JP3822665B2 - Welded joint with excellent fatigue strength - Google Patents
Welded joint with excellent fatigue strength Download PDFInfo
- Publication number
- JP3822665B2 JP3822665B2 JP05501696A JP5501696A JP3822665B2 JP 3822665 B2 JP3822665 B2 JP 3822665B2 JP 05501696 A JP05501696 A JP 05501696A JP 5501696 A JP5501696 A JP 5501696A JP 3822665 B2 JP3822665 B2 JP 3822665B2
- Authority
- JP
- Japan
- Prior art keywords
- haz
- fatigue strength
- fatigue
- welded joint
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、おもに船舶、海洋構造物、橋梁、建設機械などの溶接構造物に用いられる疲労強度が優れた溶接継手であり、さらに詳しくは、溶接継手の溶接熱影響部(以下、Heat Affected Zone:HAZと記す)において、疲労き裂の伝播速度を遅くすることが可能なフェライト組織の面積率を高くすることにより、疲労強度を向上させた溶接継手に関するものである。
【0002】
【従来の技術】
構造物の大型化にともない、構造部材の重量低減が近年の重要な課題となっており、これを実現するために構造物に使用される鋼の高張力化が進んでいる。しかしながら、船舶、海洋構造物、橋梁、建設機械などでは使用期間中に繰り返し荷重を受けるために、このような構造物においては疲労破壊を防止するための配慮が必要である。疲労破壊が最も発生し易い部位は溶接継手部であることから、溶接継手の疲労強度を向上することが求められている。
【0003】
これまでに、溶接継手の疲労強度支配要因と疲労強度改善に関する膨大な研究がなされており、溶接継手の疲労強度改善は、グラインダー研削や溶接ビード最終層を加熱・再溶融により止端部形状を整形するなどの溶接止端部の形状改善によるもの、ショットピーニング処理などの溶接止端部圧縮応力生成によるものなど、溶接後の付加的な施工による改善がほとんどであった。(特開昭59−110490号公報、特開平1−301823号公報など)。また、溶接後熱処理による残留応力低減効果も従来からよく知られている。
【0004】
一方、上記のような特殊な施工や溶接後熱処理を用いず、溶接したままでも鋼材の成分によって、溶接部の疲労強度を改善する方法も提案されている。
特開平3−264645号公報では、Siにより清浄なポリゴナルフェライト形成を有利にし、Bにより鋼を強化し、焼入れ性を向上することにより、良好な伸びフランジ性、疲労特性、抵抗溶接性を得ることを目的として、C:0.01〜0.2%、Mn:0.6〜2.5%、Si:0.02〜1.5%、および、B:0.0005〜0.1%等からなる、伸びフランジ性等に優れた高強度鋼板が開示されている。
【0005】
特公平3−56301号公報では、B等の添加により、鋼中成分と鋼板中の未再結晶組織の割合に工夫を加えることにより、スポット溶接部の継手疲労強度の有利な改善を図ることを目的として、C:0.006%以下、Mn:0.5%以下、Al:0.05%以下、および、窒化物、硫化物は不算入としたTi及び/またはNbの1種または2種合計:0.001〜0.100%等からなる、スポット溶接性の良好な極低炭素鋼板が登録されている。
【0006】
特開平6−207245号公報では、鋼材表層へのNiの添加により、溶接止端部に圧縮の残留応力を発生せしめ、疲労き裂発生までの寿命を増大させることを目的として、鋼板の表裏面からそれぞれ0.2mm以上でかつ板厚の25%以下の領域におけるNiの添加量が3%以上であることからなる、疲労特性の優れた複層鋼板が開示されている。
【0007】
特開平6−228707号公報では、Ceqを低くしながらCuの微細析出を用いて、溶接止端部近傍の硬度分布を均一にすることにより塑性変形の集中を防ぎ、かつ低Ceq化によりHAZ硬化をなくすことにより、平均応力として作用する溶接止端部の残留応力を低減させることを目的として、C:0.001〜0.01%、Si:0.005〜0.05%、Cu:0.5〜2%で、Ceqが0.2以下であることからなる、溶接継手疲労特性の優れた構造用鋼及びその溶接方法が開示されている。
【0008】
【発明が解決しようとする課題】
これらのうち、特開昭59−110490号公報、および、特開平1−301823号公報は、溶接後に特殊な施工をする必要があり、溶接のままで疲労強度を改善することは出来ない。溶接後熱処理による方法も、工程が増加し溶接施工が煩雑となるため好ましくない。また、その効果も限られたものである。
特開平3−264645号公報に示されている薄鋼板は、用途が主に自動車用ホイールやディスクの母材に関するものであって、本発明の対象とする造船、海洋構造物で用いられる鋼板とは用途、板厚、使用方法が全く異なるものであるため、ここでの知見をそのまま厚鋼板に適用することは出来ない。さらに、溶接継手に関する記載はないため、溶接継手の疲労強度に及ぼす影響については何ら検討されていない。また、母材に含有するとされるポリゴナル・フェライト組織がHAZに生成するかどうかは不明である。
【0009】
特公平3−56301号公報に示されている鋼板は、極低炭素鋼板のスポット溶接部に関するもので、スポット溶接部の硬度分布を制御しようとするものであるが、スポット溶接は抵抗溶接法の1種であり、鋼板の溶接部を電極で加圧して鋏み込み、大電流を短時間に流すことにより行われるが、本発明の対象とする溶接継手の溶接方法は板厚が厚い鋼板の溶接で使用される溶接方法が主体であり、溶接残留応力だけでなく、電極形状、溶接材料の有無、溶接条件などの溶接方法も異なり、薄板のスポット溶接と厚い鋼板の溶接では疲労強度の支配要因が異なるため、スポット溶接での知見をそのまま適応することは出来ない。
【0010】
特開平6−207245号公報に示されている鋼板は、構造用鋼であるため用途は同じであるが、Niを含有する複層鋼に限定したものであり、通常の単層鋼で、疲労強度を向上させることは出来ない。また、溶接継手の疲労強度が向上するかどうかは不明である。 特開平6−228707号公報に示されている発明では、溶接継手のHAZ組織に関する記載はなく、ミクロ組織と疲労強度の関係は不明であり、本発明とは異なる。また、鋼板のC添加量が0.01%以下、Si添加量が0.05%以下と非常に少なく、また、Cu添加が必須である点でも、本発明の請求範囲とは異なる。
【0011】
本発明は、溶接後に応力集中を低減するための付加的な溶接施工を実施することによる疲労強度改善ではなく、溶接継手のHAZにおいて、疲労き裂の伝播速度を遅くすることが可能なフェライト組織の面積率を高くすることにより、溶接したままで疲労強度が優れた溶接継手を提示することを目的とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するための本発明の主要原理は以下のように総括できる。
(1)溶接継手のHAZにおいて、疲労き裂の伝播速度を遅くすることが可能なフェライト組織の面積率を規定することにより、溶接継手の疲労強度を向上させる。
(2)鋼板の化学成分および炭素当量を限定することにより、溶接継手のHAZにおけるフェライト組織の面積率を高くして、溶接継手の疲労強度を向上させる。
本発明は上記(1)の効果により、溶接継手の疲労強度を向上させるものであり、さらに(2)を組み合わせた場合に、高い疲労強度を達成させることが出来る。
【0013】
即ち、本発明の要旨とするところは、
(1)質量%でC:0.015〜0.15%、Si:0.06〜2.0%、Mn:0.2〜1.5%、P:0.05%以下、S:0.05%以下、Al:0.001〜0.08%、N:0.003〜0.015%を含有し、残部が鉄および不可避的不純物元素よりなり、かつ炭素当量(Ceq)が、Ceq:0.275以下である鋼板を用いて作成した溶接継手であって、該溶接継手の溶接熱影響部におけるフェライト組織の面積率が、20〜100%で、残部がベイナイト組織、マルテンサイト組織、パーライト組織および残留オーステナイト組織の1種または2種以上からなることを特徴とする疲労強度が優れた溶接継手。ここで、炭素当量(Ceq)は、Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+Nb/3とする。
【0014】
(2)前記鋼板が、さらに、質量%で、Cu:0.1〜2.0%、Ni:0.1〜2.0%、Cr:0.05〜1.0%、Mo:0.02〜1.0%、V:0.005〜0.10%、Nb:0.005〜0.08%の1種または2種以上を含有することを特徴とする前記(1)に記載の疲労強度が優れた溶接継手。
(3)前記鋼板が、さらに、質量%で、Ca:0.0005〜0.010%、REM:0.0050〜0.050%の1種または2種を含有することを特徴とする前記(1)または(2)に記載の疲労強度が優れた溶接継手にある。
【0015】
【発明の実施の形態】
以下の(1)〜(2)に、本発明の技術的思想と限定理由について詳細に述べる。
(1)まず、溶接継手のHAZにおけるミクロ組織を限定した理由を述べる。
本発明者らは溶接継手の疲労強度向上に対するHAZの重要性を検討した。
一般に、溶接構造物の疲労破壊は構造的な応力集中を有する溶接継手部で発生する場合が多い。溶接欠陥や鋼板のキズ等のない正常な溶接継手部では、局所的な応力集中を有する母材と溶接金属の境界部にあたるHAZから疲労き裂が発生し、HAZ内を伝播した後、母材へ伝播して、最終的に構造物の機能を損なう破壊へ至る場合が多い。
【0016】
そこで、HAZにおける疲労き裂の発生伝播寿命が全破断寿命に占める割合を調査した。試験には構造物で多く使用される溶接継手である、T型隅肉溶接継手、十字隅肉溶接継手、廻し隅肉溶接継手の3つの継手を用いた。母材と溶接金属の境界部から母材側に5〜10mm(継手の種類による)離れた位置に歪ゲージを貼って、繰り返し負荷中の歪の値を測定した場合、試験開始時よりも歪の値が5%低下した時の繰り返し数は、疲労き裂の先端がHAZを通過して、母材に達する繰り返し数とほぼ一致するため、この繰り返し数をHAZにおける疲労き裂の発生伝播寿命とした。溶接継手疲労試験の結果、最終的に破断に至るまでの全寿命に対するHAZにおける疲労き裂の発生伝播寿命の割合は、T型隅肉溶接継手では約70%、十字隅肉溶接継手では約80%、角廻し隅肉溶接継手では約40%であった。
【0017】
したがって、全疲労寿命に対する疲労き裂の発生寿命はかなりの割合を占めることが上記の試験で明らかになる一方、一旦き裂が伝播を開始するとその抑制は非常に困難であることから、溶接継手の疲労強度を向上させるためにはHAZにおける疲労き裂の発生を困難にするか、あるいは疲労き裂が発生してもHAZにおける疲労き裂の伝播を極力遅くさせることが有効な手段と考えられる。
【0018】
次に、本発明者らはHAZのミクロ組織と疲労強度に関する検討を行い、以下に示す重要な知見を得た。
一般に、船舶、海洋構造物、橋梁、建設機械分野で使用されている鋼板のHAZ組織は、引張強度が400〜580MPa級の場合ではベイナイト組織、引張強度が580MPaを越える場合はベイナイト組織あるいはマルテンサイト組織が主体となる。鋼板の成分や熱処理によってはこれらのミクロ組織に加えて、パーライト組織や残留オーステナイトが含まれる場合もある。HAZ組織は母材組織の影響はあまり受けず、むしろ鋼板の成分と溶接時の冷却速度で決まるため、一般に使用されている400MPa級の溶接構造用軟鋼(例えば0.14%C−0.2%Si−0.9%Mn)でさえも、50kJ/cm以下の通常の溶接条件では、焼き入れ性の指標である炭素当量が高いため、HAZがフェライト組織主体となることはほとんどない。
【0019】
本発明者らは、溶接継手の疲労強度を検討するにあたって、それぞれのミクロ組織のHAZにおける疲労き裂伝播速度を調査する必要があると考えた。応力集中係数や残留応力などの力学的な要因の影響を受けず、同一の力学条件でミクロ組織の影響を調査するため、小型再現HAZ試験片により、き裂伝播試験を実施した。溶接再現熱サイクル条件は最高加熱温度を1400℃、800℃〜500℃の冷却時間を1秒〜161秒とし、化学成分と冷却速度の違いによりフェライト組織、ベイナイト組織、マルテンサイト組織を再現した。試験は6mm長の鋭い切欠をつけた20×10×100mmの3点曲げき裂伝播試験片を用いて、応力比は0.1、き裂開口変位をクリップ・ゲージを用いて測定し、き裂長さをコンプライアンス法により算出した。
【0020】
き裂伝播試験の結果、HAZがフェライト組織の場合の疲労き裂の伝播寿命は、HAZがベイナイト組織やマルテンサイト組織の場合よりも2倍以上向上した。応力拡大係数範囲とき裂伝播速度を観察すると、き裂長さが既に長く応力拡大係数範囲が高い場合はミクロ組織の違いによる差は見られなかったが、まだき裂長さが短く応力拡大係数範囲が低い場合にはミクロ組織による差が現れ、HAZにおけるフェライト組織の面積率が高い場合に顕著にき裂伝播速度が低下した。
【0021】
さらに、図1にHAZのフェライト組織面積率が2%のHAZベイナイト鋼と88%のHAZフェライト鋼における、き裂開口変位と荷重の変化を詳細に観察した結果を示す。フェライト組織の割合が高くなると顕著なき裂閉口が観察された。このき裂閉口というのは、最大荷重時に疲労き裂の先端が降伏点を越えて塑性変形し、最少荷重になる前に疲労き裂の先端が閉じてしまう現象である。フェライト組織は他の組織と比べて、転位強化の割合が少なく非常に軟質で塑性変形が容易であるために、き裂閉口が起こりやすいと考えられる。このき裂閉口が起こると、疲労き裂の先端が閉じている時は疲労き裂の伝播は起こらず、疲労き裂の伝播に有効な応力範囲は減少するために、HAZがフェライト組織の場合にHAZにおける伝播寿命が向上したものと考えられる。
【0022】
以上の技術的思想に基づき、本発明は溶接継手のHAZにおいて、疲労き裂の伝播速度を遅くすることが可能なフェライト組織の面積率を高くすることにより、溶接継手の疲労強度を向上させるものである。
ただし、ベイナイト組織の粒界に20%未満の面積率で生成する粒界フェライトは、フェライト組織が含まれているとはいっても疲労き裂が粒界フェライトから容易に発生するため、伝播を遅くさせても疲労強度は向上しない。また、HAZのフェライト組織の面積率が20%未満では、疲労き裂の閉口が起こっても非常に小さいため、疲労強度の向上は期待できない。
【0023】
従って、溶接継手の疲労強度を向上させるためには、HAZにおけるフェライト組織の面積率を少なくとも20%以上にする必要がある。また、HAZにおいて、フェライト組織の面積率が20%以上であれば、ベイナイト、マルテンサイト、パーライト、および残留オーステナイト組織を含有しても問題はない。さらに、安定して疲労強度を向上させるためには、HAZのフェライト組織の面積率を60%以上にすることが望ましく、その上限値は100%となる。
ここで、ミクロ組織の面積率は溶接金属、HAZ、母材が含まれるように溶接継手を切断・研磨した面を光学顕微鏡で観察して、溶接金属からHAZ側に約50μmの位置からHAZと母材の境界線までの領域に占める各ミクロ組織の割合をポイント・カウンティング法により測定した値を用いることとする。
【0024】
(2)次に、溶接継手に使用する鋼板の化学成分および炭素当量を限定した理由を述べる。
まず、鋼板の基本的な化学成分として限定した各元素について述べる。
Cは、母材強度を上昇させる元素であり、母材強度上昇のためには多量に添加することが望ましい。しかしながら、0.15%超のCの添加は、焼き入れ性が高くなりすぎて、HAZにおけるフェライト組織が得られなくなるとともに、溶接性や溶接部の靱性を低下させる。従って、Cの上限を0.15%とした。また、Cが0.015%未満では構造用鋼としての母材強度の確保が困難になるため、Cの下限値を0.015%とした。
【0025】
Siは、溶製時の脱酸に必要な元素であり、適量添加するとマトリックスを固溶強化する。Siが0.06%未満では、溶製時の脱酸効果が減少するため、下限値を0.06%とした。また、Siはフェライト生成元素であり、炭素当量の式に含まれていないため、0.6%以上添加すると同じ炭素当量のままでHAZにおけるフェライト組織の面積率を増加させる効果を有する。一方、Siを2.0%超添加すると、焼き入れ性が高くなるだけでなく、靱性も低下する。従って、上限値を2.0%とした。
【0026】
Mnは、靱性をあまり低下させることなく母材強度を上昇させる元素である。Mnが0.2%未満では十分な母材強度が得られず、S脆化が起こりやすくなるため、下限値を0.2%とした。また、1.5%超のMnを含有すると、焼き入れ性が高くなりすぎて、HAZにおけるフェライト組織が得られなくなるとともに、溶接部の組織溶接部の靱性が低下し、溶接性、延性も劣化するため、上限値を1.5%とした。
【0027】
Pは、少ないほど好ましく、0.05%超添加すると母材の粒界に偏析して粒界脆化するためにHAZの靱性が低下する。よって上限値を0.05%とした。
Sは、低いほど好ましく、0.05%超含有するとA系介在物が顕著となり、母材と溶接部の靱性を害し、板厚方向の延性も低下させる。従って、上限値を0.05%とした。
【0028】
次に、本発明においては、上記の元素に加えて次のような元素を鋼板に含んでもよく、以下に成分限定した各元素について述べる。
Alは、脱酸元素として用いられ、0.001%以上の添加で脱酸作用が期待できる。好ましくは0.003%以上添加すると良い。一方、0.08%超添加すると、Al酸化物やAl窒化物が多量に生成して、溶接部の靱性を劣化させる。従って、下限値を0.001%、上限値を0.08%とした。
【0029】
Nは、母材の靱性を劣化させる元素であるため、靱性を要求される低炭素鋼などの製造においては特に0.002%程度まで低減している。それ以外の鋼材についても靱性確保の観点から通常不純物として、0.003%程度含有されている。しかしながら、Alを0.001%〜0.08%の範囲で添加すれば、例えNが0.003%以上含有されていても、Alと結合して窒化物となって、これがHAZ組織の粗大化を抑制し、結晶粒が微細化することにより焼入れ性が低下して、HAZ組織におけるフェライト組織の生成を促進させて疲労強度を改善できることから、その下限値を0.003%とした。
【0030】
一方、N含有量が0.015%以下であれば、Alによって窒化物として固定できて靱性を劣化させない上、フェライト組織の確保による疲労強度の向上を達成することができる。従って、その上限値を0.015%とした。ただし、通常Alは脱酸元素として消費されるので、N含有量が多いときは、Al窒化物にするためのAl量を確保しなければならない。通常の溶接構造用鋼板では、Al:0.03〜0.06%、N:0.004〜0.006%を含有する場合が多いことから、Al/N比を5.0〜15.0の範囲とすることが好ましい。
【0031】
Cuは、母材強度を向上させる効果があり、さらに炭化物は生成しないが固溶強化により疲労強度を向上させる。0.1%以上添加しないとその効果はなく、2.0%超添加すると、スラブの凝固割れの原因になるため、下限値を0.1%、上限値を2.0%とした。
Niは、母材強度を上げるだけでなく、靱性を大幅に向上させる。その効果が得られる添加量として、下限値を0.1%とした。また、2.0%超添加してもその効果は飽和するため、上限値を2.0%とした。
【0032】
Crは、母材強度ならびに靱性を向上させる効果があり、炭化物や窒化物を生成してHAZ組織を強化する効果があり、疲労強度も向上させる。これらの効果を得るには、0.05%の添加が必要である。また、1.0%超添加してもその効果は飽和し、逆に溶接性が損なわれる。そのため、下限値を0.05%、上限値を1.0%とした。
【0033】
Moは、母材強度を向上させるだけでなく靱性も向上させる効果があり、炭化物や窒化物を生成する点で、Crと同様の作用をする。その効果が現れる添加量として下限値を0.02%とし、その効果が飽和する添加量として、上限値を1.0%とした。
Vは、炭化物を形成して母材の強度向上と細粒化に効果がある。V量が0.005%未満では、この効果が顕著でないので、下限値を0.005%とした。逆に、0.10%超添加すると、HAZの焼き入れ性が高くなりすぎて、フェライト組織の面積率が減少するため、上限値を0.10%とした。
【0034】
Nbは、母材強度上昇に効果を有する元素であり、さらに、鋼板製造時にTMCPプロセスが適用される場合には圧延中の再結晶を抑制するために0.005%以上添加する必要がある。しかしながら、Nbを多量に含有すると溶接部の靱性を低下させる。従って、Nbの上限値を0.08%とした。
Caは、疲労き裂の発生源となる硫化物を固定し、延性を向上させる効果がある。添加量が0.0005%以下ではその効果が期待できず、また、0.010%超では靱性を低下させる。よって、下限値を0.0005%、上限値を0.010%とした。
【0035】
REMは、疲労き裂の発生源となる硫化物を固定し、延性を向上させる点で、Caと同様の効果がある。また、HAZではREM(O,S)が粒内変態の生成核となり、フェライト組織の生成を促進する効果もある。粒子径が0.1〜3.0μm、粒子数が10〜100個/mm2 のREM(O,S)を微細分散させることが好ましい。REMは希土類元素であればいずれの元素も同様の効果を有すると考えられるが、これらの中でも特に、LaとCeがそれらの代表として挙げられる。REM添加による効果が発揮されるには、合計で0.0050%以上添加することが必要であり、0.050%以上添加してもその効果は飽和し、経済的でもなくなる。よって、下限値を0.0050%、上限値を0.050%とした。
【0036】
さらに、溶接継手に使用する鋼板の炭素当量を限定した理由を述べる。
溶接時の冷却速度が同じ場合、HAZ組織と鋼板の成分の関係はIIWで提案されている炭素当量の式を用いることにより表すことができる。IIWの炭素当量(Ceq)の式は、Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+Nb/3で与えられる。従来の鋼材のように、炭素当量が0.275を超える場合には、HAZ組織はベイナイト組織あるいはマルテンサイト組織となるため、フェライト組織を得ることは困難である。よって、HAZのフェライト組織の面積率を高くするためには、まず炭素当量を0.275以下にする必要がある。
【0037】
また、HAZのフェライト組織の面積率を高くして、より高い疲労強度を得るためには、炭素当量が0.25以下にすることが好ましい。一方、炭素当量が0.10未満では、十分な母材強度が得られないため、0.10以上が好ましい。 以上の技術的思想に基づき、本発明は溶接継手のHAZにおけるフェライト組織の面積率を高くすることにより、溶接継手の疲労強度を向上させるものである。ここで、溶接継手で用いられる鋼板としては、接合されるいずれの鋼板にも上記で規定した鋼板を用いることが望ましいが、溶接継手の形状や応力負荷条件等から、疲労損傷が問題となる部位が予め明らかな場合には、疲労損傷を受ける側だけに、上記で規定した鋼板を適用してもよい。
【0038】
さらに、本発明はT字隅肉溶接継手のような、圧縮の溶接残留応力によりき裂開閉口挙動が起こりやすい溶接継手で特に有効であるが、十字隅肉溶接継手、廻し隅肉溶接継手、突き合せ溶接継手等の溶接継手でも、き裂閉口が起こる場合には疲労強度を向上させることができる。
一方、本発明は不活性ガスを用いたアーク溶接(MIG)や、混合ガスを用いたアーク溶接(MAG)、タングステン・アーク溶接(TIG)のようなガスシールドアーク溶接をした場合に特に有効であるが、被覆アーク溶接(SMAW)や、サブマージアーク溶接(SAW)のような溶接方法、さらに、溶接入熱においても、通常実施される1〜5kJ/mm程度の大入熱溶接を用いた溶接継手でも、き裂閉口が起こる場合には疲労強度を向上させることができる。
【0039】
【実施例】
以下に、本発明の実施例について述べる。
溶接継手のHAZにおけるフェライト組織の面積率と疲労強度の関係を調査することを目的に疲労試験を実施した。50キロ真空溶解炉を用いて、合計19鋼種を溶製した。炭素当量が低く、母材の強度不足が懸念されるため、制御圧延と制御冷却により、溶製したスラブの圧延を実施した。すなわち、1100℃で60分間加熱した後、仕上げ板厚の3倍の板厚まで粗圧延を行い、Ar3 点以上未再結晶温度以下まで温度待ちした後に、板厚6〜30mmに仕上げ圧延を行い、圧延終了後ただちに500℃まで制御冷却した後、室温まで空冷した。さらに、引張試験片を採取し、母材の降伏応力、引張強度、全伸びを測定した。
【0040】
表1に製造した鋼の化学成分、炭素当量、および機械的性質を示す。
これらの鋼を用いて、T字隅肉、十字隅肉、廻し隅肉の計3種類の溶接継手を作成した。溶接に用いるリブ板は母材と同じ鋼板を用い、溶接は各1パスで行った。溶接方法はCO2 ガスを用いたMAG溶接とし、溶接材料は被覆アーク溶接棒、ソリッドワイヤ、フラックス入りワイヤのいずれも用いることが出来るが、ここでは50キロ鋼用フラックス入りワイヤを用いた。溶接後に、溶接部のミクロ組織観察試験片を切り出し、ポイント・カウンティング法によりHAZのフェライト組織と面積率を求めた。
疲労試験は大気中、室温とし、T字隅肉溶接継手の場合は3点曲げで応力比が0.1、十字隅肉および廻し隅肉溶接継手の場合は軸力で応力比が0で試験を実施した。
【0041】
【表1】
【0042】
表2に、使用した鋼板記号、板厚、HAZにおけるフェライト組織の面積率、ベイナイト・マルテンサイト・パーライト・残留オーステナイト組織の合計の面積率、溶接継手の形状、疲労強度を示す。
継手1は、HAZのフェライト組織面積率が20%以上の発明例である。継手2〜4は、HAZのフェライト組織面積率が20%以上で、炭素当量は0.275以下の発明例である。炭素当量が低くなると、フェライト組織面積率が増加し、溶接継手の疲労強度も向上する。しかし、継手15、16は、HAZのフェライト組織面積率が低く、炭素当量も請求範囲よりも多い比較例で、発明例1〜4よりも溶接継手の疲労強度は低い。
【0043】
継手5〜14は基本成分以外に、Cu、Ni、Cr、Mo、V、Nb、Ca、REMを1種または2種以上添加した発明例で、いずれも高い疲労強度を維持しており、継手5〜10は母材強度が向上している。一方、継手17、18はこれらの元素を添加したものの、HAZのフェライト組織面積率が低く、炭素当量が請求範囲よりも多い比較例で、やはり溶接継手の疲労強度は向上しない。
十字隅肉溶接を行った継手19〜21、廻し隅肉溶接を行った継手22〜24でも、HAZのフェライト面積率が高い場合は溶接継手の疲労強度が向上する。 従って、本発明の条件を満たす溶接継手(表中に本発明例と表示)は、HAZのフェライト組織面積率が20%以上であり、いずれの溶接継手でも溶接したままで優れた疲労強度を達成していることがわかる。
【0044】
【表2】
【0045】
【発明の効果】
以上詳述したように、本発明によれば、船舶、海洋構造物、橋梁、建設機械等に用いられる溶接継手のHAZに関して、疲労き裂の伝播速度を遅くすることが可能なフェライト組織の面積率を高くし、あるいは、これを実現するために、鋼板の化学成分および炭素当量を限定することにより、溶接継手の疲労強度を向上させることが可能であり、本発明の溶接継手を用いれば溶接構造物の疲労破壊に対する信頼性を著しく向上させることが可能となった。このような効果を有する本発明の溶接継手の意義は、極めて著しいものである。
【図面の簡単な説明】
【図1】HAZベイナイト鋼(A)とHAZフェライト鋼(B)におけるき裂開口変位と荷重の変化を示す図である。
【図2】溶接継手のHAZのフェライト組織面積率とT字継手の200万回疲労強度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a welded joint having excellent fatigue strength mainly used for welded structures such as ships, offshore structures, bridges, and construction machines, and more specifically, a weld heat affected zone (hereinafter, Heat Affected Zone) of the welded joint. : HAZ), a welded joint with improved fatigue strength by increasing the area ratio of the ferrite structure capable of slowing the propagation rate of fatigue cracks.
[0002]
[Prior art]
Along with the increase in size of structures, reduction of the weight of structural members has become an important issue in recent years. To achieve this, steel used in structures has been increased in tension. However, since ships, offshore structures, bridges, construction machines, and the like are repeatedly subjected to loads during the period of use, it is necessary to consider such structures to prevent fatigue failure. Since the site where fatigue fracture is most likely to occur is a welded joint, it is required to improve the fatigue strength of the welded joint.
[0003]
Up to now, a great deal of research has been done on the fatigue strength controlling factors and the improvement of fatigue strength of welded joints. The improvement of fatigue strength of welded joints is achieved by grinding the toe shape by grinding and grinding or heating and remelting the final weld bead layer. Most of the improvements were due to additional construction after welding, such as by shaping the shape of the weld toe, such as shaping, or by generating compressive stress at the weld toe, such as shot peening. (Japanese Laid-Open Patent Publication No. 59-110490, Japanese Laid-Open Patent Publication No. 1-301823, etc.). Moreover, the residual stress reduction effect by post-weld heat treatment is also well known.
[0004]
On the other hand, a method for improving the fatigue strength of the welded part by using the components of the steel material without welding, such as the above-described special construction or post-weld heat treatment, has been proposed.
In JP-A-3-264645, it is advantageous to form clean polygonal ferrite with Si, strengthen steel with B, and improve hardenability, thereby obtaining good stretch flangeability, fatigue characteristics, and resistance weldability. C: 0.01-0.2%, Mn: 0.6-2.5%, Si: 0.02-1.5%, and B: 0.0005-0.1% Etc., and a high-strength steel sheet excellent in stretch flangeability and the like is disclosed.
[0005]
In Japanese Examined Patent Publication No. 3-56301, the addition of B or the like improves the joint fatigue strength of spot welds by adding a device to the ratio of the components in steel and the unrecrystallized structure in the steel sheet. Objectives: C: 0.006% or less, Mn: 0.5% or less, Al: 0.05% or less, and one or two types of Ti and / or Nb in which nitrides and sulfides are not included Total: An ultra-low carbon steel plate having good spot weldability, which is made up of 0.001 to 0.100% or the like, is registered.
[0006]
In JP-A-6-207245, the addition of Ni to the steel surface layer causes a compressive residual stress in the weld toe and increases the life until the occurrence of fatigue cracks. From the above, a multilayer steel sheet having excellent fatigue characteristics is disclosed, in which the amount of Ni added in the region of 0.2 mm or more and 25% or less of the plate thickness is 3% or more.
[0007]
In JP-A-6-228707, the concentration of plastic deformation is prevented by making the hardness distribution in the vicinity of the weld toe portion uniform by using fine Cu precipitation while lowering Ceq, and HAZ hardening is achieved by lowering Ceq. For the purpose of reducing the residual stress of the weld toe portion acting as an average stress by eliminating C, 0.001 to 0.01%, Si: 0.005 to 0.05%, Cu: 0 A structural steel excellent in weld joint fatigue characteristics and a welding method thereof are disclosed, which are comprised of 0.5 to 2% and Ceq of 0.2 or less.
[0008]
[Problems to be solved by the invention]
Of these, JP-A-59-110490 and JP-A-1-301823 require special construction after welding, and the fatigue strength cannot be improved as it is. The method of heat treatment after welding is also not preferable because the number of steps increases and the welding work becomes complicated. Moreover, the effect is also limited.
The thin steel sheet disclosed in Japanese Patent Laid-Open No. 3-264645 is mainly used for the base material of wheels and disks for automobiles, and is used for shipbuilding and marine structures targeted by the present invention. Since the use, thickness, and usage are completely different, the knowledge here cannot be directly applied to thick steel plates. Furthermore, since there is no description regarding the welded joint, no study has been made on the influence on the fatigue strength of the welded joint. Further, it is unclear whether the polygonal ferrite structure that is supposed to be contained in the base material is generated in the HAZ.
[0009]
The steel plate shown in Japanese Patent Publication No. 3-56301 relates to a spot welded portion of an ultra-low carbon steel plate, and is intended to control the hardness distribution of the spot welded portion. It is one type, and it is performed by pressurizing and welding a welded portion of a steel plate with an electrode and letting a large current flow in a short time. The welding method of the welded joint targeted by the present invention is the welding of a thick steel plate. The welding method used mainly in welding is different from the welding residual stress as well as the welding method such as electrode shape, presence / absence of welding material, welding conditions, etc. Therefore, the knowledge of spot welding cannot be applied as it is.
[0010]
The steel sheet disclosed in JP-A-6-207245 is a structural steel, so the use is the same, but it is limited to a multilayer steel containing Ni. The strength cannot be improved. It is unclear whether the fatigue strength of welded joints will improve. In the invention disclosed in Japanese Patent Application Laid-Open No. 6-228707, there is no description regarding the HAZ structure of the welded joint, and the relationship between the microstructure and the fatigue strength is unknown, which is different from the present invention. Further, the C addition amount of the steel sheet is 0.01% or less, the Si addition amount is very small as 0.05% or less, and the addition of Cu is also essential, which is different from the claims of the present invention.
[0011]
The present invention is not an improvement in fatigue strength by performing additional welding to reduce stress concentration after welding, but a ferrite structure capable of slowing the propagation speed of fatigue cracks in the HAZ of welded joints. An object of the present invention is to provide a welded joint that is excellent in fatigue strength while being welded by increasing the area ratio.
[0012]
[Means for Solving the Problems]
The main principle of the present invention for solving the above problems can be summarized as follows.
(1) In the HAZ of a welded joint, the fatigue strength of the welded joint is improved by defining the area ratio of the ferrite structure that can slow down the propagation rate of fatigue cracks.
(2) By limiting the chemical composition and carbon equivalent of the steel sheet, the area ratio of the ferrite structure in the HAZ of the welded joint is increased, and the fatigue strength of the welded joint is improved.
The present invention improves the fatigue strength of the welded joint due to the effect of (1) above, and can achieve high fatigue strength when combined with (2).
[0013]
That is, the gist of the present invention is that
(1) By mass%: C: 0.015-0.15%, Si: 0.06-2.0%, Mn: 0.2-1.5%, P: 0.05% or less, S: 0 0.05% or less , Al: 0.001 to 0.08%, N: 0.003 to 0.015%, the balance is made of iron and inevitable impurity elements, and the carbon equivalent (Ceq) is Ceq. : A welded joint prepared using a steel sheet of 0.275 or less, wherein the area ratio of the ferrite structure in the weld heat affected zone of the welded joint is 20 to 100%, and the balance is a bainite structure, a martensite structure, A welded joint with excellent fatigue strength, comprising one or more of a pearlite structure and a retained austenite structure. Here, the carbon equivalent (Ceq) is Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + Nb / 3.
[0014]
(2) The said steel plate is further mass%, Cu: 0.1-2.0%, Ni: 0.1-2.0%, Cr: 0.05-1.0%, Mo: 0.0. It contains 1 type or 2 types or more of 02-1.0%, V: 0.005-0.10%, Nb: 0.005-0.08% as described in said (1) characterized by the above-mentioned. A welded joint with excellent fatigue strength.
(3) The steel sheet further comprising one or two of Ca: 0.0005 to 0.010% and REM: 0.0050 to 0.050% in mass%. It exists in the welded joint excellent in the fatigue strength as described in 1) or (2).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the following (1) to (2), the technical idea of the present invention and the reason for limitation will be described in detail.
(1) First, the reason for limiting the microstructure in the HAZ of the welded joint will be described.
The present inventors examined the importance of HAZ for improving the fatigue strength of welded joints.
In general, fatigue failure of a welded structure often occurs at a welded joint having a structural stress concentration. In normal welded joints with no weld defects or scratches on the steel sheet, fatigue cracks are generated from the HAZ, which is the boundary between the base metal having local stress concentration and the weld metal, and propagates through the HAZ. In many cases, it is propagated to the end, and eventually leads to destruction that impairs the function of the structure.
[0016]
Therefore, the ratio of the fatigue crack initiation propagation life to the total fracture life in HAZ was investigated. For the test, three types of joints, T-type fillet welded joints, cross fillet welded joints, and turned fillet welded joints, which are frequently used in structures, were used. When a strain gauge is attached at a position 5 to 10 mm away from the boundary between the base metal and the weld metal on the base metal side (depending on the type of joint) and the strain value during repeated loading is measured, the strain is greater than at the start of the test. The number of repetitions when the value of 5% decreases is approximately the same as the number of repetitions that the fatigue crack tip passes through the HAZ and reaches the base metal. Therefore, the number of repetitions is the propagation propagation life of fatigue cracks in the HAZ. It was. As a result of the welded joint fatigue test, the ratio of the fatigue crack initiation propagation life in the HAZ to the total life until final fracture is about 70% for the T-type fillet welded joint and about 80 for the cross fillet welded joint. %, It was about 40% in the case of corner-turned fillet welded joints.
[0017]
Therefore, it is clear from the above test that the fatigue crack initiation life accounts for a considerable proportion of the total fatigue life, but once the crack starts to propagate, it is very difficult to suppress it. In order to improve the fatigue strength of steel, it is considered to be an effective means to make it difficult to generate fatigue cracks in HAZ or to slow the propagation of fatigue cracks in HAZ as much as possible even if fatigue cracks occur. .
[0018]
Next, the present inventors have examined the HAZ microstructure and fatigue strength, and obtained the following important findings.
In general, the HAZ structure of steel plates used in the fields of ships, offshore structures, bridges, and construction machinery is a bainite structure when the tensile strength is 400 to 580 MPa, and a bainite structure or martensite when the tensile strength exceeds 580 MPa. The organization is the main body. Depending on the components of the steel sheet and heat treatment, in addition to these microstructures, a pearlite structure and retained austenite may be included. The HAZ structure is not significantly affected by the base material structure, but rather is determined by the composition of the steel sheet and the cooling rate during welding, so that a 400 MPa class mild steel for welded structure (for example, 0.14% C-0.2) is generally used. % Si-0.9% Mn), under normal welding conditions of 50 kJ / cm or less, since the carbon equivalent which is an index of hardenability is high, HAZ is hardly composed mainly of a ferrite structure.
[0019]
The present inventors considered that when examining the fatigue strength of a welded joint, it was necessary to investigate the fatigue crack propagation rate in the HAZ of each microstructure. In order to investigate the influence of the microstructure under the same mechanical conditions without being influenced by mechanical factors such as the stress concentration factor and residual stress, a crack propagation test was carried out with a small reproducible HAZ specimen. The welding reproduction heat cycle conditions were a maximum heating temperature of 1400 ° C., a cooling time of 800 ° C. to 500 ° C. of 1 second to 161 seconds, and a ferrite structure, a bainite structure, and a martensite structure were reproduced depending on the difference in chemical composition and cooling rate. The test was performed using a 20 × 10 × 100 mm three-point bending crack propagation test piece with a 6 mm long sharp notch, the stress ratio was 0.1, and the crack opening displacement was measured using a clip gauge. The crack length was calculated by the compliance method.
[0020]
As a result of the crack propagation test, the fatigue crack propagation life in the case where HAZ is a ferrite structure was improved more than twice as compared with the case where HAZ was a bainite structure or a martensite structure. When the crack propagation speed was observed when the stress intensity factor range was observed, if the crack length was already long and the stress intensity factor range was high, there was no difference due to the difference in the microstructure, but the crack length was still short and the stress intensity factor range was low. In some cases, a difference due to the microstructure appeared, and when the area ratio of the ferrite structure in the HAZ was high, the crack propagation rate was remarkably reduced.
[0021]
Further, FIG. 1 shows the results of detailed observation of crack opening displacement and load change in HAZ bainitic steel with HAZ ferrite structure area ratio of 2% and HAZ ferritic steel with 88%. A marked crack closure was observed when the proportion of ferrite structure increased. This crack closure is a phenomenon in which the tip of the fatigue crack undergoes plastic deformation beyond the yield point at the maximum load, and the tip of the fatigue crack closes before reaching the minimum load. Compared to other structures, the ferrite structure has a small proportion of dislocation strengthening and is very soft and easily plastically deformed. Therefore, it is considered that crack closure is likely to occur. When this crack closure occurs, fatigue crack propagation does not occur when the tip of the fatigue crack is closed, and the effective stress range for fatigue crack propagation decreases. It is considered that the propagation lifetime in HAZ is improved.
[0022]
Based on the above technical idea, the present invention improves the fatigue strength of a welded joint by increasing the area ratio of the ferrite structure capable of slowing the propagation speed of fatigue cracks in the HAZ of the welded joint. It is.
However, the grain boundary ferrite generated at an area ratio of less than 20% at the grain boundary of the bainite structure is easy to generate a fatigue crack from the grain boundary ferrite even though the ferrite structure is contained. Even if it is made, fatigue strength does not improve. Further, if the area ratio of the ferrite structure of the HAZ is less than 20%, the fatigue strength cannot be improved because the crack is very small even if the fatigue crack is closed.
[0023]
Therefore, in order to improve the fatigue strength of the welded joint, the area ratio of the ferrite structure in the HAZ needs to be at least 20% or more. In HAZ, if the area ratio of the ferrite structure is 20% or more, there is no problem even if it contains bainite, martensite, pearlite, and retained austenite structure. Furthermore, in order to improve the fatigue strength stably, it is desirable that the area ratio of the ferrite structure of the HAZ is 60% or more, and the upper limit is 100%.
Here, the area ratio of the microstructure is determined by observing the surface obtained by cutting and polishing the weld joint so as to include the weld metal, HAZ, and base material with an optical microscope, and HAZ from the position of about 50 μm from the weld metal to the HAZ side. A value obtained by measuring the ratio of each microstructure in the region up to the boundary line of the base material by the point counting method is used.
[0024]
(2) Next, the reason for limiting the chemical composition and carbon equivalent of the steel sheet used for the welded joint will be described.
First, each element limited as a basic chemical component of a steel plate will be described.
C is an element that increases the strength of the base material, and is desirably added in a large amount to increase the strength of the base material. However, the addition of more than 0.15% C results in excessive hardenability, making it impossible to obtain a ferrite structure in HAZ, and lowering weldability and toughness of the welded portion. Therefore, the upper limit of C is set to 0.15%. Further, if C is less than 0.015%, it is difficult to ensure the strength of the base metal as structural steel. Therefore, the lower limit value of C is set to 0.015%.
[0025]
Si is an element necessary for deoxidation at the time of melting. When an appropriate amount is added, the matrix is solid-solution strengthened. If Si is less than 0.06%, the deoxidation effect during melting decreases, so the lower limit was made 0.06%. Further, since Si is a ferrite-forming element and is not included in the carbon equivalent formula, adding 0.6% or more has the effect of increasing the area ratio of the ferrite structure in the HAZ while maintaining the same carbon equivalent. On the other hand, when Si exceeds 2.0%, not only the hardenability is increased but also the toughness is lowered. Therefore, the upper limit is set to 2.0%.
[0026]
Mn is an element that increases the strength of the base material without significantly reducing toughness. If Mn is less than 0.2%, sufficient base material strength cannot be obtained, and S embrittlement tends to occur. Therefore, the lower limit is set to 0.2%. Further, when Mn is contained in excess of 1.5%, the hardenability becomes too high, and the ferrite structure in the HAZ cannot be obtained, and the toughness of the welded part of the welded part decreases, and the weldability and ductility also deteriorate. Therefore, the upper limit value is set to 1.5%.
[0027]
P is preferably as small as possible, and if added over 0.05%, it segregates at the grain boundaries of the base material and becomes brittle at the grain boundaries, so that the toughness of the HAZ decreases. Therefore, the upper limit is set to 0.05%.
S is preferably as low as possible, and when it exceeds 0.05%, A-based inclusions become prominent, impairing the toughness of the base metal and the welded portion, and reducing the ductility in the thickness direction. Therefore, the upper limit is set to 0.05%.
[0028]
Next, in the present invention, in addition to the above-described elements, the following elements may be included in the steel sheet.
Al is used as a deoxidizing element, and a deoxidizing action can be expected by adding 0.001% or more. Preferably, 0.003% or more is added. On the other hand, if added over 0.08%, a large amount of Al oxide or Al nitride is produced, which deteriorates the toughness of the weld. Therefore, the lower limit is set to 0.001% and the upper limit is set to 0.08%.
[0029]
Since N is an element that degrades the toughness of the base material, it is reduced to about 0.002% particularly in the production of low carbon steel and the like that require toughness. Other steel materials are also usually contained in an amount of about 0.003% as impurities from the viewpoint of securing toughness. However, if Al is added in the range of 0.001% to 0.08%, even if N is contained in an amount of 0.003% or more, it is combined with Al to form a nitride, which is coarse HAZ structure. Since the hardenability is reduced by suppressing the crystallization and the crystal grains are refined and the fatigue strength can be improved by promoting the formation of a ferrite structure in the HAZ structure, the lower limit is set to 0.003%.
[0030]
On the other hand, if the N content is 0.015% or less, it can be fixed as a nitride by Al and the toughness is not deteriorated, and an improvement in fatigue strength by securing a ferrite structure can be achieved. Therefore, the upper limit is set to 0.015%. However, since Al is usually consumed as a deoxidizing element, when the N content is large, it is necessary to ensure the amount of Al for making Al nitride. Since ordinary steel sheets for welded structures often contain Al: 0.03 to 0.06% and N: 0.004 to 0.006%, the Al / N ratio is 5.0 to 15.0. It is preferable to set it as the range.
[0031]
Cu has the effect of improving the strength of the base material and further does not produce carbides, but improves the fatigue strength by solid solution strengthening. If 0.1% or more is not added, there is no effect. If more than 2.0% is added, it causes solidification cracking of the slab. Therefore, the lower limit is set to 0.1% and the upper limit is set to 2.0%.
Ni not only increases the strength of the base material, but also greatly improves toughness. The lower limit value was set to 0.1% as the amount of addition that can provide the effect. Moreover, even if added over 2.0%, the effect is saturated, so the upper limit was made 2.0%.
[0032]
Cr has the effect of improving the base material strength and toughness, has the effect of strengthening the HAZ structure by generating carbides and nitrides, and also improves the fatigue strength. To obtain these effects, addition of 0.05% is necessary. Moreover, even if it adds more than 1.0%, the effect will be saturated and weldability will be impaired conversely. Therefore, the lower limit is set to 0.05% and the upper limit is set to 1.0%.
[0033]
Mo has the effect of improving not only the strength of the base material but also the toughness, and acts in the same manner as Cr in that it produces carbides and nitrides. The lower limit value was set to 0.02% as the additive amount at which the effect appears, and the upper limit value was set to 1.0% as the additive amount at which the effect is saturated.
V forms carbides and is effective in improving the strength and fineness of the base material. If the V amount is less than 0.005%, this effect is not remarkable, so the lower limit was set to 0.005%. On the other hand, if added over 0.10%, the hardenability of HAZ becomes too high and the area ratio of the ferrite structure decreases, so the upper limit was made 0.10%.
[0034]
Nb is an element that has an effect on increasing the strength of the base material. Further, when the TMCP process is applied during the production of the steel sheet, it is necessary to add 0.005% or more in order to suppress recrystallization during rolling. However, when Nb is contained in a large amount, the toughness of the welded portion is lowered. Therefore, the upper limit value of Nb is set to 0.08%.
Ca has an effect of fixing sulfides that are sources of fatigue cracks and improving ductility. If the added amount is 0.0005% or less, the effect cannot be expected, and if it exceeds 0.010%, the toughness is lowered. Therefore, the lower limit is set to 0.0005% and the upper limit is set to 0.010%.
[0035]
REM has the same effect as Ca in that it fixes sulfides that are sources of fatigue cracks and improves ductility. In HAZ, REM (O, S) serves as a nucleus for intragranular transformation, and has an effect of promoting the formation of a ferrite structure. It is preferable to finely disperse REM (O, S) having a particle diameter of 0.1 to 3.0 μm and a particle number of 10 to 100 particles / mm 2 . As long as REM is a rare earth element, any element is considered to have the same effect, but among these, La and Ce are particularly representative. In order to exhibit the effect of REM addition, it is necessary to add 0.0050% or more in total, and even if 0.050% or more is added, the effect is saturated and is not economical. Therefore, the lower limit is set to 0.0050% and the upper limit is set to 0.050%.
[0036]
Furthermore, the reason which limited the carbon equivalent of the steel plate used for a welded joint is described.
When the cooling rate during welding is the same, the relationship between the HAZ structure and the components of the steel sheet can be expressed by using the carbon equivalent formula proposed by IIW. The formula for the carbon equivalent (Ceq) of IIW is given by Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + Nb / 3. When the carbon equivalent exceeds 0.275 as in a conventional steel material, the HAZ structure becomes a bainite structure or a martensite structure, so that it is difficult to obtain a ferrite structure. Therefore, in order to increase the area ratio of the HAZ ferrite structure, it is first necessary to set the carbon equivalent to 0.275 or less.
[0037]
In order to obtain a higher fatigue strength by increasing the area ratio of the HAZ ferrite structure, the carbon equivalent is preferably 0.25 or less. On the other hand, when the carbon equivalent is less than 0.10, sufficient base material strength cannot be obtained, and therefore, 0.10 or more is preferable. Based on the above technical idea, the present invention improves the fatigue strength of the welded joint by increasing the area ratio of the ferrite structure in the HAZ of the welded joint. Here, as the steel plate used in the welded joint, it is desirable to use the steel plate specified above for any steel plate to be joined, but due to the shape of the welded joint, stress load conditions, etc., the site where fatigue damage is a problem If it is clear in advance, the steel plate specified above may be applied only to the side that is subject to fatigue damage.
[0038]
Furthermore, the present invention is particularly effective for a welded joint such as a T-shaped fillet welded joint, in which crack opening and closing behavior is likely to occur due to compressive residual stress, but a cross fillet welded joint, a turned fillet welded joint, Even in a welded joint such as a butt welded joint, fatigue strength can be improved when crack closure occurs.
On the other hand, the present invention is particularly effective when performing gas shielded arc welding such as arc welding (MIG) using an inert gas, arc welding (MAG) using a mixed gas, and tungsten arc welding (TIG). Although there are welding methods such as covered arc welding (SMAW) and submerged arc welding (SAW), and welding heat input, welding using high heat input welding of about 1 to 5 kJ / mm, which is usually performed Even in joints, fatigue strength can be improved when crack closure occurs.
[0039]
【Example】
Examples of the present invention will be described below.
A fatigue test was conducted for the purpose of investigating the relationship between the area ratio of the ferrite structure in the HAZ of the welded joint and the fatigue strength. A total of 19 steel types were melted using a 50 kg vacuum melting furnace. Since the carbon equivalent is low and there is a concern about insufficient strength of the base material, the molten slab was rolled by controlled rolling and controlled cooling. That is, after heating at 1100 ° C. for 60 minutes, rough rolling is performed to a sheet thickness three times the finished sheet thickness, and after waiting for a temperature of not less than the Ar 3 point to the non-recrystallization temperature, finish rolling to a sheet thickness of 6 to 30 mm Immediately after the completion of rolling, it was controlled to 500 ° C. and then cooled to room temperature. Furthermore, a tensile test piece was collected, and the yield stress, tensile strength, and total elongation of the base material were measured.
[0040]
Table 1 shows the chemical composition, carbon equivalent, and mechanical properties of the manufactured steel.
Using these steels, a total of three types of welded joints were prepared: T-shaped fillet, cross fillet and turned fillet. The rib plate used for welding was the same steel plate as the base material, and welding was performed in one pass each. The welding method is MAG welding using CO 2 gas, and any of a coated arc welding rod, a solid wire, and a flux-cored wire can be used as a welding material. Here, a flux-cored wire for 50 kg steel is used. After welding, the microstructure observation test piece of the welded part was cut out, and the ferrite structure and area ratio of the HAZ were determined by a point counting method.
Fatigue tests are conducted in air and at room temperature. For T-shaped fillet welded joints, the stress ratio is 0.1 by three-point bending, and for cross fillet and turned fillet welded joints, the axial force is 0. Carried out.
[0041]
[Table 1]
[0042]
Table 2 shows the steel plate symbols used, the plate thickness, the area ratio of the ferrite structure in the HAZ, the total area ratio of the bainite, martensite, pearlite, and retained austenite structures, the shape of the welded joint, and the fatigue strength.
The joint 1 is an invention example in which the ferrite structure area ratio of HAZ is 20% or more. The joints 2 to 4 are invention examples in which the HAZ ferrite structure area ratio is 20% or more and the carbon equivalent is 0.275 or less. When the carbon equivalent is lowered, the ferrite structure area ratio is increased and the fatigue strength of the welded joint is also improved. However, the joints 15 and 16 are comparative examples in which the HAZ ferrite structure area ratio is low and the carbon equivalent is larger than the claimed range, and the fatigue strength of the welded joints is lower than that of the inventive examples 1 to 4.
[0043]
Joints 5 to 14 are invention examples in which one or more of Cu, Ni, Cr, Mo, V, Nb, Ca, and REM are added in addition to the basic components, all maintaining high fatigue strength. 5-10 have improved base material strength. On the other hand, although the joints 17 and 18 are added with these elements, the fatigue strength of the welded joint is not improved in the comparative example in which the HAZ ferrite structure area ratio is low and the carbon equivalent is larger than the claimed range.
Even in the joints 19 to 21 in which the cross fillet welding is performed and the joints 22 to 24 in which the rotating fillet welding is performed, the fatigue strength of the welded joint is improved when the HAZ ferrite area ratio is high. Therefore, a welded joint satisfying the conditions of the present invention (indicated as an example of the present invention in the table) has a ferrite structure area ratio of HAZ of 20% or more, and achieves excellent fatigue strength while being welded in any welded joint. You can see that
[0044]
[Table 2]
[0045]
【The invention's effect】
As described above in detail, according to the present invention, the area of the ferrite structure capable of slowing the propagation rate of fatigue cracks with respect to the HAZ of welded joints used in ships, offshore structures, bridges, construction machines, etc. In order to increase the rate or to achieve this, it is possible to improve the fatigue strength of the welded joint by limiting the chemical composition and carbon equivalent of the steel sheet. It has become possible to significantly improve the reliability of structural structures against fatigue failure. The significance of the welded joint of the present invention having such an effect is extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a diagram showing changes in crack opening displacement and load in HAZ bainitic steel (A) and HAZ ferritic steel (B).
FIG. 2 is a diagram showing the relationship between the HAZ ferrite structure area ratio of a welded joint and the 2 million times fatigue strength of a T-shaped joint.
Claims (3)
C :0.015〜0.15%、
Si:0.06〜2.0%、
Mn:0.2〜1.5%、
P :0.05%以下、
S :0.05%以下、
Al:0.001〜0.08%、
N:0.003〜0.015%
を含有し、残部が鉄および不可避的不純物元素よりなり、かつ炭素当量(Ceq)が、Ceq:0.275以下である鋼板を用いて作成した溶接継手であって、該溶接継手の溶接熱影響部におけるフェライト組織の面積率が、20〜100%で、残部がベイナイト組織、マルテンサイト組織、パーライト組織および残留オーステナイト組織の1種または2種以上からなることを特徴とする疲労強度が優れた溶接継手。
ここで、炭素当量(Ceq)は、Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+Nb/3とする。 In mass%
C: 0.015-0.15%,
Si: 0.06 to 2.0%,
Mn: 0.2 to 1.5%
P: 0.05% or less,
S: 0.05% or less ,
Al: 0.001 to 0.08%,
N: 0.003 to 0.015%
, The balance is made of steel and an unavoidable impurity element, and the carbon equivalent (Ceq) is Ceq: 0.275 or less. Welding with excellent fatigue strength, characterized in that the area ratio of the ferrite structure in the part is 20 to 100%, and the balance consists of one or more of a bainite structure, a martensite structure, a pearlite structure and a retained austenite structure Fittings.
Here, the carbon equivalent (Ceq) is Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + Nb / 3.
Cu:0.1〜2.0%、
Ni:0.1〜2.0%、
Cr:0.05〜1.0%、
Mo:0.02〜1.0%、
V :0.005〜0.10%、
Nb:0.005〜0.08%
の1種または2種以上を含有することを特徴とする請求項1に記載の疲労強度が優れた溶接継手。 The steel sheet is further in mass% ,
Cu: 0.1 to 2.0%,
Ni: 0.1 to 2.0%,
Cr: 0.05 to 1.0%,
Mo: 0.02 to 1.0%,
V: 0.005-0.10%,
Nb: 0.005 to 0.08%
The weld joint having excellent fatigue strength according to claim 1, comprising one or more of the following .
Ca:0.0005〜0.010%、
REM:0.0050〜0.050%
の1種または2種を含有することを特徴とする請求項1または2に記載の疲労強度が優れた溶接継手。 The steel sheet is further in mass%,
Ca: 0.0005 to 0.010%,
REM: 0.0050 to 0.050%
The weld joint having excellent fatigue strength according to claim 1, wherein one or two of these are contained.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05501696A JP3822665B2 (en) | 1996-03-12 | 1996-03-12 | Welded joint with excellent fatigue strength |
US08/930,295 US5964964A (en) | 1996-02-13 | 1996-08-16 | Welded joint of high fatigue strength |
PCT/JP1996/002308 WO1997030184A1 (en) | 1996-02-13 | 1996-08-16 | Welded joint of high fatigue strength |
CN96193272A CN1078910C (en) | 1996-02-13 | 1996-08-16 | Welded joint of high fatigue strength |
KR1019970706998A KR19980703593A (en) | 1996-02-13 | 1996-08-16 | Welding coefficient with excellent fatigue strength |
MX9707729A MX9707729A (en) | 1996-02-13 | 1996-08-16 | Welded joint of high fatigue strength. |
MYPI96003600A MY115840A (en) | 1996-02-13 | 1996-08-29 | Welded joint having excellent fatigue strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05501696A JP3822665B2 (en) | 1996-03-12 | 1996-03-12 | Welded joint with excellent fatigue strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09241796A JPH09241796A (en) | 1997-09-16 |
JP3822665B2 true JP3822665B2 (en) | 2006-09-20 |
Family
ID=12986874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05501696A Expired - Fee Related JP3822665B2 (en) | 1996-02-13 | 1996-03-12 | Welded joint with excellent fatigue strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3822665B2 (en) |
-
1996
- 1996-03-12 JP JP05501696A patent/JP3822665B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09241796A (en) | 1997-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2427663C2 (en) | High strength thick wall welded steel pipe for pipeline possessing excellent low temperature ductility and procedure for its fabrication | |
JP4811166B2 (en) | Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa | |
KR100506967B1 (en) | High-tensile-strength steel and method of manufacturing the same | |
RU2427662C2 (en) | High strength welded steel pipe for pipeline possessing excellent low temperature ductility and procedure for its fabrication | |
JP5061483B2 (en) | Manufacturing method of ultra high strength welded steel pipe | |
JP5217556B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
JP4977876B2 (en) | Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness | |
JP5509923B2 (en) | Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding | |
JP2013204103A (en) | High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance | |
KR102662624B1 (en) | Hot rolled steel sheets and welded joints, and their manufacturing methods | |
KR20210107821A (en) | High-strength steel sheet and its manufacturing method | |
WO2007105752A1 (en) | Steel sheet for submerged arc welding | |
WO1997030184A1 (en) | Welded joint of high fatigue strength | |
JP4585483B2 (en) | High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate | |
JPH06220577A (en) | High tensile strength steel excellent in hic resistance and its production | |
JP3770106B2 (en) | High strength steel and its manufacturing method | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
JP2000178688A (en) | Resistance welded tube for hollow stabilizer, excellent in fatigue endurance | |
JP3303647B2 (en) | Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance | |
KR20180116176A (en) | Thick steel plate | |
JP3795949B2 (en) | Welded joint with excellent fatigue strength | |
JP2002047531A (en) | High tensile strength steel for welded structure having excellent fatigue characteristic and its production method | |
JP3487262B2 (en) | High strength thick steel plate excellent in CTOD characteristics and method for producing the same | |
JPH0873983A (en) | Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060623 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090630 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |