JP3826503B2 - 圧力制御弁 - Google Patents

圧力制御弁 Download PDF

Info

Publication number
JP3826503B2
JP3826503B2 JP19438497A JP19438497A JP3826503B2 JP 3826503 B2 JP3826503 B2 JP 3826503B2 JP 19438497 A JP19438497 A JP 19438497A JP 19438497 A JP19438497 A JP 19438497A JP 3826503 B2 JP3826503 B2 JP 3826503B2
Authority
JP
Japan
Prior art keywords
displacement member
refrigerant
pressure
space
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19438497A
Other languages
English (en)
Other versions
JPH1137615A (ja
Inventor
義貴 戸松
照之 堀田
久介 榊原
幸克 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP19438497A priority Critical patent/JP3826503B2/ja
Priority to DE69831534T priority patent/DE69831534T2/de
Priority to EP98113280A priority patent/EP0892226B1/en
Priority to US09/116,898 priority patent/US6012300A/en
Publication of JPH1137615A publication Critical patent/JPH1137615A/ja
Application granted granted Critical
Publication of JP3826503B2 publication Critical patent/JP3826503B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気圧縮式冷凍サイクルの放熱器出口側圧力を制御する圧力制御弁に関するもので、二酸化炭素(CO2 )等の超臨界域で冷媒を使用する蒸気圧縮式冷凍サイクルに用いて好適である。
【0002】
【従来の技術】
近年、蒸気圧縮式冷凍サイクルに使用される冷媒の脱フロン対策の1つとして、例えば特公平7−18602号公報に記載のように二酸化炭素(CO2 )を使用した蒸気圧縮式冷凍サイクル(以下、CO2 サイクルと略す。)が提案されている。
【0003】
このCO2 サイクルの作動は、原理的には、フロンを使用した従来の蒸気圧縮式冷凍サイクルの作動と同じである。すなわち、図1(CO2 モリエル線図)のA−B−C−D−Aで示されるように、圧縮機で気相状態のCO2 を圧縮し(A−B)、この高温高圧の超臨界状態のCO2 を放熱器(ガスクーラ)にて冷却する(B−C)。そして、減圧器により減圧して(C−D)、気液2相状態となったCO2 を蒸発させて(D−A)、蒸発潜熱を空気等の外部流体から奪って外部流体を冷却する。なお、CO2 は、圧力が飽和液圧力(線分CDと飽和液線SLとの交点の圧力)を下まわるときから、気液2相状態に相変化するので、Cの状態からDの状態へとゆっくり変化する場合には、CO2 は超臨界状態から液相状態を経て気液2相状態に変化する。
【0004】
因みに、超臨界状態とは、密度が液密度と略同等でありながら、CO2 分子が気相状態のように運動する状態をいう。
しかし、CO2 の臨界温度は約31℃と従来のフロンの臨界温度(例えば、R12では112℃)と比べて低いので、夏場等では放熱器側でのCO2 温度がCO2 の臨界点温度より高くなってしまう。つまり、放熱器出口側においてもCO2 は凝縮しない(線分BCが飽和液線と交差しない)。
【0005】
また、放熱器出口側(C点)の状態は、圧縮機の吐出圧力と放熱器出口側でのCO2 温度とによって決定され、放熱器出口側でのCO2 温度は、放熱器の放熱能力と外気温度とによって決定する。そして、外気温度は制御することができないので、放熱器出口側でのCO2 温度は、実質的に制御することができない。
したがって、放熱器出口側(C点)の状態は、圧縮機の吐出圧力(放熱器出口側圧力)を制御することによって制御可能となる。つまり、夏場等の外気温度が高い場合に、十分な冷却能力(エンタルピ差)を確保するためには、図1のE−F−G−H−Eで示されるように、放熱器出口側圧力を高くする必要がある。
【0006】
【発明が解決しようとする課題】
しかし、放熱器出口側圧力を高くするには、前述のように圧縮機の吐出圧力を高くしなければならないので、圧縮機の圧縮仕事(圧縮過程のエンタルピ変化量ΔL)が増加する。したがって、蒸発過程(D−A)のエンタルピ変化量Δiの増加量より圧縮過程(A−B)のエンタルピ変化量ΔLの増加量が大きい場合には、CO2 サイクルの成績係数(COP=Δi/ΔL)が悪化する。
【0007】
そこで、例えば放熱器出口側でのCO2 温度を40℃として、放熱器出口側でのCO2 圧力と成績係数と関係を図1を用いて試算すれば、図2の実線に示すように、圧力P1 (約10MPa)において成績係数が最大となる。同様に、放熱器出口側でのCO2 温度を35℃とした場合には、図2の破線で示すように、圧力P2 (約9.0MPa)において成績係数が最大となる。
【0008】
以上のようにして、放熱器出口側のCO2 温度と成績係数が最大となる圧力とを算出し、この結果を図1上に描けば、図1の太い実線ηmax (以下、最適制御線と呼ぶ。)に示すようになる。
したがって、上記CO2 サイクルを効率良く運転するには、放熱器出口側圧力と放熱器出口側のCO2 温度とを、最適制御線ηmax で示されるように制御する圧力制御弁が必要である。
【0009】
なお、図1のモリエル線図は、AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR−CONDITIONING ENGINEERSより出版されたFundamentals Handbookからの抜粋である。本発明は、上記点に鑑み、超臨界域で作動する蒸気圧縮式冷凍サイクルが効率良く運転するように、放熱器出口側温度と放熱器出口側圧力とを制御する圧力制御手段を提供することを目的とする。
本発明の目的は、密閉空間(305)内外の温度の差を小さくすることができる圧力制御弁を提供することにある。
本発明の他の目的は、変位部材(306)の耐久性を向上させることができる圧力制御弁を提供することにある。
本発明のさらに他の目的は、形成部材(307)の薄肉化を図ることができる圧力制御弁を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するために、以下の技術的手段を用いる。
請求項1に記載の発明では、放熱器(2)内の圧力が冷媒の臨界圧力を越える蒸気圧縮式冷凍サイクルに適用され、前記放熱器(2)出口側の冷媒温度に応じて前記放熱器(2)出口側圧力を制御する圧力制御弁であって、
前記冷媒流路(6a)内に形成され、前記冷媒流路(6a)を上流側空間(301e)と下流側空間(301f)とに仕切る隔壁部(302)と、前記隔壁部(302)に形成され、前記上流側空間(301e)と前記下流側空間(301f)と連通させる弁口(303)と、密閉空間(305)内外の圧力差に応じて変位する、薄膜状の変位部材(306)と、前記変位部材(306)の厚み方向一端側に配設され、前記変位部材(306)と共に前記密閉空間(305)を形成する形成部材(307)と、前記変位部材(306)の厚み方向他端側に配設され、前記形成部材(307)と共に前記変位部材(306)を保持固定する保持部材(308)と、前記変位部材(306)の厚み方向他端側にて前記変位部材(306)に接触し、前記変位部材(306)に連動して変位し、前記弁口(303)を開閉する弁体(304)と、前記形成部材(307)に形成され、その肉厚方向に前記形成部材(307)から突出する突出部(317)とを備えていることを特徴とする圧力制御弁を採用する。
この発明によると、形成部材(307)の熱伝達率、および形成部材(307)の耐圧強度を向上させることができるので、形成部材(307)の薄肉化を図ることができる。
請求項4に記載の発明では、密閉空間(305)内外に渡って形成部材(307)を貫通し、形成部材(307)より熱伝導率の大きい材料からなる貫通部材(313)を備え、かつ、密閉空間(305)内には冷媒が、弁口(303)が閉じられた状態における密閉空間(305)内体積に対して、冷媒の温度が0℃での飽和液密度から冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする。
【0011】
これにより、密閉空間(305)内の冷媒圧力と冷媒温度との特性が、後述するように最適制御線ηmax にほぼ一致する。したがって、圧力制御弁(3)は、放熱器(2)の出口側圧力を、ほぼ最適制御線ηmax 上に沿った圧力まで上昇させた後、弁口(303)を開く。
つまり、放熱器(2)の出口側圧力と放熱器(2)の出口側温度とは、ほぼ最適制御線ηmax 上に沿って制御されるので、超臨界域においても蒸気圧縮式サイクルを効率良く運転させることができる。
【0012】
また、形成部材(307)より熱伝導率の大きい材料からなる貫通部材(313)が、密閉空間(305)内外に渡って形成部材(307)を貫通して配設されているので、密閉空間(305)内の温度と上流側空間(301e)の温度との差を小さくすることができる。したがって、放熱器(2)の出口側圧力を、より一層最適制御線ηmax に沿った圧力まで上昇させるので、より効率良く、CO2 サイクルを運転させることができる。
【0013】
請求項5に記載の発明では、弁体(304)および変位部材(306)は、変位部材(306)が中立状態から変位部材(306)の厚み方向他端側に向けて変位したときに弁口(303)を閉じ、厚み方向一端側に向けて変位したときに弁口(303)の開度が最大となるように構成され、かつ、密閉空間(305)内には冷媒が、弁口(303)が閉じられた状態における密閉空間(305)内体積に対して、冷媒の温度が0℃での飽和液密度から前記冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする。
【0014】
これにより、変位部材(306)は中立状態から変位部材(306)の厚み方向他端側および一方側に変形変位することとなるので、弁体(303)の最大変位量に比べて、変位部材(306)の最大変形変位量を小さくすることができる。
したがって、変位部材(306)を中立状態から厚み方向一方側および他方側のいずれか一方側のみで変形変位させる場合に比べて、変位部材(306)に発生する最大応力を小さくすることができるので、変位部材(306)の耐久性を向上させつつ、超臨界域においても蒸気圧縮式サイクルを効率良く運転させることができる。
【0015】
なお、変位部材(306)が中立状態であるとは、変位部材(306)が変形変位しておらず、変形変位に伴う応力が略0の状態をいう。
請求項6に記載の発明では、形成部材(307)の肉厚方向に突出する突出部(317)が形成部材(307)に形成され、かつ、密閉空間(305)内には冷媒が、弁口(303)が閉じられた状態における密閉空間(305)内体積に対して、冷媒の温度が0℃での飽和液密度から冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする。
【0016】
これにより、形成部材(307)と上流側空間(301e)との間の熱伝達率、および形成部材(307)の耐圧強度を向上させることができるので、形成部材(307)の薄肉化を図ることができる。したがって、上流側空間(301e)と密閉空間(305)との熱伝導量を向上させつつ、超臨界域においても蒸気圧縮式サイクルを効率良く運転させることができる。
【0017】
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0018】
【発明の実施の形態】
(第1実施形態)
図3は本実施形態に係る圧力制御弁を用いたCO2 サイクルを車両用空調装置に適用したものであり、1は気相状態のCO2 を圧縮する圧縮機である。2は圧縮機1で圧縮されたCO2 を外気等との間で熱交換して冷却する放熱器(ガスクーラ)であり、3は放熱器2出口側でのCO2 温度に応じて放熱器2出口側圧力を制御する圧力制御弁である。なお、圧力制御弁3は、放熱器2出口側圧力を制御するとともに減圧器を兼ねており、CO2 は、この圧力制御弁3にて減圧されて低温低圧の気液2相状態のCO2 となる。
【0019】
4は、車室内の空気冷却手段をなす蒸発器(吸熱器)で、気液2相状態のCO2 は蒸発器4内で気化(蒸発)する際に、車室内空気から蒸発潜熱を奪って車室内空気を冷却する。5は、気相状態のCO2 と液相状態のCO2 とを分離するとともに、液相状態のCO2 を一時的に蓄えるアキュームレータ(タンク手段)である。
【0020】
そして、圧縮機1、放熱器2、圧力制御弁3、蒸発器4およびアキュームレータ5は、それぞれ配管6によって接続されて閉回路を形成している。なお、圧縮機1は、図示されていない駆動源(エンジン、モータ等)から駆動力を得て駆動し、放熱器2は、放熱器2内CO2 と外気との温度差をできるだけ大きくするために車両前方に配置されている。
【0021】
次に、圧力制御弁3の詳細構造について図4を用いて述べる。
301は放熱器2から蒸発器4に至るCO2 流路6aの一部を形成するとともに、後述するエレメントケース315を収納するケーシングであり、301aは放熱器2側に接続される流入口301bを有する上蓋であり、301cは蒸発器4側に接続される流出口301dを有するケーシング本体である。
【0022】
また、ケーシング301には、CO2 流路6aを上流側空間301eと下流側空間301fとに仕切る隔壁部302が配設されており、この隔壁部302には、上流側空間301eと下流側空間301fとを連通させる弁口303が形成されている。
そして、弁口303は、針状のニードル弁体(以下、弁体と略す。)304により開閉され、この弁体303および後述するダイヤフラム306は、ダイヤフラム306の変位に連動して、ダイヤフラム306が中立状態から弁体303側(ダイヤフラム306の厚み方向他端側)に向けて変位したときに弁口303を閉じ、厚み方向一端側に向けて変位したときに弁口303の開度(弁口303を閉じた状態を基準とする弁体304の変位量)が最大となるように構成されている。
【0023】
また、上流側空間301eには、密閉空間(ガス封入室)305が形成されており、この密閉空間305は、密閉空間305内外の圧力差に応じて変形変位する、ステンレス材からなる薄膜状のダイヤフラム(変位部材)306、およびダイヤフラム306の厚み方向一端側に配設されたダイヤフラム上側支持部材(形成部材)307から形成されている。
【0024】
一方、ダイヤフラム306の厚み方向他端側には、ダイヤフラム上側支持部材(以下、上側支持部材と略す。)307と共にダイヤフラム306を保持固定するダイヤフラム下側支持部材(保持部材)308が配設されており、このダイヤフラム下側支持部材(以下、下側支持部材と略す。)308のうち、ダイヤフラム306に形成された変形促進部(変位部材変形部)306aに対応する部位には、図5、6に示すように、変形促進部306aに沿う形状に形成された凹部(保持部材変形部)308aが形成されている。
【0025】
なお、変形促進部306aとは、ダイヤフラム306の径外方側の一部を波状に変形させたもので、ダイヤフラム306が密閉空間305内外の圧力差に略比例して変形変位するようにするためのものである。
また、下側支持部材308のうちダイヤフラム306に面する部位には、弁口303が弁体304により閉じられた状態において、弁体304のうちダイヤフラム306に接触する面304aに対して略同一面となる下側平面部(保持部材平面部)308bが形成されている。
【0026】
また、ダイヤフラム306の厚み方向一端側(密閉空間305内)には、図4に示すように、ダイヤフラム306を介して弁体304に対して弁口303を閉じる向きの弾性力を作用させる第1コイルばね(第1弾性部材)309が配設されており、一方、ダイヤフラム306の厚み方向他端側には、弁体304に対して弁口303を開く向きの弾性力を作用させる第2コイルバネ(第2弾性部材)310が配設されている。
【0027】
また、311は第1コイルばね309のばね座を兼ねるプレート(剛体)であり、このプレート311は、ダイヤフラム306より剛性が高くなるように所定の厚みを有して金属にて構成されている。そして、プレート311は、図5、6に示すように、上側支持部材307に形成された段付き部(ストッパ部)307aに接触することにより、ダイヤフラム306が、その厚み方向一端側(密閉空間305側)に向けて所定値以上に変位することを規制している。
【0028】
そして、上側支持部材307には、プレート311と段付き部307aとが接触したときに、プレート311のうちダイヤフラム306に接触する面311aに対して略同一面となる上側平面部(形成部材平面部)307bが形成されている。因みに、上側支持部材307の円筒部307cの内壁は、第1コイルばね309の案内部をも兼ねている。
【0029】
なお、プレート311および弁体304は、両コイルばね309、310により互いにダイヤフラム306に向けて押し付けられているので、プレート311、弁体304およびダイヤフラム306は互いに接触した状態で一体的に変位(稼働)する。
ところで、図4中、312は第2コイルばね310が弁体304に対して作用させる弾性力を調節するとともに、第2コイルばね310のプレートを兼ねる調節ネジ(弾性力調節機構)であり、この調節ネジ312は、隔壁部302に形成された雌ねじ302aにネジ結合している。因みに、両コイルバネ309、310による初期荷重(弁口303を閉じた状態での弾性力)は、ダイヤフラム306での圧力換算で約1MPaである。
【0030】
また、313は密閉空間305内外に渡って上側支持部材307を貫通し、密閉空間305内にCO2 を封入するための封入管(貫通部材)であり、この封入管313は、ステンレス製の上側支持部材307より熱伝導率の大きい銅等の材料から構成されている。なお、下側支持部材308もステンレス製である。
そして、封入管313は、弁口303が閉じられた状態における密閉空間305内体積に対して約600kg/m3 の密度で封入した後、その端部を溶接等の接合手段により閉塞される。
【0031】
なお、314は、隔壁部302〜封入管313からなるエレメントケース315をケーシング本体301c内に固定する円錐ばねであり、316はエレメントケース315(隔壁部302)とケーシング本体301cとの隙間を密閉するOリングである。
因みに、図7の(a)はエレメントケース315のA矢視図であり、図7の(b)は(a)のB矢視図であり、図7から明らかなように、弁口303は隔壁部302の側面側にて上流側空間301eに連通している。
【0032】
次に、本実施形態に係る圧力制御弁3の作動を述べる。
密閉空間305内には、約600kg/m3 でCO2 が封入されているので、密閉空間305内圧と温度とは、図1、8に示される600kg/m3 の等密度線に沿って変化する。したがって、例えば密閉空間305内温度が20℃の場合には、その内圧は約5.8MPaである。また、弁体304には、密閉空間305内圧と両コイルばね309、310による初期荷重とが同時に作用しているので、その作用圧力は約6.8MPaである。
【0033】
したがって、放熱器2側である上流側空間301eの圧力が6.8MPa以下の場合には、弁口303は弁体304によって閉止され、また、上流側空間301eの圧力が6.8MPaを越えると、弁口303は開弁する。
同様に、例えば密閉空間12内温度が40℃の場合には、密閉空間305内圧は図8より約9.7MPaであり、弁体304に作用する作用力は約10.7MPaである。したがって、上流側空間301eの圧力が10.7MPa以下の場合には、弁口303は弁来304によって閉止され、また、上流側空間301eの圧力が10.7MPaを越えると、弁口303は開弁する。
【0034】
次に、CO2 サイクルの作動を図8を用いて説明する。
ここで、例えば放熱器2の出口側温度が40℃、かつ、放熱器2出口圧力が10.7MPa以下のときは、前述のように、圧力制御弁3は閉じているので、圧縮機1は、アキュームレータ5内に蓄えられたCO2 を吸引して放熱器2へ向けて吐出する。これにより、放熱器2の出口側圧力が上昇していく(b’−c’→b”−c”)。
【0035】
そして遂に、放熱器2の出口側圧力が10.7MPaを越える(B−C)と圧力制御弁3が開弁するので、CO2 は減圧しながら気相状態から気液2相状態に相変化して(C−D)蒸発器4内に流れ込む。そして、蒸発器4内で蒸発して(D−A)空気を冷却した後、再びアキュームレータ5に還流する。このとき、放熱器2の出口側圧力が再び低下するので、圧力制御弁3は再び閉じる。
【0036】
すなわち、このCO2 サイクルは、圧力制御弁3を閉じるにより、放熱器2の出口側圧力を所定の圧力まで昇圧させた後、CO2 を減圧、蒸発させて空気を冷却するものである。
なお、放熱器2の出口側温度が20℃の場合も、前述の作動と同様に、圧力制御弁3は、放熱器2の出口側圧力を約6.8MPaまで昇圧させた後、開弁する。
【0037】
次に本実施形態の特徴を述べる。
上述のように、本実施形態に係る圧力制御弁3は、放熱器2の出口側圧力を所定の圧力まで昇圧させた後、開弁するものであり、その制御特性は、圧力制御弁3の密閉空間305の圧力特性に大きく依存する。
ところで、図1、8から明らかなように、超臨界域での600kg/m3 の等密度線は、「発明が解決しようとする課題」の欄で述べた最適制御線ηmax にほぼ一致する。したがって、本実施形態に係る圧力制御弁3は、放熱器2の出口側圧力を、ほぼ最適制御線ηmax に沿った圧力まで上昇させるので、超臨界域においてもCO2 サイクルを効率良く運転させることができる。
【0038】
また、臨界圧力以下では、600kg/m3 の等密度線は、最適制御線ηmax からのズレが大きくなるが、凝縮域なので密閉空間305の内圧は、飽和液線SLに沿って変化する。そして、両コイルばね309、310によって弁体304に初期荷重が与えられているので、約10℃の過冷却度(サブクール)を有する状態に制御される。したがって、臨界圧力以下であっても、CO2 サイクルを効率良く運転させることができる。
【0039】
なお、実用的には、CO2 温度が0℃での飽和液密度からCO2 の臨界点での飽和液密度までの範囲で、密閉空間305内に封入することが望ましい。具体的にCO2 では、450kg/m3 〜950kg/m3 であり(図8の一点鎖線D1 とD2 の間の範囲)、密閉空間305内体積と封入質量との関係は、図9の斜線に示す範囲である。
【0040】
ところで、エレメントケース315単体を大気中に放置したとき、すなわち組立て工程における密閉空間305内外の圧力差(大気圧と密閉空間305との圧力差)は、CO2 サイクル(CO2 流路6a)に圧力制御弁3を配設した場合における密閉空間305内外の圧力差(上流側空間301eと密閉空間305との圧力差)に比べて非常に大きいので、組立て工程にダイヤフラム306が破損する可能性が高い。
【0041】
これに対して、本実施形態では、下側支持部材308には、弁口303が弁体304により閉じられた状態において、弁体304の面304aに対して略同一面となる下側平面部308bが形成されているので、下側支持部材308と弁体304との間に段差が発生し難くく、下側平面部308bと面304aとが略同一平面上に位置することとなる。
【0042】
したがって、組立て工程中に、密閉空間305内外の圧力差が大きくなったときでも、下側平面部308bと面304aとの間でダイヤフラム306が大きく変形することを抑制することができるので、組立て工程にダイヤフラム306が破損することを防止できる。
また、同様に、下側支持部材308に、変形促進部306aに沿う形状に形成された凹部308aが形成されているので、組立て工程中に、密閉空間305内外の圧力差により変形促進部306aにてダイヤフラム306が大きく変形することを防止することができる。延いては、ダイヤフラム306が変形促進部306aにて破損することを防止できる。
【0043】
また、プレート311と段付き部307aとが接触したときに、上側平面部307bがプレート311の面311aと略同一面になるので、上流側空間301eの圧力が上昇して密閉空間305内外の圧力差が大きくなったときでも、下側平面部308bと同様に、上側平面部307bと面311aとの間でダイヤフラム306が大きく変形することを抑制することができ、ダイヤフラム306の破損を防止できる。
【0044】
また、弁体304およびダイヤフラム306は、ダイヤフラム306が中立状態から弁体304側(ダイヤフラム306の厚み方向他端側)に向けて変位したときに弁口303を閉じ、厚み方向一端側に向けて変位したときに弁口303の開度(弁口303を閉じた状態を基準とする弁体304の変位量)が最大となるように構成されているので、ダイヤフラム306は中立状態からダイヤフラム306の厚み方向他端側および一方側に変形変位することとなる。
【0045】
したがって、弁体304の最大変位量に比べて、ダイヤフラム306の最大変形変位量を小さくすることができるので、ダイヤフラム306を中立状態から厚み方向一方側および他方側のいずれか一方側のみで変形変位させる場合に比べて、ダイヤフラム306に発生する最大応力を小さくすることができる。延いては、ダイヤフラム306の耐久性を向上させることができる。
【0046】
また、弁体304には、ダイヤフラム306の厚み方向両端側から弾性力が作用しているので、弁体304とダイヤフラム306とを接着(接合)することなく、弁体304とダイヤフラム306とを一体的に可動(変位)させることができる。
ところで、溶接等のように熱を加えることにより、弁体304とダイヤフラム306とを接合した場合、ダイヤフラム306の結晶構造が変化し、ダイヤフラム306の変形変位特性が変化するおそれがある。
【0047】
これに対して、本実施形態では、弁体304とダイヤフラム306とが接合されていないので、ダイヤフラム306の変形変位特性が変化することを防止できる。
ところで、上述の作動および特徴の説明からも明らかなように、圧力制御弁3の密閉空間305内温度は、理想的には、放熱器2出口側温度(上流側空間301eの温度)に対して時間差無しに連動して変化することが望ましい。
【0048】
これに対して、本実施形態では、上側支持部材307より熱伝導率の大きい封入管313が、密閉空間305内外に渡って上側支持部材307を貫通しているので、密閉空間305内の温度と上流側空間301eの温度との差を小さくすることができる。したがって、放熱器2の出口側圧力を、より一層最適制御線ηmax に沿った圧力まで上昇させるので、より効率良く、CO2 サイクルを運転させることができる。
【0049】
(第2実施形態)
本実施形態は、図10、11に示すように、上側支持部材307の肉厚方向に突出する突出部317を上側支持部材307に形成したものである。
これにより、上側支持部材307と上流側空間301eとの間の熱伝達率、および上側支持部材307の耐圧強度を向上させることができる。延いては、上側支持部材307の薄肉化を図ることができるので、上流側空間301eと密閉空間305との熱伝導量を向上させることができる。
【0050】
なお、本実施形態では、突出部317を上側支持部材307の外壁側(上流側空間301e)側にのみ設けたが、本実施形態は、これに限定されるものではなく、上側支持部材307の内壁側(密閉空間305側)に突出部317を設けてもよい。
(第3実施形態)
本実施形態は、図12、13に示すように、第2コイルばね310を下流側空間301fに配設したものである。なお、図12は隔壁部302に雌ねじ302aを設けた例であり、図13はケーシング本体301cに雌ねじ302aを設けた例である。
【0051】
これにより、エレメントケース315をケーシング301内に収納した後であっても、流入口301bから六角レンチ等により調節ネジ312を回すことができる。
(第4実施形態)
本実施形態は、図14〜16に示すように、第1コイルばね309を廃止して、弁体304およびプレート(剛体)311とダイヤフラム306とを接合するとともに、弁口303を閉じる向きに第2コイルばね310の弾性力を弁体304に対して作用させたものである。なお、本実施形態では、弁体304に雄ねじを形成し、調節ネジ312に雌ねじを形成している。
【0052】
これにより、エレメントケース315(圧力制御弁3)の部品点数を削減することができるので、圧力制御弁3の製造原価低減を図るこのできる。
ところで、本発明に係る圧力制御弁は、CO2 を使用した蒸気圧縮式冷凍サイクルに使用が限定されるものではなく、例えば、エチレン、エタン、酸化窒素等の超臨界域で使用する冷媒を用いた蒸気圧縮式冷凍サイクルにも適用することができる。
【0053】
また、アキュームレータ5を廃止しても、前述の蒸気圧縮式冷凍サイクルを実施することができる。この場合、蒸発器4内に残存する冷媒が吸引されて、アキュームレータ5を有するCO2 サイクルと同様な作動を得ることができる。
因みに、本明細書において、例えば「弁体304とダイヤフラム306とが接触している」とは、弁体304とダイヤフラム306との間に、スペーサ(ワッシャ)等の別体部品は介在している場合も含む意味である。つまり、弁体304と別体部品であっても、弁体304と一体的に可動する場合には、その別体部品は弁体304の一部とみなすことができる。なお、プレート311ととダイヤフラム306との間に別体部品が介在する場合も同じである。
【0054】
また、第1〜3実施形態では、ダイヤフラム306と弁体304とを接合していなかったが、両者306、304を溶接や接着剤等により接合してもよい。これにより、弁体304を確実にダイヤフラム306に追従させて変位させることができる。
また、上述の実施形態では、プレート311を樹脂製としてもよい。
【図面の簡単な説明】
【図1】CO2 のモリエル線図である。
【図2】成績係数(COP)と放熱器出口側圧力との関係を示すグラフである。
【図3】CO2 サイクルの模式図である。
【図4】第1実施形態に係る圧力制御弁の断面図である。
【図5】開弁状態を示すダイヤフラム部分の拡大図である。
【図6】閉弁状態を示すダイヤフラム部分の拡大図である。
【図7】(a)は図4のA矢視図であり、(b)は(a)のB矢視図である。
【図8】蒸気圧縮式冷凍サイクルの作動を説明するための説明図である。
【図9】密閉空間内の体積と、この密閉空間内に封入されるCO2 の質量との関係を示すグラフである。
【図10】第2実施形態に係る圧力制御弁の上側支持部材を示す図であり、(a)は上面図、(b)は断面図である。
【図11】第2実施形態に係る圧力制御弁の変形例を示す上側支持部材の正面図である。
【図12】第3実施形態に係る圧力制御弁の断面図である。
【図13】第3実施形態の変形例に係る圧力制御弁の断面図である。
【図14】第4実施形態に係る圧力制御弁の断面図である。
【図15】第4実施形態の変形例に係る圧力制御弁の断面図である。
【図16】第4実施形態の変形例に係る圧力制御弁の断面図である。
【符号の説明】
301…ケーシング、302…隔壁部、303…弁口、304…弁体、
305…密閉空間、306…ダイヤフラム(変位部材)、
307…ダイヤフラム上側支持部材(形成部材)、
307a…段付き部(ストッパ部)、
307b…上側平面部(形成部材平面部)、
308…ダイヤフラム下側支持部材(保持部材)、
308b…下側平面部(保持部材平面部)、
309…第1コイルばね(第1弾性部材)、
310…第2コイルバネ(第2弾性部材)、
311…プレート(剛体)、312…調節ネジ(弾性力調節機構)、
313…封入管(貫通部材)。

Claims (9)

  1. 放熱器(2)内の圧力が冷媒の臨界圧力を越える蒸気圧縮式冷凍サイクルに適用され、前記放熱器(2)出口側の冷媒温度に応じて前記放熱器(2)出口側圧力を制御する圧力制御弁であって、
    前記冷媒流路(6a)内に形成され、前記冷媒流路(6a)を上流側空間(301e)と下流側空間(301f)とに仕切る隔壁部(302)と、
    前記隔壁部(302)に形成され、前記上流側空間(301e)と前記下流側空間(301f)と連通させる弁口(303)と、
    密閉空間(305)内外の圧力差に応じて変位する、薄膜状の変位部材(306)と、
    前記変位部材(306)の厚み方向一端側に配設され、前記変位部材(306)と共に前記密閉空間(305)を形成する形成部材(307)と、
    前記変位部材(306)の厚み方向他端側に配設され、前記形成部材(307)と共に前記変位部材(306)を保持固定する保持部材(308)と、
    前記変位部材(306)の厚み方向他端側にて前記変位部材(306)に接触し、前記変位部材(306)に連動して変位し、前記弁口(303)を開閉する弁体(304)と、
    前記形成部材(307)に形成され、その肉厚方向に前記形成部材(307)から突出する突出部(317)とを備えていることを特徴とする圧力制御弁。
  2. 前記圧力制御弁は、前記放熱器(2)から蒸発器(4)まで至る冷媒流路(6a)に配置され、前記上流側空間(301e)内に前記密閉空間(305)を形成していることを特徴とする請求項1に記載の圧力制御弁。
  3. 前記密閉空間(305)内には冷媒が、前記弁口(303)が閉じられた状態における前記密閉空間(305)内体積に対して、前記冷媒の温度が0℃での飽和液密度から前記冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする請求項1または2に記載の圧力制御弁。
  4. 放熱器(2)内の圧力が冷媒の臨界圧力を越える蒸気圧縮式冷凍サイクルに適用され、前記放熱器(2)から蒸発器(4)まで至る冷媒流路(6a)に配置され、前記放熱器(2)出口側の冷媒温度に応じて前記放熱器(2)出口側圧力を制御する圧力制御弁であって、
    前記冷媒流路(6a)内に形成され、前記冷媒流路(6a)を上流側空間(301e)と下流側空間(301f)とに仕切る隔壁部(302)と、
    前記隔壁部(302)に形成され、前記上流側空間(301e)と前記下流側空間(301f)と連通させる弁口(303)と、
    前記上流側空間(301e)内に密閉空間(305)を形成し、前記密閉空間(305)内外の圧力差に応じて変位する、薄膜状の変位部材(306)と、
    前記変位部材(306)の厚み方向一端側に配設され、前記変位部材(306)と共に前記密閉空間(305)を形成する形成部材(307)と、
    前記変位部材(306)の厚み方向他端側に配設され、前記形成部材(307)と共に前記変位部材(306)を保持固定する保持部材(308)と、
    前記変位部材(306)の厚み方向他端側にて前記変位部材(306)に接触し、前記変位部材(306)に連動して変位し、前記弁口(303)を開閉する弁体(304)と、
    前記密閉空間(305)内外に渡って前記形成部材(307)を貫通し、前記形成部材(307)より熱伝導率の大きい材料からなる貫通部材(313)とを備え、
    前記密閉空間(305)内には冷媒が、前記弁口(303)が閉じられた状態における前記密閉空間(305)内体積に対して、前記冷媒の温度が0℃での飽和液密度から前記冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする圧力制御弁。
  5. 放熱器(2)内の圧力が冷媒の臨界圧力を越える蒸気圧縮式冷凍サイクルに適用され、前記放熱器(2)から蒸発器(4)まで至る冷媒流路(6a)に配置され、前記放熱器(2)出口側の冷媒温度に応じて前記放熱器(2)出口側圧力を制御する圧力制御弁であって、
    前記冷媒流路(6a)内に形成され、前記冷媒流路(6a)を上流側空間(301e)と下流側空間(301f)とに仕切る隔壁部(302)と、
    前記隔壁部(302)に形成され、前記上流側空間(301e)と前記下流側空間(301f)と連通させる弁口(303)と、
    前記上流側空間(301e)内に密閉空間(305)を形成し、前記密閉空間(305)内外の圧力差に応じて変形変位する、薄膜状の変位部材(306)と、
    前記変位部材(306)の厚み方向一端側に配設され、前記変位部材(306)と共に前記密閉空間(305)を形成する形成部材(307)と、
    前記変位部材(306)の厚み方向他端側に配設され、前記形成部材(307)と共に前記変位部材(306)を保持固定する保持部材(308)と、
    前記変位部材(306)の厚み方向他端側にて前記変位部材(306)に接触し、前記変位部材(306)に連動して変位し、前記弁口(303)を開閉する弁体(304)とを備え、
    前記弁体(304)および前記変位部材(306)は、前記変位部材(306)が中立状態から前記変位部材(306)の厚み方向他端側に向けて変位したときに前記弁口(303)を閉じ、厚み方向一端側に向けて変位したときに前記弁口(303)の開度が最大となるように構成されており、
    さらに、前記密閉空間(305)内には冷媒が、前記弁口(303)が閉じられた状態における前記密閉空間(305)内体積に対して、前記冷媒の温度が0℃での飽和液密度から前記冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする圧力制御弁。
  6. 放熱器(2)内の圧力が冷媒の臨界圧力を越える蒸気圧縮式冷凍サイクルに適用され、前記放熱器(2)から蒸発器(4)まで至る冷媒流路(6a)に配置され、前記放熱器(2)出口側の冷媒温度に応じて前記放熱器(2)出口側圧力を制御する圧力制御弁であって、
    前記冷媒流路(6a)内に形成され、前記冷媒流路(6a)を上流側空間(301e)と下流側空間(301f)とに仕切る隔壁部(302)と、
    前記隔壁部(302)に形成され、前記上流側空間(301e)と前記下流側空間(301f)と連通させる弁口(303)と、
    前記上流側空間(301e)内に密閉空間(305)を形成し、前記密閉空間(305)内外の圧力差に応じて変位する、薄膜状の変位部材(306)と、
    前記変位部材(306)の厚み方向一端側に配設され、前記変位部材(306)と共に前記密閉空間(305)を形成する形成部材(307)と、
    前記変位部材(306)の厚み方向他端側に配設され、前記形成部材(307)と共に前記変位部材(306)を保持固定する保持部材(308)と、
    前記変位部材(306)の厚み方向他端側にて前記変位部材(306)に接触し、前記変位部材(306)に連動して変位し、前記弁口(303)を開閉する弁体(304)と、
    前記形成部材(307)に形成され、その肉厚方向に前記形成部材(307)から突出する突出部(317)とを備え、
    前記密閉空間(305)内には冷媒が、前記弁口(303)が閉じられた状態における前記密閉空間(305)内体積に対して、前記冷媒の温度が0℃での飽和液密度から前記冷媒の臨界点での飽和液密度に至る範囲の密度で封入されていることを特徴とする圧力制御弁。
  7. 前記変位部材(306)の厚み方向一端側に配設され、前記変位部材(306)を介して前記弁体(304)に対して前記弁口(303)を閉じる向きの弾性力を作用させる第1弾性部材(309)と、
    前記変位部材(306)の厚み方向他端側に配設され、前記弁体(304)に対して前記弁口(303)を開く向きの弾性力を作用させる第2弾性部材(310)と、
    前記第2弾性部材(310)が前記弁体(304)に対して作用させる弾性力を調節する弾性力調節機構(312)とを備えることを特徴とする請求項1ないし6のいずれか1つに記載の圧力制御弁。
  8. 前記変位部材(306)の厚み方向他端側に接合され、前記弁体(304)に対して前記弁口(303)を閉じる向きの弾性力を作用させる弾性部材(310)と、
    前記弾性部材(310)が前記弁体(304)に対して作用させる弾性力を調節する弾性力調節機構(312)とを備えることを特徴とする請求項1ないし6のいずれか1つに記載の圧力制御弁。
  9. 前記冷媒は二酸化炭素であり、前記密閉空間内の密度は、450kg/m〜950kg/mであることを特徴とする請求項1ないし8のいずれか1つに記載の圧力制御弁。
JP19438497A 1997-07-18 1997-07-18 圧力制御弁 Expired - Fee Related JP3826503B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19438497A JP3826503B2 (ja) 1997-07-18 1997-07-18 圧力制御弁
DE69831534T DE69831534T2 (de) 1997-07-18 1998-07-16 Drucksteuerventil für Kälteanlage
EP98113280A EP0892226B1 (en) 1997-07-18 1998-07-16 Pressure control valve for refrigerating system
US09/116,898 US6012300A (en) 1997-07-18 1998-07-17 Pressure control valve for refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19438497A JP3826503B2 (ja) 1997-07-18 1997-07-18 圧力制御弁

Publications (2)

Publication Number Publication Date
JPH1137615A JPH1137615A (ja) 1999-02-12
JP3826503B2 true JP3826503B2 (ja) 2006-09-27

Family

ID=16323711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19438497A Expired - Fee Related JP3826503B2 (ja) 1997-07-18 1997-07-18 圧力制御弁

Country Status (1)

Country Link
JP (1) JP3826503B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069548B2 (ja) * 1999-04-27 2008-04-02 株式会社デンソー 制御弁
JP2006266660A (ja) * 2004-11-19 2006-10-05 Tgk Co Ltd 膨張装置
JP2008175417A (ja) * 2007-01-16 2008-07-31 Calsonic Kansei Corp 膨張弁

Also Published As

Publication number Publication date
JPH1137615A (ja) 1999-02-12

Similar Documents

Publication Publication Date Title
JP4045654B2 (ja) 超臨界冷凍サイクル
US6105386A (en) Supercritical refrigerating apparatus
EP0786632B1 (en) Refrigerating system with pressure control valve
JP3951840B2 (ja) 冷凍サイクル装置
US6134900A (en) Supercritical refrigerating system
JP4062129B2 (ja) 蒸気圧縮式冷凍機
EP0892226B1 (en) Pressure control valve for refrigerating system
JPH10115470A (ja) 蒸気圧縮式冷凍サイクル
JP3820790B2 (ja) 圧力制御弁
JP3467989B2 (ja) 蒸気圧縮式冷凍サイクル
JP2003279177A (ja) 給湯器、蒸気圧縮式冷凍サイクル用のエジェクタ及び蒸気圧縮式冷凍サイクル
JP4196450B2 (ja) 超臨界冷凍サイクル
JP2005326145A (ja) 冷媒のための膨張装置
JP4179231B2 (ja) 圧力制御弁と蒸気圧縮式冷凍サイクル
JPH10288411A (ja) 蒸気圧縮式冷凍サイクル
JP3826503B2 (ja) 圧力制御弁
JP3787968B2 (ja) 圧力制御弁
JPH1163739A (ja) 圧力制御弁
JP3867370B2 (ja) 冷媒封入方法
JPH11148576A (ja) 圧力制御弁
JP3711718B2 (ja) 圧力制御弁
JP2001108310A (ja) 圧力制御装置
JP3879772B2 (ja) 冷凍装置
JP4015171B2 (ja) 冷媒凝縮器
JP2003121012A (ja) 自動車用空調装置の蒸気圧縮式冷凍サイクルの制御方法及び蒸気圧縮式冷凍回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees