JP3822789B2 - 部品寸法測定装置 - Google Patents

部品寸法測定装置 Download PDF

Info

Publication number
JP3822789B2
JP3822789B2 JP2000333742A JP2000333742A JP3822789B2 JP 3822789 B2 JP3822789 B2 JP 3822789B2 JP 2000333742 A JP2000333742 A JP 2000333742A JP 2000333742 A JP2000333742 A JP 2000333742A JP 3822789 B2 JP3822789 B2 JP 3822789B2
Authority
JP
Japan
Prior art keywords
pixel
reference pixel
screw
component
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000333742A
Other languages
English (en)
Other versions
JP2002139308A (ja
Inventor
恒雄 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Original Assignee
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd filed Critical Nitto Seiko Co Ltd
Priority to JP2000333742A priority Critical patent/JP3822789B2/ja
Publication of JP2002139308A publication Critical patent/JP2002139308A/ja
Application granted granted Critical
Publication of JP3822789B2 publication Critical patent/JP3822789B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、部品の寸法測定装置に関し、特に、周回走行する無端搬送体で搬送される部品の、搬送方向と交叉する方向の寸法を、イメージセンサを用いて測定する寸法測定装置に関する
【0002】
【従来の技術】
例えば、ねじ等の大量生産される部品は、主要寸法が規格寸法に合致しているかどうかの検査を行うために、その主要寸法を効率良く測定する必要がある。
そこで、例えば、特公平4−12803号公報には、ねじを搬送用ベルトで連続的に搬送し、搬送経路の途中に配置された一次元イメージセンサで、その検出位置を通過するねじの各部寸法を次々に測定する装置が開示されている。
【0003】
図11(a)は、そのような測定装置の概略構成を示す図である。当該測定装置は、ねじSの径方向の寸法の他、ねじSの軸方向の寸法、すなわち、全長L、頭部S1の高さh、首下部S2の長さlをその測定対象としている。ここで、頭部高さhは、頭部座面S3からねじSの上端(頭頂部)までの長さであり、首下長さlは、頭部座面S3からねじSの下端までの長さである。
【0004】
当該測定装置は、駆動側プーリ350と従動側プーリ360の間に2本の搬送用ベルト310a、310bを間隙をおいて平行に張架してなる搬送装置を備えている。ねじSは、本図に示すように、首下部S2が前記間隙にはまり込み、頭部座面S3が両搬送用ベルト310a、310bの搬送面(外周面)に支持された状態(引っ掛けられた状態)で矢印の向きに搬送される。
【0005】
搬送経路の途中には、ねじSの軸方向各部を検知する一次元イメージセンサ(不図示)が設けられており、当該一次元イメージセンサは、その基準位置が搬送用ベルト310a、310bの位置P、すなわち搬送面の高さに合わせて配置されている。この状態で、一次元イメージセンサをスキャンさせると、図11(b)に示すように、ベルト位置P(基準位置)を境にして頭部S1の高さhと首下長さl、および全長Lに対応するイメージセンサ出力信号が得られる。このイメージセンサ出力信号は、ねじが1本通過する間に百ないし数百回前後出力されるようになっており、ねじ1本分のデータの中で、ねじ頭頂部の位置でスキャンしたとみなされる最大値のデータがねじの上記各部のデータとして採用される。
【0006】
これにより、連続して搬送されるねじの各部を次々に測定することが可能となり、効率良く測定することができる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記測定装置では、搬送用ベルトの厚みがその長手方向(走行方向)に不均一であると、搬送面が上下に変位してしまう。その結果、一次元イメージセンサの前記基準位置と現実の搬送面の位置とがずれてしまい、基準位置に基づいて演算される頭部高さhと首下長さlとに誤差が生じてしまう。このため、上記測定装置では、全長Lはともかく、頭部高さhと首下長さlの測定精度が不安定になってしまうといった問題が生じるおそれがある。
【0008】
本発明は、上記した課題に鑑み、無端搬送体で搬送される部品の、搬送方向と交叉する方向の寸法を安定した精度で測定することができる寸法測定装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る部品寸法測定装置は、イメージセンサを有し、周回走行する無端搬送体の搬送部位で支持され、前記イメージセンサの検出位置を通過する部品を検出して、搬送方向と交叉する方向の部品寸法を測定する部品寸法測定装置であって、周回走行に伴い、前記検出位置において、搬送方向と交叉する方向に周期的に変位する前記搬送部位の位置に応じて、部品寸法の測定基準となるイメージセンサの基準画素を選択する基準画素選択手段と、前記イメージセンサにおいて、前記部品の輪郭の一点を検出した検出画素と、当該検出が行なわれた際に前記基準画素選択手段が選択している基準画素とから前記部品寸法を割り出す寸法割出手段とを備えたことを特徴とする。
【0010】
また、前記基準画素選択手段は、前記搬送部位の、走行方向複数の領域に分割された各領域と各領域毎に定められた基準画素とを対応付けて記憶する記憶部と、前記検出位置をどの領域が通過しているのかを特定する特定部と、前記特定部が特定する領域が更新されると、前記記憶部から更新後の領域に対応する基準画素を読み出し、これを部品寸法の測定に用いる基準画素に選択する選択部とを有することを特徴とする。
【0011】
さらに、前記部品寸法測定装置は、前記搬送部位を搬送面とし、当該搬送面で部品を載置支持して部品を搬送する部品寸法測定装置であって、前記基準画素選択手段は、さらに、部品寸法の測定に先立ち、部品が載置されていない状態の前記搬送面を前記イメージセンサに前記各領域ごとに複数回検出させ、各領域において搬送面を検出した画素の内、最も低い位置を示す画素を基準画素として前記記憶部に記憶させる基準画素選定部を有することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明をねじ検査装置に適用した場合を例にとって説明する。
当該ねじ検査装置は、ねじの主要寸法を計測して、良品・不良品判定を行い、その選別を行う装置である。
ねじの測定対象となる箇所は、図1に示すように、軸方向の寸法として全長、頭厚および首下長さ、軸方向と直交する方向の寸法として頭径、ねじ外径および谷径である。なお、図1は、後述する搬送部で搬送されるねじを断面で表した図である。
【0013】
図2は、実施の形態に係るねじ検査装置1の概略構成を示す斜視図である。
本図に示すように、当該ねじ検査装置1は、ねじを供給する供給部10、供給されたねじを搬送する搬送部20、搬送されるねじを検出する検出部30、検出されたねじの良品・不良品判定を行うコントローラ40、および、ねじを良品と不良品とに振り分ける選別部50とから構成される。
【0014】
供給部10は、ホッパ内にばら積されたねじを整列しながら送り出す、振動式の第1パーツフィーダ11と、第1パーツフィーダから送り出されたねじを、直線的に移送する、同じく振動式の第2パーツフィーダ12とからなり、第2パーツフィーダ12から送りだされるねじは、その頭部を下方に向けた倒立状態で、搬送部20の後述するターンテーブル21上に間隔をもって載置される。
【0015】
搬送部20は、ターンテーブル21と当該ターンテーブル21を図中の矢印Aの向きに等速で回転駆動するモータ(以下、「搬送モータ」と言う。)22とを有している。
ターンテーブル21は、円盤の中央部分が同心円状にくり貫かれた形状をしており、リング状に残存する外周部(以下、「搬送リング」と言う。)21aの上面がねじの搬送面21bとなる。ねじは、前記第2のパーツフィーダ12によって、ターンテーブル21の回転中心から距離R(本例では、R=136mm)の位置に載置され、距離Rを半径とする円周上を搬送される。
【0016】
そして、前記搬送モータ22の出力軸とターンテーブル21の回転軸とは、減速機(不図示)を介して連結されており、搬送モータ22の出力軸には、その回転角度を検出するためのロータリエンコーダ23が取付けられている。前記減速機の減速比は50であり、ロータリエンコーダ23の分解能は2048[パルス/回転]である。したがって、ターンテーブル21の1回転当たり、ロータリエンコーダ23からは102400(=2048×50)個のパルス信号が出力されることとなる。
【0017】
検出部30は、前記搬送リング21aの内周側に設けられた光源31と搬送リングの一部を挟んで当該光源と対向して設けられた1次元イメージセンサカメラ32とを有している。当該1次元イメージセンサとしてCCDラインセンサ(以下、単に「CCDセンサ」と言う。)33が用いられており、当該CCDセンサ33は、その感光画素の配列方向が、搬送リング21aの搬送面21bと直交する方向、すなわち、搬送されるねじの軸の方向と平行となる姿勢で設けられている。また、CCDセンサ33の画素数は2048であり、画素ピッチは0.014mmである。
【0018】
CCDセンサ33は、後述するタイミングで走査を繰り返し、当該CCDセンサ33の検出位置を通過するねじを走査する。図3は、CCDセンサ33における走査結果の一例を示す模式図であり、同図(a)は、図1に2点鎖線で示すCの位置を走査したときの様子であり、同図(b)は、図1に2点鎖線で示すDの位置を走査したときの様子である。また、図3では、光源からの光を遮るものがなく十分受光した画素(白画素)を白丸で、ねじやターンテーブル21(搬送リング21a)の陰になって受光量の微少な画素(黒画素)を黒丸で表現している。なお、CCDセンサ33における各画素位置は画素番号(アドレス)で識別され、最上位の画素331を1番として、最下位の画素332(2048番)まで連番が付されている。
【0019】
検出部30は、後述するように、所定番号の画素から昇順に所定番号の画素まで検査し、白画素から黒画素または黒画素から白画素に切り替わる位置(以下、「エッジ位置」と言う。)を抽出する回路(以下、「エッジ抽出回路」と言う。)300(図5)を有している。エッジ位置は、画素位置(画素番号)で特定し、図3(c)に示すように、例えば、白画素333から黒画素334に切り替わる場合には、当該黒画素334をエッジ画素とし、その画素位置をエッジ位置とする。一方、例えば、黒画素335から白画素336に切り替わる場合には、当該白画素336をエッジ画素とし、その画素位置をエッジ位置とする。すなわち、画素の状態が切り替わった場合に、切り替わり後の画素をエッジ画素とし、その位置(画素番号)をエッジ位置とするのである。以上の定義から明らかなように、エッジ画素は、CCDセンサ33の走査ライン上に存するねじ(被検出体)の輪郭上の1点(輪郭点)を示すものである。
【0020】
また、ねじの測定箇所に応じて、1番から2048番までの画素の内、1回の走査において利用する(検査する)画素の範囲を複数設定できるようになっている。この範囲を、ゲートと言い、図4に示すように、ねじの外径と谷径の測定にはゲート1が用いられ、頭厚と全長と首下長さの測定にはゲート2が用いられる。
【0021】
なお、各ゲートは、2個の画素番号で定まり、画素番号の小さい方をゲート開始番号(GateStr)、画素番号の大きい方をゲート終了番号(GateEnd)とする。
ゲート1のゲート開始番号Gate1Strおよびゲート終了番号Gate1End並びにゲート2のゲート開始番号Gate2Strおよびゲート終了番号Gate2Endは、以下のように設定される。
【0022】
Gate1Str=TableData[m]−HeadThick−ScrLeg×2 … (1)
Gate1End=TableData[m]−HeadThick−HeadOffSet … (2)
Gate2Str=Gate1Str … (3)
Gate2End=TableData[m]−TableOffSet … (4)
ここで、
TableData[m]:ターンテーブル21のねじ搬送面21bの高さの位置にある画素の番号。以下、この画素を「測定基準画素」と言う。
【0023】
HeadThick:頭厚の規格値を画素の個数に換算した値(整数)。すなわち、頭厚を画素ピッチで除し、小数点以下を四捨五入した値。
ScrLeg:首下長さの規格値を画素の個数に換算した値(整数)。算出方法は、HeadThickの場合と同様。
【0024】
HeadOffSet:不完全ねじ部長さの規格値を画素の個数に換算した値。算出方法は、HeadThickの場合と同様。
TableOffSet:ターンテーブル21のねじ搬送面21bからのオフセット値(整数)。ゲートが、ねじ頭部の一部(少なくとも最大径部分)を含み、かつ、テーブル(搬送リング)と被らないように設定される値。
【0025】
である。すなわち、ゲート1は、CCDセンサ33における走査結果の利用を、ねじの完全ねじ部の範囲に限定するものであり、ゲート2は、ターンテーブル21を除外し、ねじのほぼ全長の範囲に限定するものである。なお、上記HeadThick、ScrLeg、HeadOffSet、TableOffSetは、ねじの種類やサイズによって異なるものであり、各値を求めるのに必要な各規格値などは、検査者によって、対応するねじ毎に、キーボード44を介して入力されるようになっている。
【0026】
また、上記TableData[m]は、ターンテーブル21をその回転軸を中心に等角度で100の領域(m=0〜99)に分割した場合の各領域におけるねじ搬送面21bに対応する画素(測定基準画素)の番号である。当該TableData[m]の求め方等については、後で詳述する。
図2に戻り、コントローラ40は、CCDセンサ33の検出結果とロータリエンコーダ23からの出力結果をもとにねじ各部の寸法を割り出し、割り出した各寸法とROM42(図5)に予め格納されている各寸法毎の設定された公差範囲とを比較して良品・不良品判定を行う。なお、各部寸法の割り出し方法については後述する。
【0027】
選別部50は、ステッピングモータからなる選別モータ51の回転軸の先端部分に、4枚の羽根52a〜52dが90°の等間隔で設けられた構成の選別機を有している。当該選別モータ51は前記コントローラ40によって回転制御され、不良品と判定されたねじが、図2に示す状態で静止している羽根の位置に来るタイミングで90°回転される。当該不良品は、当該羽根によって掃き出され、搬送リング21a外周側に設けられたシュート53を介して不良品箱(不図示)に収容される。良品と判定されたねじは、選別機を通過し、搬送方向下流側に設けられた衝立て54によって塞き止められて、搬送リング21aの外周側に転げ落ち、シュートを介して良品箱(いずれも不図示)に収容される。
【0028】
図5は、ねじ検査装置の制御ブロック図を示す。
本図に示すように、エッジ抽出回路300がCPUバス301を介してコントローラ40のCPU41と接続されており、当該CPU41はロータリエンコーダ23と選別モータ51に接続されている。
CPU41からCCDセンサ33に走査信号が出力されると、CCDセンサ33は、1ライン分の画素データを保持する。保持された画素データは、不図示のクロック発生器から入力されるクロック信号にしたがって、1番の画素のものから順にシリアルに出力される。画素データは、クロック信号の1パルスに付き1個出力され、出力された画素データは、A/D変換器302によって256(0〜255)階調の濃度データに変換された上で、比較器303に入力される。比較器303は、入力された濃度データと、基準濃度レジスタ304に格納されている基準濃度とを比較し、濃度データが基準濃度以上の場合は、「1」を、濃度データが基準濃度未満の場合は「0」を出力する。ここで、この「1」と「0」で現される情報を2値情報と言い、2値情報が「1」の画素を白画素、「0」の画素を黒画素とする。なお、基準濃度レジスタ304には、初期値として、ROM42に格納されている値がCPU41によって書き込まれる。また、当該基準濃度レジスタ304内の基準濃度は、コントローラ40のキーボード44(図1)などを介して、変更することが可能である。
【0029】
比較器303から出力される2値情報は、排他的論理和(以下、「Ex-OR」と言う。)素子305の一方の入力端子に入力される。Ex-OR素子305のもう一方の入力端子には、比較器303からの2値情報が、1Dot Delay回路306によって1画素分遅延されて入力される。その結果、比較器303から異なる状態を示す2値情報が連続して出力されたとき、すなわち、比較器303からエッジ画素の2値情報が出力されたときに、Ex-OR素子305から「1」(以下、「エッジ信号」と言う。)が出力されることとなる。したがって、Ex-OR素子305の出力を監視することによって、比較器303から出力される2値情報に対応する画素がエッジ画素か否かの判定を行うことができる。
【0030】
さらに、比較器303から出力される2値情報は、そのまま、桁連結回路307を介して、エッジ位置・エッジ個数抽出回路308に入力され、Ex-OR素子305の出力結果は、スイッチ素子309を介して(当該スイッチ素子309がオンの間)、エッジ位置・エッジ個数抽出回路308に入力される。
また、前記クロック発生器から出力されるクロックパルスの数をカウントするドットカウンタ310が設けられている。ドットカウンタ310は、CPU41から走査信号が出力されると、CCDセンサ33から画像データを出力するための前記クロック信号のパルス数を1から2048までカウントする。したがって、当該ドットカウンタ310のカウント値が、比較器303から出力される2値情報に対応する画素の画素番号となる。ドットカウンタ310のカウント値は、比較器311と前記桁連結器307に入力される。
【0031】
比較器311は、入力されるカウント値(画素番号)と、ゲート開始レジスタ312に格納されているゲート開始番号(GateStr)およびゲート終了レジスタ313に格納されているゲート終了番号(GateEnd)とを比較し、入力カウント値(画素番号)が、ゲート開始番号からゲート終了番号までの範囲にある間、前記スイッチ素子309をオンし、それ以外の間は、スイッチ素子309をオフする。
【0032】
桁連結器307は、ドットカウンタ310から入力されるカウント値(画素番号)と比較器303から入力される2値情報とを対応付けて、エッジ位置・エッジ個数抽出回路308に出力する。
エッジ位置・エッジ個数抽出回路308は、Ex-OR素子305から前記エッジ信号が出力されたときにドットカウンタ310から出力されるカウント値(画素番号)と、比較器303から出力される2値情報とをエッジ情報記憶RAM314に書き込む。
【0033】
図6(a)は、エッジ情報記憶RAM314を示す図である。エッジ情報記憶RAM314は、0〜63のアドレスで識別される64個の記憶領域を有しており、この内、0番の記憶領域はエッジ個数の記憶に、1〜63番の記憶領域は画素番号(エッジ位置)と2値情報の記憶に用いられる。同図(b)は、一つの記憶領域を示す。当該記憶領域は、32ビットの記憶容量を有するが、本実施の形態では、下位16ビットが使用される。下位16ビットの最上位ビット、すなわち、最下位から第16番目のビットB15に前記2値情報が記憶され、最下位から第15番目までのビット列B0〜B14に画素番号が記憶される。なお、アドレス0番も同様な記憶領域であるが、前記したように、エッジの個数が記憶されるだけである。
【0034】
エッジ位置・エッジ個数抽出回路308は、桁連結器を介して入力される画素番号と2値情報の内、上述したように、エッジ画素の画素番号と2値情報のみをアドレス1番の記憶領域から順に書き込んでいく。画素番号2048が入力されると、すなわち、1走査が終了すると、当該走査におけるエッジの個数をアドレス0番の記憶領域に書き込む。
【0035】
なお、図5において、点線で囲まれた部分(以下、「RAMブロック」と言う。)は、本図に示す他5個、合計6個設けられており、ゲート別に使い分けられるが、本実施の形態では、ゲートは2つしか設定しないので、実際に使用するRAMブロックは2個だけである。また、ゲート1に用いるRAMブロックをRAMブロック1、ゲート2に用いるRAMブロックをRAMブロック2とする。
【0036】
以上のようにして、CCDセンサ33の1回の走査において、各ゲート内で検出されたエッジ位置と2値情報およびエッジ個数が、各ゲート毎に割り当てられたRAMブロックのエッジ情報記憶RAM314に記憶されることとなる。
コントローラ40のCPU41は、ドットカウンタ310のカウント値から1走査が終了したのを検知すると、各エッジ情報記憶RAM314から2値情報とエッジ位置とを読み出す。このとき、先頭番地(0番地)のエッジ個数を参照することによって、何番地まで読み出せばよいのかが分かるので、不必要な読み出し処理を行わなくて済む。その結果、全ての番地から読み出すのと比較して、読み出し時間の短縮が図られる。
【0037】
CPU41は、2個のダウンカウンタを内蔵し(不図示)、ロータリエンコーダ23から入力されるパルス信号の個数をカウントしている。1つは、ターンテーブルの回転を1回転以上連続して検出するもので、初期値が2147483647であり、ターンテーブルを毎分9回転させても、約38時間(2147483647÷2048÷50÷9÷60)、桁あふれすることはないもので、ねじ検査時の搬送方向と交叉する方向の部品寸法を測定するのに使用する。これを第1ダウンカウンタとする。
【0038】
もう一つは、主に、ターンテーブル21を100ブロックに分割するために使用するもので、一回転分カウント値−1(102399)を初期値としている。これを第2ダウンカウンタとする。
CPU41は、ロータリエンコーダ23からパルス信号が入力される毎にCCDセンサ33に走査信号を出力し、得られたエッジ情報と第1ダウンカウンタのカウント値とから、以下のようにして、前記ねじ各部の寸法を割り出す。
▲1▼ 頭径
ゲート2で、エッジ0個の状態(ねじがCCDセンサ33の検出位置にかかっていない状態)から一つでもエッジが検出されると(CCDセンサ33が、ねじ頭部の搬送方向先端部を捉えると)、そのときの第1ダウンカウンタのカウント値HsをRAM43に記憶する。その後、再びエッジが0個になったとき(ねじ頭部の搬送方向後端部が、CCDセンサ33の検出位置を通過した瞬間)の第1ダウンカウンタのカウント値HeとRAM43に記憶した前記カウント値Hsとの差から頭径を割り出す。
▲2▼ ねじ外径
ゲート1で、エッジ0個の状態(ねじの完全ねじ部がCCDセンサ33の検出位置にかかっていない状態)から初めて2個以上エッジが検出されると(CCDセンサ33が、搬送方向前方のねじ山頂部を捉えると)、そのときの第1ダウンカウンタのカウント値DsをRAM43に記憶する。その後、再びエッジが0個になったとき(搬送方向後方のねじ山頂部がCCDセンサ33の検出位置を通過した瞬間)の第1ダウンカウンタのカウント値DeとRAM43に記憶した前記カウント値Dsとの差からねじ外径を割り出す。なお、1個ではなく、2個以上のエッジが検出されたことをもって、CCDセンサ33がねじ山頂部を捉えたと判断するのは、誤検出を防止するためである。
▲3▼ ねじ谷径
ゲート1で、エッジ0個の状態(ねじの完全ねじ部がCCDセンサ33の検出位置にかかっていない状態)から、初めて2個以上のエッジが検出され(CCDセンサ33が、搬送方向前方のねじ山頂部を捉え)、次に、エッジが1個になったとき(搬送方向前方のねじ谷底部がCCDセンサ33の検出位置を通過した瞬間)の第1ダウンカウンタのカウント値dsをRAM43に記憶する。その後、再び、2個以上のエッジが検出されると(CCDセンサ33が、搬送方向後方のねじ谷底部を捉えると)、そのときの第1ダウンカウンタのカウント値deとRAM43に記憶した前記カウント値dsとの差からねじ谷径を割り出す。
▲4▼ 頭厚
上記カウント値Hsと上記カウント値Dsとから、ねじ頭部の搬送方向先端部と搬送方向前方のねじ山頂部との間の中間地点を算出し、当該中間地点においてゲート2で検出したエッジ位置(画素番号)とターンテーブル21のねじ搬送面21bの位置(TableData[m])との差から頭厚を割り出す。すなわち、頭厚を求めるに際しては、ゲート2における、ねじ頭部の搬送方向先端部から搬送方向前方のねじ山頂部に至る間の走査分を、全てRAM43に格納しておき(エッジ位置と第1ダウンカウンタのカウント値とを対応付けて格納しておき)、その内の前記中間地点のデータが用いられる。
▲5▼ 全長、首下長さ
ゲート2において検出されたエッジ位置の内、最も高いエッジ位置(一番若い画素番号)とねじ搬送面21bの位置(TableData[m])との差から、全長を割り出す。
【0039】
また、首下長さは、割り出された全長から上記頭厚を差し引いて求める。
続いて、測定基準画素(TableData[m])について説明する。
上述したように、ねじの測定箇所の内、頭厚や全長などのねじ軸心方向の寸法は、ターンテーブル21の搬送面21bを基準位置とし、そこからの高さとして測定される。具体的には、測定基準画素からエッジ画素までの高さとして測定される。
【0040】
しかしながら、ターンテーブル21の加工精度などに起因して、回転に伴って、ターンテーブル21のねじ搬送面21bの位置が上下方向に周期的に変動してしまう。したがって、測定基準画素を固定してしまったのでは、測定誤差が生じてしまう。
また、測定基準画素はゲート設定の基準位置にもなっている(特に前記式(4))。本例のねじの場合はともかく、テーブル搬送面21bから僅かな高さしかないような測定箇所を有する部品の場合には、ゲート終了位置(画素)を、テーブル搬送面21bすれすれに設定する必要がある。しかし、この場合、上記した搬送面21bの上下変動によって、測定箇所が捉えられなかったり、ゲートがターンテーブル21(搬送リング21a)に被ってしまったりして、測定誤差が生じるばかりでなく、そもそも測定自体ができなくなってしまうおそれがある。
【0041】
そこで、図7に示すように、ターンテーブル21の搬送面21bを回転軸を中心に等角度で100の領域に分割して、予め各領域の搬送面21bの高さ(上下方向の位置)を測定し、各領域ごとに測定基準画素を設定することとしている。以下、100分割した各領域をブロックと言う。なお、各ブロックの測定基準画素の画素番号は、RAM43に設けられた基準画素テーブル430に格納される。図8は、基準画素テーブル430を示す。本図に示すように、ブロック番号m(m=0〜99)と測定基準画素の画素番号TableData[m]とが対応付けて格納されるようになっている。
【0042】
図9は、CPU41による、測定基準画素テーブル430の決定処理を示すフローチャートである。なお、本フローチャートをその内容とするプログラムは、「測定基準画素決定」や「ねじ検査」などを項目とするメニュー画面がコントローラ40の表示部に表示され、「測定基準画素決定」が選択されると起動される。その際、コントローラ40のCPU41は、搬送モータ51を起動してターンテーブル21を回転させ、前記エッジ抽出回路300を動作可能な状態にする。
【0043】
また、当該決定処理においては、RAMブロック1を用い、ゲートをターンテーブル21の搬送面21bの高さ(上下方向の位置)が検出できる適当な範囲に設定する。すなわち、ゲート終了番号をターンテーブル21の搬送面21bよりも十分低い位置にある画素の番号とし、ゲート開始番号をターンテーブル21の搬送面21bよりも十分高い位置にある画素の番号とするのである。
【0044】
なお、本プログラムを起動する場合には(メニュー画面で「測定基準画素決定」項目を選択する場合には)、ターンテーブル21の搬送面から、被検査対象であるねじを取り除いておく必要がある。
先ず、初期設定として基準画素テーブル430の全ての画素番号格納領域にゲート開始番号を格納する(ステップS1)。
【0045】
ロータリエンコーダ23からパルス信号が入力されて、第2ダウンカウンタのカウント値が1つ減少した時、その値を1ブロック分あたり検出されるパルス数1024で除算すれば、その商(少数点以下切り捨て)はブロック番号(変数「m」)となっている(ステップS3)。そして、CCDセンサに走査信号を出力して(ステップS4)、走査が終了すると(ステップS5でYes)、RAMブロック1のエッジ情報記憶RAM314からエッジ情報を読みとる(ステップS6)。
【0046】
読み取った結果、エッジが存在し(ステップS7でYes)、2値情報から、最初のエッジ画素(エッジ情報記憶RAM314のアドレス1番に格納されているもの)が黒画素であると判定した場合(ステップS8でYes)には、当該黒画素の画素番号が、変数「m」で特定される基準画素テーブル430の画素番号(TableData[m])よりも大きいか否か、すなわち、そのとき走査したエッジ画素が基準画素テーブル430に格納されている画素番号の画素よりも低い位置の画素か否かを判定し(ステップS9)、低ければ、そのとき走査したエッジ画素の画素番号を、基準画素テーブル430に上書きし(ステップS10)、そうでなければ(ステップS9でNo)、そのとき走査したエッジ画素を無視して、ステップS2へリターンする。
【0047】
なお、当該測定基準画素の決定処理の間、1回の走査においては、必ずエッジ画素が1個(1個のみ)検出され、そのエッジ画素は黒画素(2値情報が「1」)のはずであるので、上記ステップS7でエッジの有無を、ステップS8でエッジ画素の種類を確認しているのは、それぞれのステップでNoと判定された場合には、その走査は何らかの原因による誤走査であるとみなし、これを無視するためである。
【0048】
以上、ステップS2〜ステップS10をターンテーブルが1回転するまで(ステップS11でYes)繰り返す。
その結果、基準画素テーブル430には、各ブロック毎に、そのブロック内において検出されたエッジ画素の内、一番低い位置のエッジ画素の画素番号が格納されることとなり、当該画素番号がそのブロックにおけるTableData(測定基準画素の画素番号)となる。
【0049】
ここで、一番低い位置エッジ画素を測定基準画素とするのは、ターンテーブル21のねじ搬送面21bに微少なごみ等が付着していた場合に、その影響を取り除くためである。すなわち、検出された複数のエッジ位置から平均のエッジ位置を求め、当該平均位置に対応する画素を測定基準画素とすることも考えられるが、そうすると、当該ブロック内にごみが付着していた場合には、当該ごみの高さが前記平均値に影響をおよぼしてしまい、ねじ搬送面の正確な位置(高さ)が得られなくなってしまうからである。一方、100分割した内の一つのブロック内でのねじ搬送面の上下の変動量は僅かであり、ねじの寸法測定に悪影響を及ぼすものではないので、1点の検出値(測定値)をもって、そのブロックでのねじ搬送面の高さの代表値としても差し支えないからである。
【0050】
また、電源OFFでテーブルの位置がわからなくなるので、基準画素テーブル430作成処理は、電源をONした後、次の「ねじ検査」の前に、必ず1回は行う必要がある。
図10は、主に、ねじ検査の際に起動されるプログラムのフローチャートを示す。当該プログラムは、コントローラ40の表示部に表示されたメニュー画面において、「ねじ検査」の項目が選択されると起動される。その際、コントローラ40のCPU41は、搬送モータ51を起動してターンテーブル21を回転させ、前記エッジ抽出回路300を動作可能な状態にする。なお、第1および第2のパーツフィーダ11、12は、個別に設けられたスイッチ(不図示)が作業者によってオンされると起動される。
【0051】
本フローチャートにおいて、ロータリエンコーダ23からパルス信号が入力されて、第2ダウンカウンタのカウント値が1つ減少した時、その値を1ブロック分あたり検出されるパルス数1024で除算すれば、その商はブロック番号となっている(ステップS22)。そして、基準画素テーブル430からそのブロック番号に対応した測定基準画素の画素番号(寸法の割り出しに用いる基準画素の画素番号)を取り出し(ステップS23)、前記(1)〜(4)式によって、ゲート開始番号とゲート終了番号とを算出して、各RAMブロック1,2内のゲート開始レジスタとゲート終了レジスタの更新を行う(ステップS24)。
【0052】
そして、CCDセンサに走査信号を出力して(ステップS25)、走査が終了すると(ステップS26でYes)、RAMブロック1のエッジ情報記憶RAM314からエッジ情報を読み取る(ステップS27)。
そして、前記▲1▼〜▲5▼で説明したように、検出エッジ個数などのねじの検出状態に応じた、各寸法の割り出しに必要な処理を行って(ステップS28)、ステップS21にリターンする。
【0053】
なお、ねじが2つのブロックにまたがったかたちで載置された場合には、当該ねじに限り、測定基準画素を切り替えないようにしてもよい。すなわち、ゲート2でねじ頭部の搬送方向先端部が捉えられてから、ねじ頭部の搬送方向後端部がCCDセンサに検出位置を通過するまでの間にブロックの境界が来た場合には、ねじ頭部の搬送方向後端部がCCDセンサに検出位置を通過するまでは、ねじ搬送方向前方のブロックの測定基準画素のままとし、ねじ頭部の搬送方向後端部がCCDセンサに検出位置を通過したときに、測定基準画素を切り替えるのである。
【0054】
以上説明したように、本実施の形態によれば、CCDセンサにおいて、ターンテーブルの搬送面からの距離として把握されるねじの軸心方向の寸法の測定基準となる画素が、CCDセンサの検出位置における搬送面の上下変位に応じて切り替えられるので、精度のよい測定結果が得られることとなる。
以上、本発明を実施の形態に基づいて説明してきたが、本発明は上記実施の形態に限らないことはもちろんであり、例えば、以下のような形態とすることもできる。
(1)上記実施の形態では、ターンテーブルを100のブロックに等分割したが、分割数は100に限らず、任意である。分割数は、ターンテーブルの単位走行距離当たりの搬送面の上下変動の度合い、および、被検査対象であるねじの大きさや要求される測定精度を考慮して決定されるものである。
【0055】
すなわち、単位走行距離当たりの上下変動の度合いが大きいほど、ねじが小さいほど、あるいは、厳しい測定精度が要求されるほど、細かく分割し、分割数を多くするのである。
また、等分割ではなく不等分割としてもよい。例えば、搬送面の上下変位の激しい領域は細かく、緩やかな領域は大きく分割するのである。
(2)上記実施の形態では、被検査対象(被測定対象)にねじを例にとって説明したが、被測定対象はねじに限られないことはもちろんであり、本発明は、他の物品(部品)の測定に適用できることは言うまでもない。
(3)上記実施の形態では、被測定対象を搬送する無端搬送体として、ターンテーブルを用いたが、無端搬送体はターンテーブルに限らず、例えばベルトコンベアのコンベアベルトでもよい。
(4)上記実施の形態では、全長、頭厚、首下長さ、頭径、ねじ外径および谷径の全部を測定することとしたが、測定箇所は任意に選択できることは、言うまでもなく、同様の手法により測定可能な箇所については、追加することも可能である。
【0056】
【発明の効果】
以上説明したように、本発明に係る部品寸法測定装置によれば、無端搬送体の搬送部位で支持された部品の、搬送方向と交叉する方向の部品寸法を測定する部品測定装置において、搬送方向と交叉する方向に周期的に変位する搬送部位の位置に応じて、部品寸法の測定基準となるイメージセンサの画素が選択され、当該イメージセンサにおいて、部品の一点を検出した検出画素と、当該検出が行なわれた際に選択されている基準画素とから前記部品寸法が割り出されるので、精度の良い測定結果を得ることが可能となる。
【図面の簡単な説明】
【図1】ねじの寸法測定箇所を示す図である。
【図2】ねじ検査装置の概略構成を示す図である。
【図3】CCDセンサにおける走査結果の一例を示す模式図である。
【図4】CCDセンサにおけるゲート位置を説明するための図である。
【図5】ねじ検査装置の制御ブロック図である。
【図6】エッジ情報記憶RAMを示す図である。
【図7】ターンテーブルの分割領域を説明するための図である。
【図8】基準画素テーブルを示す図である。
【図9】測定基準画素の決定処理を示すフローチャートである。
【図10】ねじ検査の際に起動されるプログラムのフローチャートを示す図である。
【図11】従来技術に係るねじ検査装置を示す図である。
【符号の説明】
1 ねじ検査装置
21 ターンテーブル
21b 搬送面
23 ロータリエンコーダ
30 検出部
33 CCDセンサ
41 CPU
42 ROM
43 RAM
300 エッジ抽出回路
311 比較器
430 基準画素テーブル

Claims (3)

  1. イメージセンサを有し、周回走行する無端搬送体の搬送部位で支持され、前記イメージセンサの検出位置を通過する部品を検出して、搬送方向と交叉する方向の部品寸法を測定する部品寸法測定装置であって、
    周回走行に伴い、前記検出位置において、搬送方向と交叉する方向に周期的に変位する前記搬送部位の位置に応じて、部品寸法の測定基準となるイメージセンサの基準画素を選択する基準画素選択手段と、
    前記イメージセンサにおいて、前記部品の輪郭の一点を検出した検出画素と、当該検出が行なわれた際に前記基準画素選択手段が選択している基準画素とから前記部品寸法を割り出す寸法割出手段と、
    を備えたことを特徴とする部品寸法測定装置。
  2. 前記基準画素選択手段は、
    前記搬送部位の、走行方向複数の領域に分割された各領域と各領域毎に定められた基準画素とを対応付けて記憶する記憶部と、
    前記検出位置をどの領域が通過しているのかを特定する特定部と、
    前記特定部が特定する領域が更新されると、前記記憶部から更新後の領域に対応する基準画素を読み出し、これを部品寸法の測定に用いる基準画素に選択する選択部と、
    を有することを特徴とする請求項1記載の部品寸法測定装置。
  3. 前記部品寸法測定装置は、前記搬送部位を搬送面とし、当該搬送面で部品を載置支持して部品を搬送する部品寸法測定装置であって、
    前記基準画素選択手段は、さらに、
    部品寸法の測定に先立ち、部品が載置されていない状態の前記搬送面を前記イメージセンサに前記各領域ごとに複数回検出させ、各領域において搬送面を検出した画素の内、最も低い位置を示す画素を基準画素として前記記憶部に記憶させる基準画素選定部を有することを特徴とする請求項2記載の部品寸法測定装置。
JP2000333742A 2000-10-31 2000-10-31 部品寸法測定装置 Expired - Fee Related JP3822789B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333742A JP3822789B2 (ja) 2000-10-31 2000-10-31 部品寸法測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333742A JP3822789B2 (ja) 2000-10-31 2000-10-31 部品寸法測定装置

Publications (2)

Publication Number Publication Date
JP2002139308A JP2002139308A (ja) 2002-05-17
JP3822789B2 true JP3822789B2 (ja) 2006-09-20

Family

ID=18809773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333742A Expired - Fee Related JP3822789B2 (ja) 2000-10-31 2000-10-31 部品寸法測定装置

Country Status (1)

Country Link
JP (1) JP3822789B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604616B2 (ja) * 2004-09-09 2011-01-05 住友金属工業株式会社 油井管用特殊ねじ継手のねじ部の検査方法
JP5308498B2 (ja) * 2011-11-10 2013-10-09 落合 行雄 螺子類の寸法測定装置

Also Published As

Publication number Publication date
JP2002139308A (ja) 2002-05-17

Similar Documents

Publication Publication Date Title
US5917602A (en) System and method for image acquisition for inspection of articles on a moving conveyor
US4858156A (en) Apparatus for examining objects
US5926556A (en) Systems and methods for identifying a molded container
JPH01194079A (ja) 印字検査方法、印字検査装置および印刷物自動振分けシステム
GB2119928A (en) Flaw detector
JPH04107000A (ja) 部品外観選別装置
JP3822789B2 (ja) 部品寸法測定装置
JP3822788B2 (ja) ねじ検査装置
US4636849A (en) Apparatus for inspecting solid drugs and a method therefor
PH26987A (en) Inspection of container finish
KR960001644B1 (ko) 주사 가능한 서류의 속도 검출기
JP2539856B2 (ja) 印刷パタ―ン周期長のずれ検知方法
JPH0957211A (ja) 農産物の選別方法及び装置
JPS6033036A (ja) 錠剤の欠け検出装置
JP3694590B2 (ja) 農産物の画像読取装置及びこれを用いた選別装置
EP0631255A2 (en) A printed letter inspecting apparatus for solid objects
JP2801010B2 (ja) 印刷物検査装置
JP2006145557A (ja) ねじ検査装置
JPH10170231A (ja) 縫い目の目飛び検出装置
CA1293051C (en) Apparatus for examining objects
JPH0412803B2 (ja)
JP4408253B2 (ja) ワーク選別装置
JPS635157B2 (ja)
JPH0221310B2 (ja)
JP2892495B2 (ja) 寸法測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3822789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150630

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees