JPH10178257A - Aluminum nitride circuit board - Google Patents

Aluminum nitride circuit board

Info

Publication number
JPH10178257A
JPH10178257A JP33671896A JP33671896A JPH10178257A JP H10178257 A JPH10178257 A JP H10178257A JP 33671896 A JP33671896 A JP 33671896A JP 33671896 A JP33671896 A JP 33671896A JP H10178257 A JPH10178257 A JP H10178257A
Authority
JP
Japan
Prior art keywords
circuit board
aluminum nitride
circuit
metal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33671896A
Other languages
Japanese (ja)
Other versions
JP4059539B2 (en
Inventor
Junichi Suzaki
純一 須崎
Toichi Takagi
東一 高城
Kenji Kadota
健二 門田
Ryuichi Terasaki
隆一 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP33671896A priority Critical patent/JP4059539B2/en
Publication of JPH10178257A publication Critical patent/JPH10178257A/en
Application granted granted Critical
Publication of JP4059539B2 publication Critical patent/JP4059539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable aluminum nitride circuit board which can suppress the occurrence of cracks caused by heat cycles. SOLUTION: In a circuit board, a metallic circuit 3 of copper, etc., is formed on an aluminum nitride substrate 1 in a state where the circuit 3 is joined to the substrate 1 and the surface of the circuit 3 is plated with nickel 4. The heat cycle resistance of the circuit board is improved by adjusting the maximum thickness 5 of the plated nickel 4 on the side face of the end section of the metallic circuit 3 to 1.5-5μm and, in addition, making the ratio of the maximum thickness to the minimum thickness of the plated nickel 4 on the same side face 1-3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い信頼性、放熱
性を要する電子部品のパワーモジュール等に使用される
金属回路を有する窒化アルミニウム回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride circuit board having a metal circuit used for a power module of an electronic component requiring high reliability and heat radiation.

【0002】[0002]

【従来の技術】従来から各種電子機器の構成部品とし
て、アルミナ(Al2O3)、窒化アルミニウム(Al
N)、酸化ベリリウム(BeO)などのセラミックス焼
結体基板表面に導電層として銅(Cu)回路板等を一体
に接合した回路基板が広く使用されている。
2. Description of the Related Art Conventionally, alumina (Al2O3), aluminum nitride (Al
N), a circuit board in which a copper (Cu) circuit board or the like is integrally bonded as a conductive layer to the surface of a ceramic sintered body substrate such as beryllium oxide (BeO) is widely used.

【0003】このうち窒化アルミニウム回路基板は、熱
伝導性および電気伝導性に優れたCu等の金属により回
路を形成しているため、回路動作の遅延が低減するとと
もに回路配線の寿命も向上する。
[0003] Of these, the aluminum nitride circuit board forms a circuit with a metal such as Cu having excellent heat conductivity and electric conductivity, so that the delay of the circuit operation is reduced and the life of the circuit wiring is improved.

【0004】窒化アルミニウム回路基板の製造方法とし
てはいくつかの方法が知られているが、良好な生産性を
得るためには、フルエッチ法がよく使われる。フルエッ
チ法は、窒化アルミニウム板の全面にろう材ペーストを
塗布し、それを覆うように全面に金属板を接合し、回路
面とする金属板上に回路パターンをエッチングレジスト
により形成させた後、エッチング処理して不要部分を除
去する。さらに金属板の腐食防止やハンダ接合性の向上
のためにNi系などのメッキ層により金属板の表面を被
覆するのが一般的である。フルエッチ法は、生産性は良
好であるが、不要な回路及びろう材除去工程を経るた
め、エッチング後回路パターンの端の窒化アルミニウム
板や回路パターン間の窒化アルミニウム板に他の方法に
比較して大きな引張応力が残留する特徴がある。
Several methods are known for manufacturing an aluminum nitride circuit board, but a full-etch method is often used to obtain good productivity. In the full-etch method, a brazing material paste is applied to the entire surface of an aluminum nitride plate, a metal plate is bonded to the entire surface so as to cover the paste, and a circuit pattern is formed on the metal plate serving as a circuit surface with an etching resist. Unnecessary portions are removed by etching. Further, the surface of the metal plate is generally coated with a plating layer of Ni or the like in order to prevent corrosion of the metal plate and improve solder jointability. Although the full-etch method has good productivity, it goes through an unnecessary circuit and brazing material removal process, so the aluminum nitride plate at the end of the circuit pattern after etching and the aluminum nitride plate between circuit patterns are compared with other methods. Large tensile stress remains.

【0005】また、一般に金属回路の表面はNi系など
のメッキ層が施されており、半田等の接合材料に対する
濡れ性が向上し、金属回路に半導体素子(ICチップ)
や電極板を高い接合強度で接合することができ、その結
果、半導体素子からの発熱の放散性や素子の動作信頼性
を良好に保つことができるという利点を有している。
In general, the surface of a metal circuit is provided with a Ni-based plating layer, so that the wettability to a bonding material such as solder is improved, and the metal circuit is provided with a semiconductor element (IC chip).
And the electrode plate can be joined with high joining strength, and as a result, there is an advantage that the heat dissipation from the semiconductor element and the operation reliability of the element can be kept good.

【0006】[0006]

【発明が解決しようとする課題】したがって、窒化アル
ミニウム回路基板は、パワーモジュールへの実装工程や
使用時のヒートサイクルなどの熱応力によって金属回路
間の窒化アルミニウム板や金属回路の端部の窒化アルミ
ニウム板にクラックが発生し、さらにクラックが進展し
て破壊や絶縁耐圧の低下に至り、使用不能となる問題が
あった。特に金属回路にニッケルメッキ等を実施すると
クラックが顕著に生成すると云う問題があった。
Therefore, the aluminum nitride circuit board is made of an aluminum nitride plate between metal circuits or an aluminum nitride at an end of the metal circuit due to a thermal stress such as a mounting process to a power module or a heat cycle during use. There was a problem that cracks were generated in the plate and further cracks were propagated, leading to destruction and lowering of the withstand voltage, making it unusable. In particular, there is a problem that cracks are remarkably generated when a metal circuit is subjected to nickel plating or the like.

【0007】すなわち、金属回路にメッキ処理をした窒
化アルミニウム回路基板をパワーモジュールに実装する
場合、熱処理を施してヒートシンク銅板へハンダで接合
する。さらに半導体チップや電極が回路基板の金属回路
部にハンダで接合される。これらの熱処理工程は、エッ
チング後の金属回路間の窒化アルミニウム板や金属回路
の端部の窒化アルミニウム板に残留する大きな引張応力
をさらに増大させるため、回路基板にクラックが発生し
易いと云う問題があった。
That is, when an aluminum nitride circuit board having a metal circuit plated is mounted on a power module, it is heat-treated and joined to a heat sink copper plate with solder. Further, the semiconductor chip and the electrode are joined to the metal circuit portion of the circuit board by soldering. These heat treatment steps further increase the large tensile stress remaining on the aluminum nitride plate between the metal circuits after etching and the aluminum nitride plate at the end of the metal circuit, and thus have the problem that cracks are likely to occur on the circuit board. there were.

【0008】以上の問題に対して、日本電子材料技術協
会秋期講演大会講演概要集29巻(1992)pp.1
03「耐熱衝撃性に優れたセラミックス−金属接合基
板」によれば、アルミナ基板上の銅板に施した無電解N
i−Pメッキの厚さが1μmを越えると加熱冷却試験に
よる耐熱衝撃性が減少することが報告されている。
[0008] In response to the above problems, Japanese Society of Electronic Materials Technology Autumn Conference, Vol. 29 (1992) pp. 1
03 “Ceramic-metal bonded substrate with excellent thermal shock resistance”, electroless N applied to a copper plate on an alumina substrate
It has been reported that when the thickness of the i-P plating exceeds 1 μm, the thermal shock resistance in a heating / cooling test decreases.

【0009】しかしメッキ厚さ1μm以下にすると、高
温になりやすいパワーモジュール用途では酸化等の腐食
保護能力が少なく、回路の寿命が短くなる等未だ解決す
べき課題があった。本発明は、上記状況に鑑みてなされ
たものであり、回路基板の耐食性、絶縁耐圧を損なうこ
となく、クラック発生を低減させ、信頼性の高いパワー
モジュール用回路基板を提供することを目的とする。
However, when the plating thickness is 1 μm or less, there is still a problem to be solved, such as the ability to protect against corrosion such as oxidation and the like, and the life of the circuit is shortened in power modules which are likely to be heated to a high temperature. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a circuit board for a power module that reduces the occurrence of cracks and does not impair the corrosion resistance and dielectric strength of the circuit board and that has high reliability. .

【0010】[0010]

【課題を解決するための手段】本発明者らは、金属回路
表面に施されるメッキ層について検討した結果、メッキ
層の平均的な厚さではなく、金属回路端部側面のメッキ
層の厚さの最大値と厚さの最大値と最小値の比が回路基
板のクラック発生に関係していることを見出し、本発明
を完成した。特に窒化アルミニウム板は金属に比べて熱
膨張係数が小さく、金属回路との間に応力が発生しやす
い為、本発明によるクラック防止効果が顕著である。
The present inventors have studied the plating layer applied to the surface of the metal circuit and found that the thickness of the plating layer on the side surface of the end of the metal circuit is not the average thickness of the plating layer. The inventors have found that the ratio between the maximum value of the thickness and the maximum value and the minimum value of the thickness is related to the occurrence of cracks in the circuit board, and completed the present invention. In particular, since the aluminum nitride plate has a smaller coefficient of thermal expansion than metal and tends to generate stress between the aluminum nitride plate and the metal circuit, the crack preventing effect according to the present invention is remarkable.

【0011】すなわち、本発明は窒化アルミニウム板上
にメッキ層を有する金属回路が設けてなる窒化アルミニ
ウム回路基板であって、該金属回路端部側面のメッキ厚
さの最大値が1.5μm以上5μm以下であり、しかも
該メッキ厚さの最大値と最小値の比が1以上3以下であ
ることを特徴とする窒化アルミニウム回路基板である。
That is, the present invention relates to an aluminum nitride circuit board in which a metal circuit having a plating layer is provided on an aluminum nitride plate, wherein the maximum plating thickness on the side surface of the end of the metal circuit is 1.5 μm to 5 μm. An aluminum nitride circuit board, wherein the ratio between the maximum value and the minimum value of the plating thickness is 1 or more and 3 or less.

【0012】[0012]

【発明の実施の形態】以下、さらに詳しく本発明につい
て説明する。窒化アルミニウム板として特に制限はない
が、良好な放熱性を示すためには、熱伝導率が80W/
mK以上のものが適している。また、曲げ強さについて
は、回路基板形成後の強さに影響を及ぼすため350M
Pa以上のものが適当である。また、窒化アルミニウム
板の形状は通常矩形であることが多いが、形状は用途に
よって適宜選択されるものであり、本発明は回路基板の
形状に何ら制約を受けるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Although there is no particular limitation on the aluminum nitride plate, in order to exhibit good heat dissipation, the thermal conductivity is 80 W /
Those having mK or more are suitable. Further, the bending strength affects the strength after the formation of the circuit board, so that the bending strength is 350M.
Those having Pa or more are suitable. The shape of the aluminum nitride plate is usually rectangular in many cases, but the shape is appropriately selected depending on the application, and the present invention is not limited at all by the shape of the circuit board.

【0013】窒化アルミニウム板の厚さは、要求される
回路基板の強さによって異なるが、通常、0.3mmか
ら1.5mmのものが使われる。窒化アルミニウム板に
形成される金属回路及び金属放熱板について、その材質
は、銅、ニッケル、アルミニウム、モリブデン、タング
ステン等の純金属もしくは合金が用いられる。金属回路
又は金属放熱板の厚さは0.1〜2.0mmが通常使わ
れている。
The thickness of the aluminum nitride plate varies depending on the required strength of the circuit board, but is usually from 0.3 mm to 1.5 mm. As for the metal circuit and the metal radiator plate formed on the aluminum nitride plate, pure metal or alloy such as copper, nickel, aluminum, molybdenum, and tungsten is used. The thickness of the metal circuit or the metal radiator plate is usually 0.1 to 2.0 mm.

【0014】接合する金属回路の厚さは極めて重要で、
0.075mm程度の厚さでは、活性金属法の場合、接
合時に若干の荷重をかけるため、金属板の膨張が妨げら
れ、金属板にシワを生じることがあり、量産性に欠ける
という問題がある。従って、0.1mm以上のものを用
いるのが好ましいが、あまり厚くなると、接合金属板に
よる熱応力によって、金属回路の剥離や窒化アルミニウ
ム板にクラックが発生するようになり、0.2mm以下
とする必要がある。
The thickness of the metal circuit to be joined is extremely important,
With a thickness of about 0.075 mm, in the case of the active metal method, a slight load is applied at the time of joining, so that the expansion of the metal plate is hindered, wrinkles may be generated on the metal plate, and there is a problem of lack of mass productivity. . Therefore, it is preferable to use one having a thickness of 0.1 mm or more. There is a need.

【0015】接合処理は、10-4torr以下の真空
中、ろう材の融点以上の温度で行われるが、一般的な条
件、すなわちろう材の融点の50℃程度上の温度を選択
するのが無難である。その後接合体の金属板部分を、目
的形状とするため、化学エッチング等の方法で不要な金
属板及びろう材を除去して、パターニングすなわち金属
回路を形成する。またDBC法等の方法を用いて回路を
形成する事も可能である。
The joining process is performed in a vacuum of 10 -4 torr or less at a temperature equal to or higher than the melting point of the brazing material. However, it is preferable to select general conditions, that is, a temperature approximately 50 ° C. above the melting point of the brazing material. It is safe. Thereafter, in order to form the metal plate portion of the joined body into a target shape, unnecessary metal plates and brazing material are removed by a method such as chemical etching, and patterning, that is, a metal circuit is formed. Further, a circuit can be formed by a method such as the DBC method.

【0016】さらに、パターニングして回路形成後、金
属部分にメッキ処理を施す。メッキ方法は電解メッキ法
や無電解メッキ法など特に限定されるものではない。た
だし、電解メッキ法ではパターンが複雑で電極設定位置
が取り難いことから、無電解メッキ法が好適である。無
電解メッキの場合、金属回路端部側面のメッキ厚さとそ
の均一性を制御する条件としては、触媒液濃度と温度、
浸漬時間及びメッキ液濃度と温度、浸漬時間、触媒液と
メッキ液の攪拌条件などが重要である。触媒濃度が高す
ぎて攪拌が不十分な場合には触媒が不均一に付着しやす
くなり均一なメッキ厚さを得ることが難しくなる。一
方、触媒濃度が低すぎると触媒の付着が不十分な部分が
発生し、この場合もメッキ厚さの均一性を低下する。ま
た、触媒濃度が高い程、メッキの付着が速くなり、触媒
濃度が低いと逆に付着速度は低いものとなる。また、メ
ッキ液の金属塩濃度が高く、温度が高いほどメッキ層形
成速度が速くメッキが不均一になる傾向がある。攪拌条
件などのメッキ液の流動状態は特にメッキ厚さの均一性
に影響があり、攪拌を十分に行なうほど、メッキ厚さの
均一性が向上する傾向がある。
Further, after patterning and circuit formation, a metal portion is subjected to plating. The plating method is not particularly limited, such as an electrolytic plating method and an electroless plating method. However, the electroplating method is preferable because the pattern is complicated and it is difficult to set the electrode setting position. In the case of electroless plating, the conditions for controlling the plating thickness on the side surface of the metal circuit end and its uniformity include catalyst solution concentration and temperature,
The immersion time, plating solution concentration and temperature, immersion time, stirring conditions of the catalyst solution and the plating solution are important. If the catalyst concentration is too high and stirring is insufficient, the catalyst tends to adhere unevenly, making it difficult to obtain a uniform plating thickness. On the other hand, if the catalyst concentration is too low, a portion where the catalyst is not sufficiently adhered occurs, and in this case, the uniformity of the plating thickness is also reduced. Also, the higher the catalyst concentration, the faster the deposition of the plating, and the lower the catalyst concentration, the lower the deposition speed. Also, as the metal salt concentration of the plating solution is higher and the temperature is higher, the plating layer forming speed is higher and the plating tends to be non-uniform. The flow state of the plating solution such as stirring conditions particularly affects the uniformity of the plating thickness, and the more the stirring is sufficiently performed, the more the uniformity of the plating thickness tends to be improved.

【0017】本発明において重要なことは、金属回路端
部側面のメッキ厚さの最大値が1.5μm以上5μm以
下であり、しかも該メッキ厚さの最大値と最小値の比が
1以上3以下であることである。最大値が5μmを越え
ると、ヒートシンクの取り付け時、または素子の発熱等
によるヒートサイクルを受けた時に熱膨張差により発生
する応力が大きくなり、金属回路間又は凸部周囲のセラ
ミックス基板にクラックの発生率が大きくなり好ましく
ない。また、1.5μm未満ではメッキ厚さを均一に形
成することが難しく、被覆不十分なところが形成されや
すい。そのため、メッキ層の目的である金属回路の腐食
防止やハンダ接合性の向上が達成されにくく好ましくな
い。したがって、金属回路端部側面のメッキ厚さの最大
値が1.5μm以上5μm以下であり、さらに好ましく
は2.0μm以上4μm以下である。
What is important in the present invention is that the maximum value of the plating thickness on the side surface of the metal circuit end is 1.5 μm or more and 5 μm or less, and the ratio of the maximum value to the minimum value of the plating thickness is 1 or more and 3 or more. It is as follows. If the maximum value exceeds 5 μm, the stress generated due to the difference in thermal expansion when mounting a heat sink or receiving a heat cycle due to heat generation of the element, etc., increases, and cracks occur between the metal circuits or on the ceramic substrate around the convex portion. The rate increases, which is not preferable. On the other hand, if the thickness is less than 1.5 μm, it is difficult to form a uniform plating thickness, and a portion with insufficient coating is likely to be formed. Therefore, it is difficult to achieve the prevention of corrosion of the metal circuit and the improvement of the solder bondability, which are the objects of the plating layer, which is not preferable. Therefore, the maximum value of the plating thickness on the side surface of the metal circuit end is 1.5 μm or more and 5 μm or less, and more preferably 2.0 μm or more and 4 μm or less.

【0018】また、最大値が1.5μm以上5μm以下
であると同時に最大値と最小値の比が1以上3以下であ
ることが重要である。最大値と最小値の比が3を越える
とメッキ層の厚さの均一性が低くなり、熱膨張差による
発生応力が不均一となり、メッキ厚さの大きい部分の応
力が増幅され、セラミック基板にクラックが起こりやす
く好ましくない。
It is important that the maximum value is 1.5 μm or more and 5 μm or less, and that the ratio of the maximum value to the minimum value is 1 or more and 3 or less. When the ratio of the maximum value to the minimum value exceeds 3, the uniformity of the thickness of the plating layer becomes low, the generated stress due to the difference in thermal expansion becomes non-uniform, the stress of the portion where the plating thickness is large is amplified, and the ceramic substrate is amplified. Cracks easily occur, which is not preferable.

【0019】本発明にいう金属回路端部側面のメッキ厚
さとは、図1の矢印に示すように、金属回路の厚さ方向
の周囲を形成する面に付着したメッキ厚さを云う。以下
実施例により、更に詳しく説明する
The plating thickness on the side surface of the metal circuit end as referred to in the present invention refers to the plating thickness attached to the surface forming the periphery in the thickness direction of the metal circuit as shown by the arrow in FIG. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0020】[0020]

【実施例】窒化アルミニウム粉末に酸化イットリウム粉
末2〜4重量%配合しドクターブレード法を用いて成形
した成型体を1850℃〜1900℃で窒素雰囲気中で
焼成して窒化アルミニウム板を得た。得られた窒化アル
ミニウム板の物性は熱伝導率150W/(m・K)、相
対密度99.9%であった。又形状は50×60×厚さ
0.635mmのものとした。次いで、銀、銅及びジル
コニウムの各金属粉末を、銀粉末75重量部、銅粉末2
5重量部にジルコニウム粉末15重量部及びテルピネヲ
−ル15重量部と有機結合材としてポリイソブチルメタ
アクリレ−トのトルエン溶液を固形分で1.5重量部加
えてよく混練し、ロウ材ペ−ストを調整した。このロウ
材ペ−ストを窒化アルミニウム焼結基板の両面にスクリ
−ン印刷によって全面塗布した。その際の塗布量は(乾
燥後)6〜8mg/cm2 とした。
EXAMPLE A 2 to 4% by weight of yttrium oxide powder was mixed with aluminum nitride powder and molded by a doctor blade method at 1850 ° C. to 1900 ° C. in a nitrogen atmosphere to obtain an aluminum nitride plate. The physical properties of the obtained aluminum nitride plate were a thermal conductivity of 150 W / (m · K) and a relative density of 99.9%. The shape was 50 × 60 × 0.635 mm in thickness. Next, 75 parts by weight of silver powder and copper powder 2 were added to each metal powder of silver, copper and zirconium.
To 5 parts by weight, 15 parts by weight of zirconium powder and 15 parts by weight of terpineol, and 1.5 parts by weight of a solid solution of a toluene solution of polyisobutyl methacrylate as an organic binder were added, and the mixture was kneaded well. The strike was adjusted. This brazing paste was applied to both sides of the aluminum nitride sintered substrate by screen printing. The coating amount at that time was (after drying) 6 to 8 mg / cm 2 .

【0021】次に、ろう材ペ−ストを塗布した窒化アル
ミニウム基板の両面に銅板(厚さ:金属回路用銅板0.
3mm、金属放熱用銅板0.15mm)を接触配置し炉
に投入し、1×10-4torrの真空下、温度900℃
で30分加熱した後、2℃/min.の降温速度で冷却
して接合体を製造した。
Next, a copper plate (thickness: copper plate for metal circuit 0.1 mm) is formed on both sides of the aluminum nitride substrate coated with the brazing material paste.
3 mm, a copper plate for heat radiation of metal 0.15 mm) was placed in contact with the furnace and charged into a furnace. The temperature was 900 ° C. under a vacuum of 1 × 10 −4 torr.
At 30 ° C. for 30 minutes. The mixture was cooled at a temperature lowering rate to produce a joined body.

【0022】次いで、この接合体の銅板上に紫外線硬化
タイプのエッチングレジストをスクリ−ン印刷法により
パターン印刷し、塩化第2銅溶液を用いて不要銅部分を
溶解除去し、さらにパターン外に残った不要ろう材や反
応生成物を、60℃、10%弗化アンモニウム溶液で溶
解除去した。この後、5%苛性ソ−ダ溶液でエッチング
レジストを剥離し、目的形状の回路基板を得た。これ
に、無電解Ni−Pメッキ処理を施し、銅回路部分に選
択的にメッキ膜を形成させた。まず、10%の硝酸水溶
液に1分間浸漬して前処理し、蒸留水で十分洗浄した。
次に、市販のH2O2−H2SO4系化研液(奥野製薬
製:商品名CPB)の2倍希釈の水溶液を50℃に保持
し、2分間浸漬したのち、蒸留水で十分洗浄した。その
のち、10%の硫酸水溶液に5秒間浸漬処理し、蒸留水
で十分洗浄した。
Then, an ultraviolet-curing type etching resist is pattern-printed on the copper plate of the joined body by a screen printing method, unnecessary copper portions are dissolved and removed using a cupric chloride solution, and the remaining copper is left outside the pattern. The unnecessary brazing filler metal and reaction products were dissolved and removed with a 10% ammonium fluoride solution at 60 ° C. Thereafter, the etching resist was stripped with a 5% caustic soda solution to obtain a circuit board having a desired shape. This was subjected to electroless Ni-P plating to selectively form a plating film on the copper circuit portion. First, it was immersed in a 10% nitric acid aqueous solution for 1 minute to perform pretreatment, and was sufficiently washed with distilled water.
Next, an aqueous solution of 2-fold dilution of a commercially available H2O2-H2SO4-based chemical solution (CPB manufactured by Okuno Pharmaceutical Co., Ltd.) was kept at 50 ° C., immersed for 2 minutes, and then sufficiently washed with distilled water. Then, it was immersed in a 10% aqueous sulfuric acid solution for 5 seconds, and washed sufficiently with distilled water.

【0023】次に触媒処理液に室温で1分間浸漬して触
媒処理を行なった。触媒処理液は市販のPd系触媒原液
(奥野製薬製:商品名アクチベータ)を表1に示す濃度
で調製して用いた。触媒処理したのち蒸留水で2分間超
音波洗浄した。次に、表1に示した温度に保持したNi
−P系無電解メッキ液に表1に示す時間浸漬した。メッ
キ液は市販のNi−P系メッキ原液(奥野製薬製:商品
名ニムデンSX)を表1に示す濃度で調製して用いた。
メッキ液に浸漬している際に回転羽による攪拌と超音波
による攪拌を行なった。このようにして表1に示す種々
の条件で金属回路端部側面のメッキ厚さをもった回路基
板を作製した。なお、表1中の濃度mL/Lは原液の量
mlを蒸留水で希釈して1Lとした場合の濃度である。
Next, the catalyst was immersed in a catalyst treatment solution at room temperature for 1 minute to perform the catalyst treatment. As the catalyst treatment liquid, a commercially available Pd-based catalyst stock solution (manufactured by Okuno Pharmaceutical Co., Ltd., trade name: Activator) was prepared at the concentration shown in Table 1 and used. After the catalyst treatment, the substrate was ultrasonically washed with distilled water for 2 minutes. Next, Ni kept at the temperature shown in Table 1
It was immersed in a P-based electroless plating solution for the time shown in Table 1. As the plating solution, a commercially available Ni-P-based plating solution (manufactured by Okuno Pharmaceutical Co., Ltd., trade name: Nimden SX) was prepared at the concentration shown in Table 1 and used.
While immersed in the plating solution, stirring by the rotating blade and stirring by ultrasonic waves were performed. Thus, a circuit board having a plating thickness on the side surface of the end of the metal circuit under various conditions shown in Table 1 was produced. Note that the concentration mL / L in Table 1 is a concentration when the amount ml of the stock solution was diluted to 1 L with distilled water.

【0024】これらの回路基板のヒートサイクル試験
を、−40℃で30分間保持し、125℃で30分間保
持する加熱冷却操作を1サイクルとし、JIS−C−0
025温度変化試験方法に準じて200サイクル実施し
た。試験後、回路間の窒化アルミニウム焼結基板に発生
したクラックの有無を蛍光探傷検査により観察すること
で行なった。クラックの確認された回路基板の割合をク
ラック発生率として示した。また、銅回路板端部側面の
メッキ厚さの測定は、個々の試験後のサンプルを0.3
mm厚さの金属回路板銅板の表面から深さ0.15mm
まで研削及び研磨加工により銅回路板を除去し、端部側
面のメッキ厚さをSEMにて観察することにより行なっ
た。メッキ最大膜厚さと最小膜厚さを測定し、最大膜厚
さと最小膜厚さの比を算出した。これらの銅回路板端部
側面のメッキ厚さの最大値及び最大値と最小値の比とク
ラック発生率の関係を表1にまとめて示した。
The heat cycle test of these circuit boards was performed at -40 ° C. for 30 minutes, and the heating and cooling operation at 125 ° C. for 30 minutes was defined as one cycle.
The test was carried out for 200 cycles according to the 025 temperature change test method. After the test, the test was carried out by observing the presence or absence of cracks generated in the aluminum nitride sintered substrate between circuits by a fluorescent flaw detection test. The percentage of circuit boards where cracks were confirmed was shown as crack occurrence rate. In addition, the measurement of the plating thickness on the side surface of the end of the copper circuit board was performed by measuring the sample after each test by 0.3.
0.15mm depth from the surface of a copper circuit board
The copper circuit board was removed by grinding and polishing until the plating thickness on the side surface of the end was observed by SEM. The plating maximum film thickness and the minimum film thickness were measured, and the ratio of the maximum film thickness to the minimum film thickness was calculated. Table 1 collectively shows the relationship between the maximum value of the plating thickness on the side surface of the end portion of the copper circuit board, the ratio of the maximum value to the minimum value, and the crack occurrence rate.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように金属回路板端部側
面のメッキ厚さの最大値が5μmを越えると急激にクラ
ック発生率が増加していることがわかる。また、メッキ
厚さの最大値と最小値との比が小さいほどクラック発生
率が小さいことがわかる。したがって、これらの実施例
及び比較例の結果から、本発明の範囲内に金属回路板端
部側面のメッキ厚さを制御することによって信頼性の高
い回路基板を作製することが判明した。
As is evident from Table 1, when the maximum plating thickness on the side surface of the end of the metal circuit board exceeds 5 μm, the crack generation rate sharply increases. Also, it can be seen that the smaller the ratio between the maximum value and the minimum value of the plating thickness, the lower the crack occurrence rate. Therefore, from the results of these examples and comparative examples, it has been found that a highly reliable circuit board can be manufactured by controlling the plating thickness on the side surface of the end portion of the metal circuit board within the scope of the present invention.

【0027】[0027]

【発明の効果】本発明によれば、ヒートサイクルによる
クラックの発生率を抑えた高信頼性の窒化アルミニウム
回路基板を提供することができる。
According to the present invention, it is possible to provide a highly reliable aluminum nitride circuit board in which the rate of occurrence of cracks due to a heat cycle is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 メッキされた金属回路板端部付近の断面概念
FIG. 1 is a conceptual cross-sectional view of the vicinity of an edge of a plated metal circuit board.

【符号の説明】[Explanation of symbols]

1:窒化アルミニウム板 2:ろう材層 3:金属回路板 4:メッキ層(実際は数μmであり、金属回路板との大
きさは実際と異なる) 5:金属回路板端部側面のメッキ厚さ
1: Aluminum nitride plate 2: Brazing material layer 3: Metal circuit board 4: Plating layer (actually several μm, the size of the metal circuit board is different from the actual) 5: Plating thickness on the side surface of the end of the metal circuit board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺崎 隆一 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社総合研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Ryuichi Terasaki Inventor 3-5-1 Asahicho, Machida-shi, Tokyo Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム板上にメッキ層を有す
る金属回路が設けてなる窒化アルミニウム回路基板であ
って、該金属回路端部側面のメッキ厚さの最大値が1.
5μm以上5μm以下であり、しかも金属回路端部側面
のメッキ厚さの最大値と最小値の比が1以上3以下であ
ることを特徴とする窒化アルミニウム回路基板。
1. An aluminum nitride circuit board comprising a metal circuit having a plating layer on an aluminum nitride plate, wherein the maximum plating thickness on the side surface of the metal circuit end is 1.
An aluminum nitride circuit board having a thickness of 5 μm or more and 5 μm or less, and a ratio between a maximum value and a minimum value of a plating thickness on a side surface of an end portion of the metal circuit is 1 or more and 3 or less.
JP33671896A 1996-12-17 1996-12-17 Aluminum nitride circuit board Expired - Fee Related JP4059539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33671896A JP4059539B2 (en) 1996-12-17 1996-12-17 Aluminum nitride circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33671896A JP4059539B2 (en) 1996-12-17 1996-12-17 Aluminum nitride circuit board

Publications (2)

Publication Number Publication Date
JPH10178257A true JPH10178257A (en) 1998-06-30
JP4059539B2 JP4059539B2 (en) 2008-03-12

Family

ID=18302078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33671896A Expired - Fee Related JP4059539B2 (en) 1996-12-17 1996-12-17 Aluminum nitride circuit board

Country Status (1)

Country Link
JP (1) JP4059539B2 (en)

Also Published As

Publication number Publication date
JP4059539B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP4703377B2 (en) Stepped circuit board, manufacturing method thereof, and power control component using the same.
JP5069485B2 (en) Metal base circuit board
JP3526710B2 (en) Circuit board manufacturing method
JP4059539B2 (en) Aluminum nitride circuit board
JP6477386B2 (en) Manufacturing method of power module substrate with plating
JP4323706B2 (en) Method of joining ceramic body and copper plate
JP3722573B2 (en) Ceramic substrate, circuit board using the same, and manufacturing method thereof
JPH10214915A (en) Circuit board for power module
JP2007063042A (en) Ceramic substrate and electronic component using it
EP0219122B1 (en) Metallized ceramic substrate and method of manufacturing the same
JP4326706B2 (en) Circuit board evaluation method, circuit board and manufacturing method thereof
JPH10224059A (en) Heat sink
JPH05191038A (en) Ceramic board with metallic layer and manufacturing method thereof
JPH05160551A (en) Method of manufacturing electronic part mounting aluminum nitride board
JP4761595B2 (en) Metallized substrate
JP3260222B2 (en) Circuit board manufacturing method
JP3827605B2 (en) Circuit board and method for improving solder wettability of circuit board
JPH11322455A (en) Ceramics/metal bonded body and its production
JP3734359B2 (en) Circuit board
JP3526711B2 (en) Aluminum nitride circuit board
JP3871680B2 (en) Ceramic substrate, ceramic circuit substrate, and power control component using the same.
JP3871472B2 (en) Manufacturing method of soldering Ni member, electrical component and heat dissipation component
JP2000031609A (en) Circuit board
JP2023091914A (en) Method for manufacturing metal-ceramic bonding substrate, and metal-ceramic bonding substrate
JP3797784B2 (en) Circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees