendicular to the rolling direction.

線状の微小歪領域の線幅は、100〜1000μmの範囲とすることが好ましい。100μm未満では、十分な鉄損低減効果が得られないからであり、1000μm超えとしても、鉄損低減効果に変化がないからである。   The line width of the linear minute strain region is preferably in the range of 100 to 1000 μm. This is because if it is less than 100 μm, a sufficient iron loss reduction effect cannot be obtained, and even if it exceeds 1000 μm, there is no change in the iron loss reduction effect.

また、線状歪領域を形成する間隔は、ショットブラスト処理で投射する微粒子の材質、粒子径、投射速度等に応じて鉄損低減効果が得られるよう適宜調整する必要があり、例えば、粒子径が50μmのアルミナ粒子を、投射圧0.025MPa〜0.15MPaで投射する場合には、2.5〜15mmの間隔とするのが好ましく、さらには、3〜8mmとするのがより好ましい。   Further, the interval for forming the linear strain region needs to be appropriately adjusted so as to obtain an iron loss reduction effect according to the material, particle diameter, projection speed, etc. of the fine particles projected by the shot blasting process. Is projected at a projection pressure of 0.025 MPa to 0.15 MPa, the spacing is preferably 2.5 to 15 mm, and more preferably 3 to 8 mm.

二次再結晶粒を生成させる仕上焼鈍後、張力絶縁被膜を塗布・焼付した、板厚が0.23mmの高配向性方向性電磁鋼板から、圧延方向を長手方向とする幅100mm×長さ400mmの試験片を採取し、ショットブラスト処理を行う前の鉄損W17/50を単板磁気測定装置を用いて測定した。一方、板厚が1mmで幅150mm×長さ500mmのSUS製の板を用意し、このSUS板に、幅方向に長さ120mm×幅0.25mmのスリットを5mmピッチで放電加工し、ショットブラストのマスクを作製した。
このマスクを上記電磁鋼板の試験片上に重ねて、その上からスリットめがけて平均粒径が50μmのアルミナ微粒子を高圧空気で投射圧を変化させて投射し、投射後の絶縁被膜表面を光学顕微鏡で観察し、圧痕の発生状況や被膜の損傷状況を観察した。
また、単板磁気測定装置を用いて鉄損W17/50を測定し、ショットブラスト処理による鉄損低減率を下記式;
鉄損改善率(%)=100×(ショットブラスト前の鉄損W17/50−ショットブラスト後の鉄損W17/50)/(ショットブラスト前の鉄損W17/50
から求めた。
次いで、上記ショットブラスト後の電磁鋼板を用いて、温度が50℃で湿度が100%の雰囲気中で50時間保持する恒温高湿試験を行った後、絶縁被膜の表面に発生した赤錆の発生状況を目視観測して、耐食性を評価した。
なお、比較例として、ショットブラストの微粒子として、100μm超えのアルミナ粒子を用いた例および50μmの鋼球を用いた例についても同様の評価を行った。
After finishing annealing to produce secondary recrystallized grains, from a highly oriented grain-oriented electrical steel sheet having a sheet thickness of 0.23 mm, coated and baked with a tensile insulating film, the width is 100 mm × length is 400 mm. The iron loss W 17/50 before performing the shot blast treatment was measured using a single plate magnetometer. On the other hand, a SUS plate having a plate thickness of 1 mm, a width of 150 mm and a length of 500 mm is prepared, and this SUS plate is subjected to electrical discharge machining with a slit of 120 mm in length and 0.25 mm in width at a pitch of 5 mm, and shot blasting. A mask was prepared.
This mask is overlaid on the above-mentioned test piece of electromagnetic steel sheet, and alumina fine particles having an average particle size of 50 μm are projected from above by slitting them with high pressure air, and the surface of the insulating coating after projection is projected with an optical microscope. Observed and observed the occurrence of indentation and damage to the coating.
Moreover, the iron loss W 17/50 is measured using a single-plate magnetometer, and the iron loss reduction rate by shot blasting is expressed by the following formula:
Iron loss improvement rate (%) = 100 × (shot blasting before the iron loss W 17/50 - iron loss W after the shot blast 17/50) / (shot blasting before the iron loss W 17/50)
I asked for it.
Next, after performing a constant temperature and high humidity test for 50 hours in an atmosphere having a temperature of 50 ° C. and a humidity of 100% using the electromagnetic steel sheet after shot blasting, occurrence of red rust generated on the surface of the insulating coating Was visually observed to evaluate the corrosion resistance.
As a comparative example, the same evaluation was performed on an example using alumina particles exceeding 100 μm and an example using 50 μm steel balls as shot blast fine particles.

上記の結果を、表1にまとめて示した。また、図1に、ショットブラスト投射圧と鉄損低減率との関係を示した。これらの結果から、平均粒径50μmのアルミナ粒子を、投射圧0.025MPa〜0.15MPaでショットブラストすれば、地鉄や絶縁被膜に圧痕や損傷がなく、かつ、耐食性の劣化もない低鉄損の方向性電磁鋼板を得ることができることがわかる。   The results are summarized in Table 1. FIG. 1 shows the relationship between the shot blast projection pressure and the iron loss reduction rate. From these results, if iron particles with an average particle size of 50 μm are shot blasted at a projection pressure of 0.025 MPa to 0.15 MPa, the iron and insulating coatings have no indentation or damage, and there is no deterioration in corrosion resistance. It can be seen that a grain-oriented electrical steel sheet can be obtained.

Figure 2007308770
Figure 2007308770

ショットブラスト処理における投射圧が鉄損低減率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the projection pressure in a shot blast process has on the iron loss reduction rate.

Claims (3)

仕上焼鈍後に絶縁被膜を形成してなる方向性電磁鋼板において、該鋼板の表面には、ショットブラスト処理による線状の歪領域が形成され、かつ、該歪領域に形成された絶縁被膜には、ショットブラスト処理による損傷がないことを特徴とする低鉄損方向性電磁鋼板。 In the grain-oriented electrical steel sheet in which an insulating film is formed after finish annealing, a linear strain region is formed by shot blasting on the surface of the steel plate, and the insulating film formed in the strain region is A low iron loss grain-oriented electrical steel sheet characterized by no damage caused by shot blasting. 仕上焼鈍後の方向性電磁鋼板の表面に絶縁被膜を形成し、その絶縁被膜の上からショットブラスト処理を施して、鋼板表面に線状の歪領域を形成して磁区細分化する方向性電磁鋼板の製造方法において、投射粒子の平均粒径を100μm以下、投射空気圧を0.025〜0.15MPaとしてショットブラスト処理することを特徴とする低鉄損方向性電磁鋼板の製造方法。 A grain-oriented electrical steel sheet that forms an insulating coating on the surface of a grain-oriented electrical steel sheet after finish annealing, performs shot blasting on the insulating coating, forms a linear strain region on the steel sheet surface, and subdivides the magnetic domain. A method for producing a low iron loss grain-oriented electrical steel sheet, characterized in that shot blasting is performed with an average particle size of projected particles of 100 μm or less and a projected air pressure of 0.025 to 0.15 MPa. 上記投射粒子は、アルミナ粒子であることを特徴とする請求項2に記載の低鉄損方向性電磁鋼板の製造方法。 The method for producing a low iron loss directional electrical steel sheet according to claim 2, wherein the projected particles are alumina particles.
JP2006139711A 2006-05-19 2006-05-19 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof Expired - Fee Related JP5023552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139711A JP5023552B2 (en) 2006-05-19 2006-05-19 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139711A JP5023552B2 (en) 2006-05-19 2006-05-19 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007308770A true JP2007308770A (en) 2007-11-29
JP5023552B2 JP5023552B2 (en) 2012-09-12

Family

ID=38841903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139711A Expired - Fee Related JP5023552B2 (en) 2006-05-19 2006-05-19 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5023552B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067614A1 (en) * 2009-12-04 2011-06-09 Pinovo As Abrasive blasting
JP2011208206A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP2012075219A (en) * 2010-09-28 2012-04-12 Jfe Steel Corp Motor core with less iron loss deterioration under compressive stress
CN108448765A (en) * 2017-02-16 2018-08-24 福特全球技术公司 The method of the magnetic characteristic of electrician's steel core for adjusting electric device
CN116213751A (en) * 2022-12-13 2023-06-06 浙江大学 316L stainless steel surface treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816027A (en) * 1981-07-17 1983-01-29 Nippon Steel Corp Method and device for reducing iron loss of directional electromagnetic steel plate
JPS6075520A (en) * 1983-09-29 1985-04-27 Kawasaki Steel Corp Production of unidirectionally oriented silicon steel plate
JPS63166932A (en) * 1986-12-27 1988-07-11 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet having very small iron loss and high magnetic flux density
JPH06116642A (en) * 1992-10-06 1994-04-26 Nippon Steel Corp Method for providing fine scratch to grain oriented silicon steel sheet
JPH11111516A (en) * 1997-10-06 1999-04-23 Kawasaki Steel Corp Directional electromagnetic steel plate for laminated core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816027A (en) * 1981-07-17 1983-01-29 Nippon Steel Corp Method and device for reducing iron loss of directional electromagnetic steel plate
JPS6075520A (en) * 1983-09-29 1985-04-27 Kawasaki Steel Corp Production of unidirectionally oriented silicon steel plate
JPS63166932A (en) * 1986-12-27 1988-07-11 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet having very small iron loss and high magnetic flux density
JPH06116642A (en) * 1992-10-06 1994-04-26 Nippon Steel Corp Method for providing fine scratch to grain oriented silicon steel sheet
JPH11111516A (en) * 1997-10-06 1999-04-23 Kawasaki Steel Corp Directional electromagnetic steel plate for laminated core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067614A1 (en) * 2009-12-04 2011-06-09 Pinovo As Abrasive blasting
AU2010325762B2 (en) * 2009-12-04 2015-09-10 Pinovo As Abrasive blasting
JP2011208206A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP2012075219A (en) * 2010-09-28 2012-04-12 Jfe Steel Corp Motor core with less iron loss deterioration under compressive stress
CN108448765A (en) * 2017-02-16 2018-08-24 福特全球技术公司 The method of the magnetic characteristic of electrician's steel core for adjusting electric device
CN116213751A (en) * 2022-12-13 2023-06-06 浙江大学 316L stainless steel surface treatment method

Also Published As

Publication number Publication date
JP5023552B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
RU2580778C2 (en) Method of making flat article from electric steel and flat article made from electric steel
WO2013099272A1 (en) Oriented electromagnetic steel plate and manufacturing method therefor
KR101553497B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
EP2813593B1 (en) Grain-oriented electrical steel plate
WO2013099274A1 (en) Oriented electromagnetic steel plate and method for ameliorating iron losses therein
RU2706940C1 (en) Textured electromagnetic steel sheet and method of producing textured electromagnetic steel sheet
JP5023552B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
EP3591080A1 (en) Grain-oriented electrical steel sheet and production method therefor
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
KR101961175B1 (en) Grain-oriented electrical steel sheet and process for producing same
WO2019182149A1 (en) Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2012172624A1 (en) Manufacturing method for unidirectional electromagnetic steel sheet
JP6660025B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017110292A (en) Grain oriented silicon steel sheet and method for manufacturing the same
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP7329049B2 (en) Electrical steel sheet and manufacturing method thereof
JPWO2017130980A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP2006265685A (en) Grain-oriented magnetic steel sheet and producing method therefor
JP2019147980A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
WO2022255014A1 (en) Grain-oriented electromagnetic steel sheet
JP4569335B2 (en) Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees