JP3827605B2 - Circuit board and method for improving solder wettability of circuit board - Google Patents

Circuit board and method for improving solder wettability of circuit board Download PDF

Info

Publication number
JP3827605B2
JP3827605B2 JP2002108856A JP2002108856A JP3827605B2 JP 3827605 B2 JP3827605 B2 JP 3827605B2 JP 2002108856 A JP2002108856 A JP 2002108856A JP 2002108856 A JP2002108856 A JP 2002108856A JP 3827605 B2 JP3827605 B2 JP 3827605B2
Authority
JP
Japan
Prior art keywords
circuit board
solder
metal
circuit
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002108856A
Other languages
Japanese (ja)
Other versions
JP2003304051A (en
Inventor
豪 岩元
好彦 辻村
信行 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002108856A priority Critical patent/JP3827605B2/en
Publication of JP2003304051A publication Critical patent/JP2003304051A/en
Application granted granted Critical
Publication of JP3827605B2 publication Critical patent/JP3827605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板及び回路基板の半田濡れ性向上方法に関する。詳しくは、Niめっきの施された金属回路に、シリコンチップ等の半導体素子を半田付けする際に、半田ボイドといわれている欠陥を激減することができる技術に関する。
【0002】
【従来の技術】
半導体素子の搭載されたモジュールが解決すべき今日の課題は、近来のエレクトロニクス技術の発展に伴う高出力化が進む中、回路基板の耐久性を高めるとともに、半導体素子から発生した熱を効率よく速やかに系外に逃がすこと、例えば熱伝導を阻害する半田ボイドを低減することである。
【0003】
回路基板の基本構造は、セラミックス基板の表面に金属回路、裏面に金属放熱板が形成され、該金属回路と金属放熱板にNiめっきが施されている。そして、モジュールの組み立ての際に、金属回路に半導体素子が搭載され、金属放熱板面にヒートシンク取付用のベース板が半田付けされる。
【0004】
セラミックス基板の材質としては、アルミナ、窒化アルミニウム、窒化ケイ素等、また金属回路、金属放熱板、ベース板の材質としては、銅、アルミニウム、それらの合金等が用いられている。また、セラミックス基板と金属回路、金属放熱板との接合は、Ag、Cu又はAg−Cu合金とTi、Zr、Hf等の活性金属成分を含むろう材を用いる活性金属ろう付け法が主流となっている。
【0005】
回路基板にヒートサイクル等の熱負荷が加わると、セラミックス基板と金属の熱膨張差に起因する熱応力が発生し、セラミックス基板と金属回路、金属放熱板(以下、両者を「金属回路等」という。)との接合端面において、セラミックス基板にクラックが発生する。このクラックは、熱負荷のサイクル数の増加と共に進展し、極端な場合には絶縁破壊に至る。このような、クラックの発生を抑制するため、金属回路等の材質として、熱応力がCuよりも小さいAlが用いられるようになっている。
【0006】
Al回路と半導体素子や、Al放熱板とベース板の接合には、Pb−Sn系の半田が用いられるため、金属(Al)回路等表面にはNiめっきを施す必要がある。金属回路等がCu材質である場合も、酸化防止や半田との反応による信頼性低下を防ぐため、一般的にはNiめっきが施される。半田付けには、フラックスを用いて大気中又は窒素中でリフローする方法と、フラックスを用いないで水素雰囲気下でリフローする方法等が採用されている。
【0007】
半田ボイドが発生する要因の1つに、金属回路等表面のNiめっき膜に対する半田の濡れ性がある。濡れ性が不十分であると、半田ボイドの原因となり、逆に強すぎると、半田付け部分以外への半田流れが原因となるので、金属回路等表面のNiめっき膜に対する半田濡れ性には適正値がある。この濡れ性は、目視では判断できないような微小な酸化皮膜、有機物の存在によって悪化するものであるところ、適切に評価する方法はない。
【0008】
そこで、従来は経験に頼り、適度な組成持つ洗浄水で洗浄してから、半導体素子が半田付けされていると考えられる。しかしながら、その洗浄水の組成は明白にされておらず、また半田ボイドも激減されずに、半田ボイド率として数%、多い場合には数十%もあったので、更なる改善の余地があった。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、半田ボイドが激減する回路基板を提供することである。本発明の目的は、特定組成の電解水を用い、金属回路等に施されたNiめっき膜面を洗浄することによって達成することができる。
【0010】
【課題を解決するための手段】
すなわち、本発明は、pH10以上、酸化還元電位−800mV以下、電気伝導度10.0mS/m以上の電解水で、金属回路に施されたNiめっき膜面を洗浄することを特徴とする回路基板の半田濡れ性向上方法である。この場合において、洗浄する前のNiめっき膜面が、1Pa以下の真空中、温度280±10℃で熱処理されていることが好ましい。また、本発明は、このような方法で洗浄された回路基板である。
【0011】
【発明の実施の形態】
以下、更に詳しく本発明を説明する。
【0012】
本発明が洗浄の対象している回路基板は、セラミックス基板に金属回路等が形成され、Niめっきが施されているものである。このような回路基板には多くの市販品と先行技術文献があり、本発明ではそれを用いることができるが、以下、概説する。
【0013】
セラミックス基板の材質は、高信頼性及び高絶縁性の点から、窒化アルミニウム又は窒化ケイ素が好ましい。セラミックス基板の厚みは目的によって自由に変えられる。通常は0.635mmであるが、0.5〜0.3mm程度の薄物でもよい。高電圧下での絶縁耐圧を著しく高めたいときには、1〜3mmの厚物が用いられる。
【0014】
金属回路等の材質としては、Al、Cu又はAl−Cu合金であることが好ましい。これらは、単体ないしはこれを一層として含むクラッド等の積層体の形態で用いられる。Alは、Cuよりも降伏応力が小さく、塑性変形に富み、ヒートサイクルなどの熱応力負荷時において、セラミックス基板にかかる熱応力を大幅に低減できるので、Cuよりもセラミックス基板に発生するクラックを抑制することが可能となり、高い信頼性回路基板となる。
【0015】
金属回路の厚みは、電気的、熱的特性の面からAl回路の場合は0.4〜0.5mm、Cu回路は0.3〜0.5mmであることが好ましい。一方、金属放熱板の厚みは、半田付け時の反りを生じさせないように決定される。具体的には、Al回路の場合は0.1〜0.4mm、Cu回路は0.15〜0.4mmであることが好ましい。
【0016】
セラミックス基板に金属回路等を形成させるには、金属板とセラミックス基板とを接合した後、エッチングする方法、金属板から打ち抜かれた回路及び放熱板のパターンをセラミックス基板に接合する方法等によって行うことができる。接合は、活性金属ろう付け法が好適であるが、DBC法等であってもよい。
【0017】
Niめっきが施される前の金属回路等の表面は、研削、物理研磨、化学研磨等によって平滑化されていることが好ましく、表面粗さがRa≦0.2μmであることが好ましい。Niめっきは無電解法が好ましく、これによってファインパターンに対応可能となる。Niめっき膜厚は2〜8μmであることが好ましい。
【0018】
また、Niめっき膜と半田のSn成分との反応性を高めるため、Niめっき膜を1Pa以下の真空中、温度280±10℃で熱処理を行い、Niの結晶性を高めておくこと好ましい。真空度が1Paをこえると、Niめっき膜の酸化が著しくなり、Sn成分との反応性が逆に悪化する。一方、熱処理温度が270℃未満ではNiの結晶性が十分に高まらず、また290℃超ではNiめっき膜の硬化が起こり、回路基板に損傷を与える恐れがある。熱処理時間は、10〜30分間が好ましい。
【0019】
本発明においては、このNiめっき膜面を、pH10以上、酸化還元電位−800mV以下、電気伝導度10.0mS/m以上の電解水で洗浄することが大きな特徴である。洗浄形態は、シャワーリング、揺動浸漬等が可能であるが、シャワーリングが好ましい。洗浄は、Niめっき後に行ってもよく、半導体素子を半田付けする直前に行ってもよい。前者には、めっき工程後に洗浄槽を設ければよい工程上の利点があり、後者には、新たな酸化膜や有機物等がNiめっき面に形成・付着することから回避して半田付けできる利点がある。また、洗浄は両方で行ってもよい。
【0020】
電解水のpHが10よりも小さいと、半田濡れ性に有効なOH基の生成が不十分となる。酸化還元電位が−800mVよりも高いと、酸化膜の生成を抑制できにくい。電気伝導度が10.0mS/mよりも小さいと、金属イオンを含む微粒子が除去されづらい。電解水の不純物は、可及的に少ない方が好ましく、例えばCl-やSO4 2-等のマイナスイオン、Cu2+、Na+等のプラスイオン等の濃度は、それぞれ0.1mg/L以下であることが望ましい。
【0021】
このような電解水は、電解槽内で食塩や希塩酸を加え、目的特性となるまで電解を行う、超音波を照射する等によって製造することができる。また、これの市販品、例えば日本アクア社、森永乳業社、旭ガラスエンジニアリング社等(ウルトラクリーンテクノロジー Vol.11 No.1 p19 参照)があるので、使用することもできる。
【0022】
このようにして洗浄された本発明の回路基板を用いれば、そのNiめっき膜面に半導体素子を半田付けしても、その半田ボイド率が1.0%よりも小さいくなり、モジュールの放熱特性は、Niめっき法が無電解法であるにもかかわらず格段に向上する。半田ボイド率の測定は、軟X線探傷装置又は超音波探傷装置を用いて、自動的に測定することができる。測定装置の一例をあげれば、軟X線探傷装置(ソフテックス社製「PRO−TEST 100」)、超音波探傷装置(本多電子社製「HA−701」)である。
【0023】
回路基板の金属回路面に半導体素子、金属放熱板面にベース板を半田付けするにはPb−Sn系の半田が用られる。半田付けには、フラックスを用いて大気中又は窒素中でリフローする方法と、フラックスを用いないで水素雰囲気下でリフローする方法があるが、工程の簡略化と環境問題の点から後者が望ましい。
【0024】
以上のように、モジュールの放熱特性はその半田ボイド率が少ない方ほど優れ、特に半田ボイド率2%を境にして大きく変化する。そこで、回路基板を量産する場合、以下の簡易試験を行い、試験数10の半田ボイド率の平均値(+4σ)が2%以下になるように製造管理することが望ましい。
【0025】
すなわち、回路基板の金属回路にPb(90%)−Sn(10%)半田片を挟んでシリコンチップを置く。半田片寸法は底面積5〜225mm2×厚さ0.1〜0.5mmとし、シリコンチップ寸法は底面積5〜225mm2×厚さ0.4〜1.0mmとする。その後、水素雰囲気下、温度150℃までを15〜20℃/分の速度で、その後は2.3〜2.5℃/分の速度で昇温して温度350℃±5℃まで高めた後、速やかに室温下で自然冷却して、半田付けを行う。ここで、150℃までの昇温速度が15℃/分よりも遅いか、又は350℃までの昇温速度が2.3℃/分よりも遅いと、Niめっき膜面が酸化され、また350℃までの昇温速度を2.5℃/分よりも速くすると、半田の溶融が十分でなくなり、いずれの場合も半田濡れ性を正しく評価することができない。一方、150℃までの昇温速度を120℃/分よりも速くするには装置が大がかりとなる。
【0026】
【実施例】
以下、実施例をあげて更に具体的に本発明を説明する。
【0027】
実施例1〜5 比較例1〜5
セラミックス基板として、窒化アルミニウム基板の市販品を用意した。大きさは2インチ角×厚み0.635mmで、レーザーフラッシュ法による熱伝導率175W/mK、3点曲げ強度420MPaである。Al板は、回路形成用が2インチ角×厚み0.4mm、放熱板形成用が2インチ角×厚み0.1mmのものを用いた。
【0028】
セラミックス基板の表裏面に、Al板を接合材(Al96.0%、Cu3.5%、Mg0.5%の合金箔で厚みは20μm)を介して重ね、カーボン板をねじ込んで基板に押しつけできる治具を用い、セラミックス基板に対して垂直方向に均等に加圧した。接合は、真空又は窒素雰囲気下、温度550〜635℃で加圧をしながら行った。
【0029】
接合後、エッチングレジストをスクリーン印刷してFeCl3液でエッチングした。パターンは、回路、放熱板共に正方形(コーナーRは2mm)で、セラミックス基板中央部に形成(沿面距離1mm)させた。ついで、エッチングレジストを剥離した後、市販のアルカリ系エッチング剤(主成分:苛性ソーダ)を用いて、Al表面の酸化物除去を行った。
【0030】
以上のようにして製造された回路基板のAl回路面に、無電解Ni−Pメッキ(奥野製薬社製「ニムデンSX」)を行って、5μm厚のNiめっき膜を形成させた。一部の回路基板については、1Pa以下の真空中、温度280℃、時間20分の条件でNiめっき膜の熱処理を行った。その後、表1に示される各種の電解水を用い、10分間のシャワー又は浸漬による洗浄を行った。
【0031】
これらの回路基板を用いて実際のモジュール製造を想定した以下の半田付けを行い、半田ボイド率を測定した。それらの結果を表1に示す。その
【0032】
半田ボイド率の測定
Al回路面にPb(90%)−Sn(10%)半田片(底面積169mm2×厚さ0.1mm)を挟んでシリコンチップ(底面積169mm2×厚さ0.4mm)を置き、水素雰囲気中にて、温度150℃までを15℃/分の速度で、その後は2.5℃/分の速度で昇温して温度350℃まで高めた後、速やかに室温下で自然冷却して半田付けを行い、半田ボイド率を軟X線探傷装置(ソフテックス社製「PRO−TEST 100」)を用いて測定し、試験数10の平均値を求めた。
【0033】
【表1】

Figure 0003827605
【0034】
表1の実施例と比較例の対比から、本発明の洗浄方法によれば、半田ボイドが1%以下に激減することがわかる。また、実施例1と実施例5の対比から、洗浄する前のNiめっき膜に熱処理が行われていると、半田ボイドが更に減少することがわかる。
【0035】
【発明の効果】
本発明によれば、半田ボイドが激減する回路基板が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board and a method for improving solder wettability of a circuit board. More specifically, the present invention relates to a technique capable of drastically reducing defects called solder voids when a semiconductor element such as a silicon chip is soldered to a Ni-plated metal circuit.
[0002]
[Prior art]
Today's issues to be solved by modules equipped with semiconductor elements are to increase the durability of circuit boards and increase the heat generated from semiconductor elements quickly and efficiently as the output increases with the recent development of electronics technology. In other words, it is necessary to escape from the system, for example, to reduce solder voids that hinder heat conduction.
[0003]
In the basic structure of the circuit board, a metal circuit is formed on the surface of the ceramic substrate, a metal heat sink is formed on the back surface, and Ni plating is applied to the metal circuit and the metal heat sink. When the module is assembled, a semiconductor element is mounted on the metal circuit, and a heat sink mounting base plate is soldered to the metal heat sink surface.
[0004]
As the material of the ceramic substrate, alumina, aluminum nitride, silicon nitride, etc., and as the material of the metal circuit, the metal heat sink, and the base plate, copper, aluminum, alloys thereof and the like are used. Also, the active metal brazing method using a brazing material containing an active metal component such as Ti, Zr, Hf and the like is mainly used for joining the ceramic substrate to the metal circuit and the metal heat sink. ing.
[0005]
When a thermal load such as a heat cycle is applied to the circuit board, thermal stress is generated due to the difference in thermal expansion between the ceramic substrate and the metal, and the ceramic substrate, the metal circuit, and the metal heat sink (hereinafter both referred to as “metal circuit etc.”). Cracks are generated in the ceramic substrate at the joint end face with. This crack progresses with an increase in the number of cycles of the heat load, and in the extreme case, leads to dielectric breakdown. In order to suppress the occurrence of such cracks, Al whose thermal stress is smaller than Cu is used as a material for metal circuits and the like.
[0006]
Since Pb—Sn solder is used to join the Al circuit and the semiconductor element or between the Al heat sink and the base plate, the surface of the metal (Al) circuit or the like needs to be plated with Ni. Even when the metal circuit or the like is made of a Cu material, Ni plating is generally applied in order to prevent oxidation and deterioration of reliability due to reaction with solder. For soldering, a method of reflowing in the air or nitrogen using a flux, a method of reflowing in a hydrogen atmosphere without using a flux, and the like are employed.
[0007]
One factor that causes the generation of solder voids is the wettability of the solder with respect to the Ni plating film on the surface of a metal circuit or the like. Insufficient wettability causes solder voids, and conversely too strong causes solder flow to areas other than the soldered part. There is a value. This wettability is deteriorated by the presence of a minute oxide film and organic matter that cannot be visually judged, but there is no method for appropriately evaluating it.
[0008]
Therefore, it is considered that the semiconductor element has been soldered after washing with cleaning water having an appropriate composition based on experience. However, the composition of the cleaning water has not been clarified, and solder voids have not been drastically reduced, and the solder void ratio has been several percent, and in many cases several tens of percent, so there is room for further improvement. It was.
[0009]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a circuit board in which solder voids are drastically reduced. The object of the present invention can be achieved by washing the Ni plating film surface applied to a metal circuit or the like using electrolyzed water having a specific composition.
[0010]
[Means for Solving the Problems]
That is, the present invention is a circuit board characterized in that a Ni plating film surface applied to a metal circuit is washed with electrolytic water having a pH of 10 or more, an oxidation-reduction potential of -800 mV or less, and an electric conductivity of 10.0 mS / m or more. This is a method for improving solder wettability. In this case, it is preferable that the Ni plating film surface before cleaning is heat-treated at a temperature of 280 ± 10 ° C. in a vacuum of 1 Pa or less. Further, the present invention is a circuit board cleaned by such a method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0012]
The circuit board targeted for cleaning according to the present invention is one in which a metal circuit or the like is formed on a ceramic substrate and Ni plating is applied. There are many commercial products and prior art documents for such circuit boards, which can be used in the present invention, but will be outlined below.
[0013]
The material of the ceramic substrate is preferably aluminum nitride or silicon nitride from the viewpoint of high reliability and high insulation. The thickness of the ceramic substrate can be freely changed according to the purpose. Usually, it is 0.635 mm, but a thin object of about 0.5 to 0.3 mm may be used. When it is desired to remarkably increase the withstand voltage under high voltage, a thickness of 1 to 3 mm is used.
[0014]
The material for the metal circuit or the like is preferably Al, Cu, or an Al—Cu alloy. These are used in the form of a single body or a laminated body such as a clad including this as a single layer. Al has a lower yield stress than Cu, is rich in plastic deformation, and can significantly reduce the thermal stress applied to the ceramic substrate when subjected to thermal stress such as a heat cycle, thus suppressing cracks generated in the ceramic substrate more than Cu. And a highly reliable circuit board.
[0015]
The thickness of the metal circuit is preferably 0.4 to 0.5 mm in the case of an Al circuit and 0.3 to 0.5 mm in the case of a Cu circuit in terms of electrical and thermal characteristics. On the other hand, the thickness of the metal heat radiating plate is determined so as not to cause warpage during soldering. Specifically, it is preferable that the Al circuit is 0.1 to 0.4 mm and the Cu circuit is 0.15 to 0.4 mm.
[0016]
In order to form a metal circuit or the like on a ceramic substrate, it is performed by bonding a metal plate and a ceramic substrate and then etching, a method of punching a circuit punched out from a metal plate, and a method of bonding a pattern of a heat sink to the ceramic substrate. Can do. The joining is preferably an active metal brazing method, but may be a DBC method or the like.
[0017]
The surface of the metal circuit or the like before being subjected to Ni plating is preferably smoothed by grinding, physical polishing, chemical polishing or the like, and the surface roughness is preferably Ra ≦ 0.2 μm. The Ni plating is preferably an electroless method, which makes it possible to handle fine patterns. The Ni plating film thickness is preferably 2 to 8 μm.
[0018]
In order to increase the reactivity between the Ni plating film and the Sn component of the solder, the Ni plating film is preferably heat-treated in a vacuum of 1 Pa or less at a temperature of 280 ± 10 ° C. to increase the crystallinity of Ni. When the degree of vacuum exceeds 1 Pa, oxidation of the Ni plating film becomes significant, and the reactivity with the Sn component deteriorates conversely. On the other hand, if the heat treatment temperature is less than 270 ° C., the crystallinity of Ni is not sufficiently increased, and if it exceeds 290 ° C., the Ni plating film is hardened, which may damage the circuit board. The heat treatment time is preferably 10 to 30 minutes.
[0019]
In the present invention, this Ni plating film surface is characterized by washing with electrolytic water having a pH of 10 or more, a redox potential of −800 mV or less, and an electric conductivity of 10.0 mS / m or more. The washing form can be shower ring, rocking immersion, etc., but shower ring is preferred. Cleaning may be performed after Ni plating, or may be performed immediately before soldering the semiconductor element. The former has an advantage in the process of providing a washing tank after the plating process, and the latter has an advantage that a new oxide film, organic matter, etc. can be avoided and soldered from forming and adhering to the Ni plating surface. There is. Moreover, you may perform washing | cleaning by both.
[0020]
When the pH of the electrolyzed water is less than 10, the generation of OH groups effective for solder wettability becomes insufficient. When the oxidation-reduction potential is higher than −800 mV, it is difficult to suppress the formation of an oxide film. If the electric conductivity is less than 10.0 mS / m, it is difficult to remove fine particles containing metal ions. The amount of impurities in the electrolyzed water is preferably as small as possible. For example, the concentration of negative ions such as Cl and SO 4 2− and positive ions such as Cu 2+ and Na + is 0.1 mg / L or less. It is desirable that
[0021]
Such electrolyzed water can be produced by adding sodium chloride or dilute hydrochloric acid in an electrolytic cell, performing electrolysis until the desired characteristics are achieved, or irradiating with ultrasonic waves. Moreover, since there are these commercial items, for example, Nippon Aqua Co., Ltd., Morinaga Milk Industry Co., Ltd., Asahi Glass Engineering Co., Ltd. (see Ultra Clean Technology Vol. 11 No. 1 p19), they can also be used.
[0022]
When the circuit board of the present invention cleaned in this way is used, even if a semiconductor element is soldered to the Ni plating film surface, the solder void ratio becomes smaller than 1.0%, and the heat dissipation characteristics of the module Is significantly improved even though the Ni plating method is an electroless method. The solder void ratio can be automatically measured using a soft X-ray flaw detector or an ultrasonic flaw detector. An example of the measuring apparatus is a soft X-ray flaw detector (“PRO-TEST 100” manufactured by Softex Corporation) and an ultrasonic flaw detector (“HA-701” manufactured by Honda Electronics Co., Ltd.).
[0023]
Pb-Sn solder is used to solder the semiconductor element to the metal circuit surface of the circuit board and the base plate to the metal heat sink surface. For soldering, there are a method of reflowing in the atmosphere or nitrogen using a flux, and a method of reflowing in a hydrogen atmosphere without using a flux. The latter is desirable from the viewpoint of simplification of the process and environmental problems.
[0024]
As described above, the heat dissipation characteristic of the module is better as the solder void ratio is smaller, and changes greatly with a solder void ratio of 2% as a boundary. Therefore, when mass-producing circuit boards, it is desirable to perform the following simple test and manage the manufacture so that the average value (+ 4σ) of the solder void ratio of 10 tests is 2% or less.
[0025]
That is, a silicon chip is placed with a Pb (90%)-Sn (10%) solder piece sandwiched between metal circuits on a circuit board. The solder piece size is 5 to 225 mm 2 × thickness 0.1 to 0.5 mm, and the silicon chip size is 5 to 225 mm 2 × thickness 0.4 to 1.0 mm. Then, after raising the temperature up to 150 ° C. at a rate of 15-20 ° C./min and then increasing the temperature to 350 ° C. ± 5 ° C. at a rate of 2.3-2.5 ° C./min. Quickly cool naturally at room temperature and perform soldering. Here, when the temperature rising rate up to 150 ° C. is slower than 15 ° C./min or the temperature rising rate up to 350 ° C. is slower than 2.3 ° C./min, the Ni plating film surface is oxidized, and 350 If the rate of temperature increase up to ℃ is faster than 2.5 ℃ / min, the melting of the solder becomes insufficient, and in any case, the solder wettability cannot be evaluated correctly. On the other hand, in order to make the temperature rising rate up to 150 ° C. faster than 120 ° C./min, the apparatus becomes large.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0027]
Examples 1-5 Comparative Examples 1-5
A commercially available aluminum nitride substrate was prepared as the ceramic substrate. The size is 2 inch square × thickness 0.635 mm, thermal conductivity 175 W / mK by laser flash method, and 3-point bending strength 420 MPa. The Al plate used was for forming a circuit 2 inches square × 0.4 mm thick and for forming a heat sink 2 inches square × 0.1 mm thick.
[0028]
The aluminum plate is laminated on the front and back surfaces of the ceramic substrate via a bonding material (alloy foil of Al 96.0%, Cu 3.5%, Mg 0.5% and thickness is 20 μm), and the carbon plate can be screwed and pressed against the substrate. Using a tool, the pressure was evenly applied in the vertical direction to the ceramic substrate. Joining was performed while applying pressure at a temperature of 550 to 635 ° C. in a vacuum or nitrogen atmosphere.
[0029]
After joining, an etching resist was screen printed and etched with FeCl 3 solution. Both the circuit and the heat sink were square (corner R was 2 mm), and the pattern was formed at the center of the ceramic substrate (creeping distance 1 mm). Next, after removing the etching resist, the oxide on the Al surface was removed using a commercially available alkaline etching agent (main component: caustic soda).
[0030]
Electroless Ni—P plating (“Nimden SX” manufactured by Okuno Pharmaceutical Co., Ltd.) was performed on the Al circuit surface of the circuit board manufactured as described above to form a Ni plating film having a thickness of 5 μm. For some circuit boards, the Ni plating film was heat-treated in a vacuum of 1 Pa or less at a temperature of 280 ° C. for 20 minutes. Thereafter, using various electrolyzed water shown in Table 1, washing was performed by showering or dipping for 10 minutes.
[0031]
Using these circuit boards, the following soldering was performed assuming actual module manufacturing, and the solder void ratio was measured. The results are shown in Table 1. Its [0032]
Measurement of solder void ratio Pb (90%)-Sn (10%) solder piece (bottom area 169 mm 2 × thickness 0.1 mm) is sandwiched between Al chips and a silicon chip (bottom area 169 mm 2 × thickness 0.4 mm) ), And in a hydrogen atmosphere, the temperature was raised to 150 ° C. at a rate of 15 ° C./minute, and then raised to a temperature of 350 ° C. at a rate of 2.5 ° C./minute. The solder void ratio was measured using a soft X-ray flaw detector ("PRO-TEST 100" manufactured by Softex Corporation), and an average value of 10 tests was obtained.
[0033]
[Table 1]
Figure 0003827605
[0034]
From the comparison of the examples and comparative examples in Table 1, it can be seen that according to the cleaning method of the present invention, the solder voids are drastically reduced to 1% or less. Moreover, it can be seen from the comparison between Example 1 and Example 5 that the solder voids are further reduced when the Ni plating film before cleaning is subjected to heat treatment.
[0035]
【The invention's effect】
According to the present invention, a circuit board in which solder voids are greatly reduced is provided.

Claims (3)

pH10以上、酸化還元電位−800mV以下、電気伝導度10.0mS/m以上の電解水で、金属回路に施されたNiめっき膜面を洗浄することを特徴とするセラミックス回路基板の半田濡れ性向上方法。Improvement of solder wettability of ceramic circuit board characterized by cleaning Ni plating film surface applied to metal circuit with electrolyzed water having pH of 10 or more, oxidation-reduction potential of -800 mV or less, and electric conductivity of 10.0 mS / m or more Method. 洗浄する前のNiめっき膜面が、1Pa以下の真空中、温度280±10℃で熱処理されていることを特徴とする請求項1記載の方法。  2. The method according to claim 1, wherein the Ni plating film surface before cleaning is heat-treated at a temperature of 280 ± 10 ° C. in a vacuum of 1 Pa or less. 請求項1又は2の方法によって洗浄されたセラミックス回路基板。A ceramic circuit board cleaned by the method according to claim 1.
JP2002108856A 2002-04-11 2002-04-11 Circuit board and method for improving solder wettability of circuit board Expired - Fee Related JP3827605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108856A JP3827605B2 (en) 2002-04-11 2002-04-11 Circuit board and method for improving solder wettability of circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108856A JP3827605B2 (en) 2002-04-11 2002-04-11 Circuit board and method for improving solder wettability of circuit board

Publications (2)

Publication Number Publication Date
JP2003304051A JP2003304051A (en) 2003-10-24
JP3827605B2 true JP3827605B2 (en) 2006-09-27

Family

ID=29392483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108856A Expired - Fee Related JP3827605B2 (en) 2002-04-11 2002-04-11 Circuit board and method for improving solder wettability of circuit board

Country Status (1)

Country Link
JP (1) JP3827605B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047827A (en) * 2002-07-12 2004-02-12 Mec Kk Method for manufacturing printed circuit board
JP4812429B2 (en) * 2005-01-31 2011-11-09 三洋電機株式会社 Circuit device manufacturing method

Also Published As

Publication number Publication date
JP2003304051A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
JP5720860B1 (en) Manufacturing method of ceramic circuit board
JP6799479B2 (en) Manufacturing method of metal-ceramic circuit board
JP5720861B1 (en) Ceramic circuit board manufacturing method and ceramic circuit board
JP4811756B2 (en) Method for manufacturing metal-ceramic bonding circuit board
CN110999553A (en) Method for manufacturing ceramic circuit board
JP5741971B2 (en) Method for manufacturing metal-ceramic bonding circuit board
JP4930833B2 (en) Ceramic circuit board and manufacturing method thereof
JP2003060111A (en) Method for manufacturing ceramic circuit board
WO2023234286A1 (en) Ceramic circuit substrate and semiconductor device using same
JP3827605B2 (en) Circuit board and method for improving solder wettability of circuit board
JP5069485B2 (en) Metal base circuit board
JP5630695B2 (en) Silicon nitride circuit board and manufacturing method thereof
JP5011587B2 (en) Manufacturing method of heat sink
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JP5643959B2 (en) Method for manufacturing metal-ceramic bonding circuit board
JP4685245B2 (en) Circuit board and manufacturing method thereof
JP4326706B2 (en) Circuit board evaluation method, circuit board and manufacturing method thereof
JP6386310B2 (en) Pretreatment method for plating Al-Cu joint
JP7543805B2 (en) Manufacturing method for insulating circuit board
JPH11322455A (en) Ceramics/metal bonded body and its production
JP4059539B2 (en) Aluminum nitride circuit board
WO2022014319A1 (en) Insulation substrate and method for manufacturing same
JP7260059B2 (en) Joined body and insulating circuit board
JP2023091914A (en) Method for manufacturing metal-ceramic bonding substrate, and metal-ceramic bonding substrate
KR100819797B1 (en) Manufacturing method of lead frame and lead frame manufactured thereby

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3827605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees