JP4059539B2 - Aluminum nitride circuit board - Google Patents

Aluminum nitride circuit board Download PDF

Info

Publication number
JP4059539B2
JP4059539B2 JP33671896A JP33671896A JP4059539B2 JP 4059539 B2 JP4059539 B2 JP 4059539B2 JP 33671896 A JP33671896 A JP 33671896A JP 33671896 A JP33671896 A JP 33671896A JP 4059539 B2 JP4059539 B2 JP 4059539B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
metal
plating
circuit board
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33671896A
Other languages
Japanese (ja)
Other versions
JPH10178257A (en
Inventor
純一 須崎
東一 高城
健二 門田
隆一 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP33671896A priority Critical patent/JP4059539B2/en
Publication of JPH10178257A publication Critical patent/JPH10178257A/en
Application granted granted Critical
Publication of JP4059539B2 publication Critical patent/JP4059539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高い信頼性、放熱性を要する電子部品のパワーモジュール等に使用される金属回路を有する窒化アルミニウム回路基板に関する。
【0002】
【従来の技術】
従来から各種電子機器の構成部品として、アルミナ(Al2O3)、窒化アルミニウム(AlN)、酸化ベリリウム(BeO)などのセラミックス焼結体基板表面に導電層として銅(Cu)回路板等を一体に接合した回路基板が広く使用されている。
【0003】
このうち窒化アルミニウム回路基板は、熱伝導性および電気伝導性に優れたCu等の金属により回路を形成しているため、回路動作の遅延が低減するとともに回路配線の寿命も向上する。
【0004】
窒化アルミニウム回路基板の製造方法としてはいくつかの方法が知られているが、良好な生産性を得るためには、フルエッチ法がよく使われる。フルエッチ法は、窒化アルミニウム板の全面にろう材ペーストを塗布し、それを覆うように全面に金属板を接合し、回路面とする金属板上に回路パターンをエッチングレジストにより形成させた後、エッチング処理して不要部分を除去する。さらに金属板の腐食防止やハンダ接合性の向上のためにNi系などのメッキ層により金属板の表面を被覆するのが一般的である。フルエッチ法は、生産性は良好であるが、不要な回路及びろう材除去工程を経るため、エッチング後回路パターンの端の窒化アルミニウム板や回路パターン間の窒化アルミニウム板に他の方法に比較して大きな引張応力が残留する特徴がある。
【0005】
また、一般に金属回路の表面はNi系などのメッキ層が施されており、半田等の接合材料に対する濡れ性が向上し、金属回路に半導体素子(ICチップ)や電極板を高い接合強度で接合することができ、その結果、半導体素子からの発熱の放散性や素子の動作信頼性を良好に保つことができるという利点を有している。
【0006】
【発明が解決しようとする課題】
したがって、窒化アルミニウム回路基板は、パワーモジュールへの実装工程や使用時のヒートサイクルなどの熱応力によって金属回路間の窒化アルミニウム板や金属回路の端部の窒化アルミニウム板にクラックが発生し、さらにクラックが進展して破壊や絶縁耐圧の低下に至り、使用不能となる問題があった。特に金属回路にニッケルメッキ等を実施するとクラックが顕著に生成すると云う問題があった。
【0007】
すなわち、金属回路にメッキ処理をした窒化アルミニウム回路基板をパワーモジュールに実装する場合、熱処理を施してヒートシンク銅板へハンダで接合する。さらに半導体チップや電極が回路基板の金属回路部にハンダで接合される。これらの熱処理工程は、エッチング後の金属回路間の窒化アルミニウム板や金属回路の端部の窒化アルミニウム板に残留する大きな引張応力をさらに増大させるため、回路基板にクラックが発生し易いと云う問題があった。
【0008】
以上の問題に対して、日本電子材料技術協会秋期講演大会講演概要集29巻(1992)pp.103「耐熱衝撃性に優れたセラミックス−金属接合基板」によれば、アルミナ基板上の銅板に施した無電解Ni−Pメッキの厚さが1μmを越えると加熱冷却試験による耐熱衝撃性が減少することが報告されている。
【0009】
しかしメッキ厚さ1μm以下にすると、高温になりやすいパワーモジュール用途では酸化等の腐食保護能力が少なく、回路の寿命が短くなる等未だ解決すべき課題があった。本発明は、上記状況に鑑みてなされたものであり、回路基板の耐食性、絶縁耐圧を損なうことなく、クラック発生を低減させ、信頼性の高いパワーモジュール用回路基板を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、金属回路表面に施されるメッキ層について検討した結果、メッキ層の平均的な厚さではなく、金属回路端部側面のメッキ層の厚さの最大値と厚さの最大値と最小値の比が回路基板のクラック発生に関係していることを見出し、本発明を完成した。特に窒化アルミニウム板は金属に比べて熱膨張係数が小さく、金属回路との間に応力が発生しやすい為、本発明によるクラック防止効果が顕著である。
【0011】
すなわち、本発明は窒化アルミニウム板上にメッキ層を有する金属回路が設けてなる窒化アルミニウム回路基板であって、該金属回路端部側面のメッキ厚さの最大値が1.5μm以上5μm以下であり、しかも該メッキ厚さの最大値と最小値の比が1以上3以下であることを特徴とする窒化アルミニウム回路基板である。
【0012】
【発明の実施の形態】
以下、さらに詳しく本発明について説明する。窒化アルミニウム板として特に制限はないが、良好な放熱性を示すためには、熱伝導率が80W/mK以上のものが適している。また、曲げ強さについては、回路基板形成後の強さに影響を及ぼすため350MPa以上のものが適当である。また、窒化アルミニウム板の形状は通常矩形であることが多いが、形状は用途によって適宜選択されるものであり、本発明は回路基板の形状に何ら制約を受けるものではない。
【0013】
窒化アルミニウム板の厚さは、要求される回路基板の強さによって異なるが、通常、0.3mmから1.5mmのものが使われる。窒化アルミニウム板に形成される金属回路及び金属放熱板について、その材質は、銅、ニッケル、アルミニウム、モリブデン、タングステン等の純金属もしくは合金が用いられる。金属回路又は金属放熱板の厚さは0.1〜2.0mmが通常使われている。
【0014】
接合する金属回路の厚さは極めて重要で、0.075mm程度の厚さでは、活性金属法の場合、接合時に若干の荷重をかけるため、金属板の膨張が妨げられ、金属板にシワを生じることがあり、量産性に欠けるという問題がある。従って、0.1mm以上のものを用いるのが好ましいが、あまり厚くなると、接合金属板による熱応力によって、金属回路の剥離や窒化アルミニウム板にクラックが発生するようになり、0.2mm以下とする必要がある。
【0015】
接合処理は、10-4torr以下の真空中、ろう材の融点以上の温度で行われるが、一般的な条件、すなわちろう材の融点の50℃程度上の温度を選択するのが無難である。その後接合体の金属板部分を、目的形状とするため、化学エッチング等の方法で不要な金属板及びろう材を除去して、パターニングすなわち金属回路を形成する。またDBC法等の方法を用いて回路を形成する事も可能である。
【0016】
さらに、パターニングして回路形成後、金属部分にメッキ処理を施す。メッキ方法は電解メッキ法や無電解メッキ法など特に限定されるものではない。ただし、電解メッキ法ではパターンが複雑で電極設定位置が取り難いことから、無電解メッキ法が好適である。無電解メッキの場合、金属回路端部側面のメッキ厚さとその均一性を制御する条件としては、触媒液濃度と温度、浸漬時間及びメッキ液濃度と温度、浸漬時間、触媒液とメッキ液の攪拌条件などが重要である。触媒濃度が高すぎて攪拌が不十分な場合には触媒が不均一に付着しやすくなり均一なメッキ厚さを得ることが難しくなる。一方、触媒濃度が低すぎると触媒の付着が不十分な部分が発生し、この場合もメッキ厚さの均一性を低下する。また、触媒濃度が高い程、メッキの付着が速くなり、触媒濃度が低いと逆に付着速度は低いものとなる。また、メッキ液の金属塩濃度が高く、温度が高いほどメッキ層形成速度が速くメッキが不均一になる傾向がある。攪拌条件などのメッキ液の流動状態は特にメッキ厚さの均一性に影響があり、攪拌を十分に行なうほど、メッキ厚さの均一性が向上する傾向がある。
【0017】
本発明において重要なことは、金属回路端部側面のメッキ厚さの最大値が1.5μm以上5μm以下であり、しかも該メッキ厚さの最大値と最小値の比が1以上3以下であることである。最大値が5μmを越えると、ヒートシンクの取り付け時、または素子の発熱等によるヒートサイクルを受けた時に熱膨張差により発生する応力が大きくなり、金属回路間又は凸部周囲のセラミックス基板にクラックの発生率が大きくなり好ましくない。また、1.5μm未満ではメッキ厚さを均一に形成することが難しく、被覆不十分なところが形成されやすい。そのため、メッキ層の目的である金属回路の腐食防止やハンダ接合性の向上が達成されにくく好ましくない。したがって、金属回路端部側面のメッキ厚さの最大値が1.5μm以上5μm以下であり、さらに好ましくは2.0μm以上4μm以下である。
【0018】
また、最大値が1.5μm以上5μm以下であると同時に最大値と最小値の比が1以上3以下であることが重要である。最大値と最小値の比が3を越えるとメッキ層の厚さの均一性が低くなり、熱膨張差による発生応力が不均一となり、メッキ厚さの大きい部分の応力が増幅され、セラミック基板にクラックが起こりやすく好ましくない。
【0019】
本発明にいう金属回路端部側面のメッキ厚さとは、図1の矢印に示すように、金属回路の厚さ方向の周囲を形成する面に付着したメッキ厚さを云う。以下実施例により、更に詳しく説明する
【0020】
【実施例】
窒化アルミニウム粉末に酸化イットリウム粉末2〜4重量%配合しドクターブレード法を用いて成形した成型体を1850℃〜1900℃で窒素雰囲気中で焼成して窒化アルミニウム板を得た。得られた窒化アルミニウム板の物性は熱伝導率150W/(m・K)、相対密度99.9%であった。又形状は50×60×厚さ0.635mmのものとした。
次いで、銀、銅及びジルコニウムの各金属粉末を、銀粉末75重量部、銅粉末25重量部にジルコニウム粉末15重量部及びテルピネヲ−ル15重量部と有機結合材としてポリイソブチルメタアクリレ−トのトルエン溶液を固形分で1.5重量部加えてよく混練し、ロウ材ペ−ストを調整した。このロウ材ペ−ストを窒化アルミニウム焼結基板の両面にスクリ−ン印刷によって全面塗布した。その際の塗布量は(乾燥後)6〜8mg/cm2 とした。
【0021】
次に、ろう材ペ−ストを塗布した窒化アルミニウム基板の両面に銅板(厚さ:金属回路用銅板0.3mm、金属放熱用銅板0.15mm)を接触配置し炉に投入し、1×10-4torrの真空下、温度900℃で30分加熱した後、2℃/min.の降温速度で冷却して接合体を製造した。
【0022】
次いで、この接合体の銅板上に紫外線硬化タイプのエッチングレジストをスクリ−ン印刷法によりパターン印刷し、塩化第2銅溶液を用いて不要銅部分を溶解除去し、さらにパターン外に残った不要ろう材や反応生成物を、60℃、10%弗化アンモニウム溶液で溶解除去した。この後、5%苛性ソ−ダ溶液でエッチングレジストを剥離し、目的形状の回路基板を得た。これに、無電解Ni−Pメッキ処理を施し、銅回路部分に選択的にメッキ膜を形成させた。まず、10%の硝酸水溶液に1分間浸漬して前処理し、蒸留水で十分洗浄した。次に、市販のH2O2−H2SO4系化研液(奥野製薬製:商品名CPB)の2倍希釈の水溶液を50℃に保持し、2分間浸漬したのち、蒸留水で十分洗浄した。そののち、10%の硫酸水溶液に5秒間浸漬処理し、蒸留水で十分洗浄した。
【0023】
次に触媒処理液に室温で1分間浸漬して触媒処理を行なった。触媒処理液は市販のPd系触媒原液(奥野製薬製:商品名アクチベータ)を表1に示す濃度で調製して用いた。触媒処理したのち蒸留水で2分間超音波洗浄した。次に、表1に示した温度に保持したNi−P系無電解メッキ液に表1に示す時間浸漬した。メッキ液は市販のNi−P系メッキ原液(奥野製薬製:商品名ニムデンSX)を表1に示す濃度で調製して用いた。メッキ液に浸漬している際に回転羽による攪拌と超音波による攪拌を行なった。このようにして表1に示す種々の条件で金属回路端部側面のメッキ厚さをもった回路基板を作製した。なお、表1中の濃度mL/Lは原液の量mlを蒸留水で希釈して1Lとした場合の濃度である。
【0024】
これらの回路基板のヒートサイクル試験を、−40℃で30分間保持し、125℃で30分間保持する加熱冷却操作を1サイクルとし、JIS−C−0025温度変化試験方法に準じて200サイクル実施した。試験後、回路間の窒化アルミニウム焼結基板に発生したクラックの有無を蛍光探傷検査により観察することで行なった。クラックの確認された回路基板の割合をクラック発生率として示した。また、銅回路板端部側面のメッキ厚さの測定は、個々の試験後のサンプルを0.3mm厚さの金属回路板銅板の表面から深さ0.15mmまで研削及び研磨加工により銅回路板を除去し、端部側面のメッキ厚さをSEMにて観察することにより行なった。メッキ最大膜厚さと最小膜厚さを測定し、最大膜厚さと最小膜厚さの比を算出した。これらの銅回路板端部側面のメッキ厚さの最大値及び最大値と最小値の比とクラック発生率の関係を表1にまとめて示した。
【0025】
【表1】

Figure 0004059539
【0026】
表1から明らかなように金属回路板端部側面のメッキ厚さの最大値が5μmを越えると急激にクラック発生率が増加していることがわかる。また、メッキ厚さの最大値と最小値との比が小さいほどクラック発生率が小さいことがわかる。したがって、これらの実施例及び比較例の結果から、本発明の範囲内に金属回路板端部側面のメッキ厚さを制御することによって信頼性の高い回路基板を作製することが判明した。
【0027】
【発明の効果】
本発明によれば、ヒートサイクルによるクラックの発生率を抑えた高信頼性の窒化アルミニウム回路基板を提供することができる。
【図面の簡単な説明】
【図1】 メッキされた金属回路板端部付近の断面概念図
【符号の説明】
1:窒化アルミニウム板
2:ろう材層
3:金属回路板
4:メッキ層(実際は数μmであり、金属回路板との大きさは実際と異なる)
5:金属回路板端部側面のメッキ厚さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride circuit board having a metal circuit used for a power module of an electronic component that requires high reliability and heat dissipation.
[0002]
[Prior art]
Conventionally, as a component of various electronic devices, a copper (Cu) circuit board or the like is integrally bonded as a conductive layer to a ceramic sintered body substrate surface such as alumina (Al2O3), aluminum nitride (AlN), beryllium oxide (BeO), etc. Circuit boards are widely used.
[0003]
Among these, the aluminum nitride circuit board forms a circuit with a metal such as Cu having excellent thermal conductivity and electrical conductivity, so that the delay of the circuit operation is reduced and the life of the circuit wiring is also improved.
[0004]
Several methods are known as a method of manufacturing an aluminum nitride circuit board, but a full etch method is often used to obtain good productivity. In the full etching method, a brazing paste is applied to the entire surface of the aluminum nitride plate, a metal plate is bonded to the entire surface so as to cover it, and a circuit pattern is formed on the metal plate as a circuit surface by an etching resist. Etching is performed to remove unnecessary portions. Further, in general, the surface of the metal plate is covered with a Ni-based plating layer in order to prevent corrosion of the metal plate and to improve solderability. Although the full-etch method has good productivity, it passes through unnecessary circuit and brazing material removal processes. Therefore, the aluminum nitride plate at the end of the circuit pattern after etching and the aluminum nitride plate between circuit patterns are compared with other methods. And large tensile stress remains.
[0005]
In general, the surface of the metal circuit is coated with a Ni-based plating layer, which improves the wettability of the bonding material such as solder and bonds the semiconductor element (IC chip) and electrode plate to the metal circuit with high bonding strength. As a result, the heat dissipation from the semiconductor element and the operation reliability of the element can be kept good.
[0006]
[Problems to be solved by the invention]
Therefore, in the aluminum nitride circuit board, cracks occur in the aluminum nitride plate between the metal circuits and the aluminum nitride plate at the end of the metal circuit due to thermal stress such as the mounting process to the power module and the heat cycle during use. However, there has been a problem that it has become impossible to use due to breakdown and a decrease in dielectric strength. In particular, when nickel plating or the like is performed on a metal circuit, there is a problem that cracks are remarkably generated.
[0007]
That is, when an aluminum nitride circuit board obtained by plating a metal circuit is mounted on a power module, it is heat-treated and joined to a heat sink copper plate by soldering. Further, the semiconductor chip and the electrode are joined to the metal circuit portion of the circuit board by soldering. These heat treatment steps further increase the large tensile stress remaining on the aluminum nitride plate between the etched metal circuits and the aluminum nitride plate at the end of the metal circuit, so that there is a problem that the circuit board is likely to crack. there were.
[0008]
In response to the above-mentioned problems, the Japan Electronic Materials Technology Autumn Meeting Summary Vol. 29 (1992) pp. According to 103 “Ceramic-Metal Bonded Substrate with Excellent Thermal Shock Resistance”, when the thickness of the electroless Ni—P plating applied to the copper plate on the alumina substrate exceeds 1 μm, the thermal shock resistance by the heating / cooling test decreases. It has been reported.
[0009]
However, when the plating thickness is 1 μm or less, there is still a problem to be solved such that the ability to protect corrosion such as oxidation is small and the life of the circuit is shortened in power module applications that are likely to become high temperature. The present invention has been made in view of the above situation, and an object of the present invention is to provide a highly reliable power module circuit board with reduced crack generation without impairing the corrosion resistance and dielectric strength of the circuit board. .
[0010]
[Means for Solving the Problems]
As a result of examining the plating layer applied to the surface of the metal circuit, the present inventors have found that the maximum thickness and the maximum thickness of the plating layer on the side surface of the metal circuit are not the average thickness of the plating layer. The present invention was completed by finding that the ratio between the value and the minimum value is related to the occurrence of cracks in the circuit board. In particular, the aluminum nitride plate has a smaller coefficient of thermal expansion than metal, and stress is easily generated between the metal nitride plate and the effect of preventing cracks according to the present invention.
[0011]
That is, the present invention is an aluminum nitride circuit board in which a metal circuit having a plating layer is provided on an aluminum nitride plate, and the maximum value of the plating thickness on the side surface of the metal circuit is 1.5 μm or more and 5 μm or less. Moreover, the aluminum nitride circuit board is characterized in that the ratio between the maximum value and the minimum value of the plating thickness is 1 or more and 3 or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. Although there is no restriction | limiting in particular as an aluminum nitride board, In order to show favorable heat dissipation, the thing whose thermal conductivity is 80 W / mK or more is suitable. The bending strength is suitably 350 MPa or more because it affects the strength after the circuit board is formed. The shape of the aluminum nitride plate is usually rectangular, but the shape is appropriately selected depending on the application, and the present invention is not limited by the shape of the circuit board.
[0013]
The thickness of the aluminum nitride plate varies depending on the required strength of the circuit board, but usually 0.3 mm to 1.5 mm is used. As for the metal circuit and the metal heat radiating plate formed on the aluminum nitride plate, pure metals or alloys such as copper, nickel, aluminum, molybdenum and tungsten are used. As for the thickness of a metal circuit or a metal heat sink, 0.1-2.0 mm is usually used.
[0014]
The thickness of the metal circuit to be joined is extremely important. When the thickness is about 0.075 mm, the active metal method applies a slight load at the time of joining, so that the expansion of the metal plate is hindered and the metal plate is wrinkled. There is a problem that it lacks mass productivity. Accordingly, it is preferable to use a material having a thickness of 0.1 mm or more. However, if the thickness is too large, peeling of the metal circuit or cracks in the aluminum nitride plate will occur due to thermal stress caused by the bonded metal plate, and the thickness should be 0.2 mm or less. There is a need.
[0015]
The joining process is performed at a temperature equal to or higher than the melting point of the brazing material in a vacuum of 10 −4 torr or less, but it is safe to select a general condition, that is, a temperature about 50 ° C. above the melting point of the brazing material. . Thereafter, in order to make the metal plate portion of the joined body into a target shape, unnecessary metal plates and brazing material are removed by a method such as chemical etching to form a pattern, that is, a metal circuit. It is also possible to form a circuit using a method such as the DBC method.
[0016]
Further, after forming a circuit by patterning, the metal portion is plated. The plating method is not particularly limited, such as an electrolytic plating method or an electroless plating method. However, the electroplating method is preferable because the pattern is complicated and it is difficult to set the electrode setting position. In the case of electroless plating, the conditions for controlling the plating thickness and uniformity on the side surface of the metal circuit include catalyst solution concentration and temperature, immersion time and plating solution concentration and temperature, immersion time, and stirring of the catalyst solution and plating solution. Conditions are important. If the catalyst concentration is too high and stirring is insufficient, the catalyst tends to adhere non-uniformly, making it difficult to obtain a uniform plating thickness. On the other hand, when the catalyst concentration is too low, a portion where the catalyst is not sufficiently adhered is generated, and in this case, the uniformity of the plating thickness is also lowered. In addition, the higher the catalyst concentration, the faster the deposition of plating, and the lower the catalyst concentration, the lower the deposition rate. Also, the higher the metal salt concentration in the plating solution and the higher the temperature, the faster the plating layer formation rate and the more uneven the plating. The flow state of the plating solution, such as the stirring conditions, has an influence on the uniformity of the plating thickness, and the uniformity of the plating thickness tends to improve as the stirring is sufficiently performed.
[0017]
What is important in the present invention is that the maximum value of the plating thickness on the side surface of the metal circuit is 1.5 μm or more and 5 μm or less, and the ratio between the maximum value and the minimum value of the plating thickness is 1 or more and 3 or less. That is. If the maximum value exceeds 5 μm, the stress generated due to the difference in thermal expansion when attaching a heat sink or undergoing a heat cycle due to heat generation of the element becomes large, and cracks occur in the ceramic substrate between metal circuits or around the convex part The rate increases, which is not preferable. On the other hand, when the thickness is less than 1.5 μm, it is difficult to form a uniform plating thickness, and a portion with insufficient coating tends to be formed. For this reason, it is difficult to prevent corrosion of the metal circuit, which is the purpose of the plating layer, and to improve solderability, which is not preferable. Therefore, the maximum value of the plating thickness on the side face of the metal circuit is 1.5 μm or more and 5 μm or less, more preferably 2.0 μm or more and 4 μm or less.
[0018]
Further, it is important that the maximum value is 1.5 μm or more and 5 μm or less, and at the same time the ratio of the maximum value and the minimum value is 1 or more and 3 or less. If the ratio between the maximum value and the minimum value exceeds 3, the thickness uniformity of the plating layer becomes low, the stress generated due to the difference in thermal expansion becomes non-uniform, and the stress in the part where the plating thickness is large is amplified, and the ceramic substrate Cracks are likely to occur and are not preferable.
[0019]
The plating thickness on the side surface of the metal circuit referred to in the present invention refers to the plating thickness attached to the surface forming the periphery in the thickness direction of the metal circuit, as shown by the arrow in FIG. Examples will be described in more detail below.
【Example】
A molded body obtained by blending 2-4% by weight of yttrium oxide powder with aluminum nitride powder and molding using a doctor blade method was fired in a nitrogen atmosphere at 1850 ° C. to 1900 ° C. to obtain an aluminum nitride plate. The physical properties of the obtained aluminum nitride plate were a thermal conductivity of 150 W / (m · K) and a relative density of 99.9%. The shape was 50 × 60 × 0.635 mm thick.
Next, each metal powder of silver, copper and zirconium was mixed with 75 parts by weight of silver powder, 25 parts by weight of copper powder, 15 parts by weight of zirconium powder and 15 parts by weight of terpineol, and polyisobutyl methacrylate as an organic binder. The toluene solution was added in a solid content of 1.5 parts by weight and kneaded well to prepare a brazing paste. This brazing paste was applied to the entire surface of the aluminum nitride sintered substrate by screen printing. The coating amount at that time was 6 to 8 mg / cm 2 (after drying).
[0021]
Next, a copper plate (thickness: copper plate for metal circuit 0.3 mm, copper plate for metal heat dissipation 0.15 mm) is placed in contact on both sides of the aluminum nitride substrate coated with the brazing paste and placed in a furnace. -4 torr at a temperature of 900 ° C for 30 minutes under a vacuum of 2 torr, then 2 ° C / min. The joined body was manufactured by cooling at a temperature lowering rate.
[0022]
Next, an ultraviolet curable etching resist is pattern-printed on the copper plate of the joined body by a screen printing method, and unnecessary copper portions are dissolved and removed using a cupric chloride solution, and the unnecessary solder remaining outside the pattern is further removed. The material and the reaction product were dissolved and removed with a 10% ammonium fluoride solution at 60 ° C. Thereafter, the etching resist was peeled off with a 5% caustic soda solution to obtain a circuit board having a desired shape. This was subjected to an electroless Ni—P plating process to selectively form a plating film on the copper circuit portion. First, it was pretreated by being immersed in a 10% nitric acid aqueous solution for 1 minute and sufficiently washed with distilled water. Next, a 2-fold diluted aqueous solution of a commercially available H2O2-H2SO4 chemical solution (Okuno Pharmaceutical Co., Ltd .: trade name CPB) was maintained at 50 ° C., immersed for 2 minutes, and then sufficiently washed with distilled water. After that, it was immersed in a 10% sulfuric acid aqueous solution for 5 seconds and sufficiently washed with distilled water.
[0023]
Next, the catalyst treatment was performed by immersing in the catalyst treatment solution at room temperature for 1 minute. As the catalyst treatment liquid, a commercially available Pd-based catalyst stock solution (Okuno Pharmaceutical Co., Ltd .: trade name activator) was prepared at a concentration shown in Table 1 and used. After the catalyst treatment, it was ultrasonically washed with distilled water for 2 minutes. Next, it was immersed in the Ni-P electroless plating solution maintained at the temperature shown in Table 1 for the time shown in Table 1. As the plating solution, a commercially available Ni-P plating stock solution (Okuno Pharmaceutical Co., Ltd., trade name: Nimden SX) was prepared at a concentration shown in Table 1. While immersed in the plating solution, stirring with a rotating blade and stirring with ultrasonic waves were performed. In this way, a circuit board having a plating thickness on the side surface of the metal circuit under various conditions shown in Table 1 was produced. The concentration mL / L in Table 1 is the concentration when the stock solution ml is diluted with distilled water to 1 L.
[0024]
The heat cycle test of these circuit boards was held at −40 ° C. for 30 minutes, and the heating / cooling operation of holding at 125 ° C. for 30 minutes was one cycle, and 200 cycles were performed according to the JIS-C-0025 temperature change test method. . After the test, the presence or absence of cracks generated in the aluminum nitride sintered substrate between the circuits was observed by fluorescent flaw inspection. The ratio of the circuit board in which cracks were confirmed was shown as the crack occurrence rate. In addition, the measurement of the plating thickness on the side face of the copper circuit board is performed by grinding and polishing the sample after each test from the surface of the 0.3 mm thick metal circuit board copper plate to a depth of 0.15 mm. Was removed, and the plating thickness on the side surface of the end portion was observed by SEM. The plating maximum film thickness and minimum film thickness were measured, and the ratio between the maximum film thickness and the minimum film thickness was calculated. Table 1 summarizes the relationship between the maximum thickness and the ratio between the maximum value and the minimum value of the plating thickness on the side face of the copper circuit board end and the crack occurrence rate.
[0025]
[Table 1]
Figure 0004059539
[0026]
As apparent from Table 1, it can be seen that when the maximum value of the plating thickness on the side surface of the end portion of the metal circuit board exceeds 5 μm, the crack generation rate increases rapidly. It can also be seen that the crack generation rate is smaller as the ratio of the maximum value and the minimum value of the plating thickness is smaller. Therefore, from the results of these Examples and Comparative Examples, it has been found that a highly reliable circuit board can be produced by controlling the plating thickness on the side surface of the end portion of the metal circuit board within the scope of the present invention.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the highly reliable aluminum nitride circuit board which suppressed the incidence rate of the crack by a heat cycle can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view near the end of a plated metal circuit board.
1: Aluminum nitride plate 2: Brazing material layer 3: Metal circuit board 4: Plating layer (actually several μm, the size of the metal circuit board is different from the actual size)
5: Plating thickness of the side face of the metal circuit board

Claims (1)

窒化アルミニウム板上にメッキ層を有する金属回路が設けてなる窒化アルミニウム回路基板であって、該金属回路端部側面のメッキ厚さの最大値が1.5μm以上5μm以下であり、しかも金属回路端部側面のメッキ厚さの最大値と最小値の比が1以上3以下であることを特徴とする窒化アルミニウム回路基板。An aluminum nitride circuit board in which a metal circuit having a plating layer is provided on an aluminum nitride plate, wherein the maximum plating thickness on the side surface of the metal circuit edge is 1.5 μm or more and 5 μm or less, and the metal circuit edge An aluminum nitride circuit board characterized in that the ratio of the maximum value and the minimum value of the plating thickness on the side of the part is 1 or more and 3 or less.
JP33671896A 1996-12-17 1996-12-17 Aluminum nitride circuit board Expired - Fee Related JP4059539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33671896A JP4059539B2 (en) 1996-12-17 1996-12-17 Aluminum nitride circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33671896A JP4059539B2 (en) 1996-12-17 1996-12-17 Aluminum nitride circuit board

Publications (2)

Publication Number Publication Date
JPH10178257A JPH10178257A (en) 1998-06-30
JP4059539B2 true JP4059539B2 (en) 2008-03-12

Family

ID=18302078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33671896A Expired - Fee Related JP4059539B2 (en) 1996-12-17 1996-12-17 Aluminum nitride circuit board

Country Status (1)

Country Link
JP (1) JP4059539B2 (en)

Also Published As

Publication number Publication date
JPH10178257A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JP3211856B2 (en) Circuit board
JP2007123883A (en) Method of forming plating layer of print circuit board and print circuit board manufactured by the method
JP4703377B2 (en) Stepped circuit board, manufacturing method thereof, and power control component using the same.
JPS6227393A (en) Formation of copper film on ceramic substrate
JP5069485B2 (en) Metal base circuit board
JPH11121889A (en) Circuit board
JP4059539B2 (en) Aluminum nitride circuit board
JP2004055576A (en) Circuit board and power module using it
JP3526710B2 (en) Circuit board manufacturing method
JP2007063042A (en) Ceramic substrate and electronic component using it
JP4323706B2 (en) Method of joining ceramic body and copper plate
JP3722573B2 (en) Ceramic substrate, circuit board using the same, and manufacturing method thereof
JP3182354B2 (en) Circuit board and its evaluation method
JPH05160551A (en) Method of manufacturing electronic part mounting aluminum nitride board
JP4761595B2 (en) Metallized substrate
JP4326706B2 (en) Circuit board evaluation method, circuit board and manufacturing method thereof
JPH05191038A (en) Ceramic board with metallic layer and manufacturing method thereof
JP3260222B2 (en) Circuit board manufacturing method
JPH10224059A (en) Heat sink
JP3537320B2 (en) Circuit board
JP3871472B2 (en) Manufacturing method of soldering Ni member, electrical component and heat dissipation component
JP3827605B2 (en) Circuit board and method for improving solder wettability of circuit board
JPH0766507A (en) Circuit board
JP3526711B2 (en) Aluminum nitride circuit board
JP2591649B2 (en) Method of forming metal layer on ceramic substrate surface

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees