JP3821031B2 - Desiccant air conditioning system - Google Patents

Desiccant air conditioning system Download PDF

Info

Publication number
JP3821031B2
JP3821031B2 JP2002077457A JP2002077457A JP3821031B2 JP 3821031 B2 JP3821031 B2 JP 3821031B2 JP 2002077457 A JP2002077457 A JP 2002077457A JP 2002077457 A JP2002077457 A JP 2002077457A JP 3821031 B2 JP3821031 B2 JP 3821031B2
Authority
JP
Japan
Prior art keywords
air
passage
fan
heating
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002077457A
Other languages
Japanese (ja)
Other versions
JP2003279069A (en
Inventor
正昭 伊藤
敏彦 福島
忠克 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002077457A priority Critical patent/JP3821031B2/en
Publication of JP2003279069A publication Critical patent/JP2003279069A/en
Application granted granted Critical
Publication of JP3821031B2 publication Critical patent/JP3821031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、室内の冷房除湿運転あるいは暖房加湿運転を高効率に行うデシカント空調システムに関する。
【0002】
【従来の技術】
従来、圧縮式空調機では、省エネを達成するために、蒸発温度が上がり、十分な除湿ができず、換気も十分にはできなかった。そこで、室内空気を加湿器へ送り水を蒸発させてより低温空気にしてから顕熱熱交換器に入れ、その後、加熱してゆっくり回転する除湿ロータの水分を蒸発させて外部に排気し、一方、外気を除湿ロータへ送り込んで除湿し、その吸着熱による温度上昇を顕熱熱交換器で加湿器から顕熱熱交換器に入れられた室内空気と熱交換して室内に給気するデシカント空調システムが知られ、例えば、特開平5−301014号公報に記載されている。
【0003】
【発明が解決しようとする課題】
上記従来技術においては、外気から給気される空気の温度と室温の差が2℃程度しか取れなく、十分な冷房能力が得られなかった。また、給気の出口に蒸発冷却器を設けて温度を下げたり、除湿によって温度の上がった乾燥空気を一旦外気によって冷却したりするなどの方法があるが、いずれも装置が複雑、大型化し、コストが高くなることは避けられなかった。
【0004】
本発明の目的は、上記従来技術の課題を解決し、十分な除湿能力を持った省エネ効果の高い、デシカント空調システムを提供することにある。また、換気風量を必要最小限に抑え、低騒音とすることにある。さらに、換気、冷房、除湿のみならず、暖房、加湿を可能とし、快適な環境を創り出すことにある。さらに、所定の室内温度、湿度を容易に実現することにある。
なお、本発明は、上記目的の少なくとも一つを解決することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため本発明は、室内に第1通路と第2通路とが接続され、前記第1通路は室内側から熱交換器、加熱手段、除湿ロータ、第1ファンの順に、前記第2通路は熱交換器、除湿ロータ、第2ファンの順に配置され、前記室内の空気を排気及び外気を室内へ給気することにより室内が冷房除湿、あるいは暖房加湿されるデシカント空調システムにおいて、前記第1通路の熱交換器、膨脹弁、前記第2通路の熱交換器、圧縮機を順次配管接続して冷凍サイクルを構成した圧縮機式空調機を備え、
冷房除湿運転する場合、前記第1通路で室内空気が排気、前記第2通路で外気が給気され、前記第1通路の熱交換器が凝縮器となるように、前記第2通路の熱交換器が蒸発器となるように前記圧縮式空調機が運転され、暖房加湿運転する場合、冷房運転から暖房運転に切り替えるために、前記第1ファンと前記第2ファンの回転方向を逆にし、冷房時排気となる前記第1ファンを暖房時給気ファンとし、冷房時給気となる前記第2ファンを暖房時排気ファンとして用いるものである。
【0006】
さらに、加熱手段は固体高分子型燃料電池の排熱を利用したことことが望ましい。
さらに、加熱手段はマイクロタービンの排熱を利用したことが望ましい。
【0007】
さらに、冷房除湿運転をする場合、換気量、目標温度、目標湿度を設定し、除湿ロータの回転数は除湿ロータ出口の絶対湿度が目標湿度に等しくなるように決定し、除湿ロータ出口の温度が目標温度より高ければ圧縮式空調機を運転することが望ましい。
さらに、暖房加湿運転をする場合、第2ファンが排気方向に、第1ファンが給気方向に回転され、除湿ロータは停止させ、外気が除湿ロータを通過してから加熱手段で加熱し、さらに凝縮器とされた第1通路の熱交換器に水を振り掛けて加湿し、その温度が目標温度より低ければ、圧縮式空調機を運転することが望ましい。
さらに、上記のものにおいて、加湿された外気が目標温度より高ければ、圧縮式空調機は停止させて加熱手段の加熱量を制御することが望ましい。
【0010】
【発明の実施の形態】
以下、図を参照して本発明による一実施の形態を説明する。
図1に本発明デシカント空調システムのシステム全体図を示し、1は、空調を必要とする空間(室内)で、この空間に第1通路11と第2通路12とが接続されている。第1通路11には、凝縮器19、加熱手段15、除湿ロータ16の再生部分、第1ファン17が組み込まれている。第2通路12には第2ファン18、除湿ロータ16の除湿部分、蒸発器20が組み込まれている。除湿ロータ16は、円筒状で内部にシリカゲル、活性炭などの吸着剤が充填され、一方が第1通路11へ他方が第2通路12に置かれ、ゆっくり回転される。
【0011】
凝縮器19、膨脹弁22、蒸発器20、圧縮機21は順次配管接続され、冷凍サイクルを構成し、圧縮式空調機となっている。圧縮機21は第1通路11及び第2通路12の外部に設けられ、配管で各通路11、12の内部へ通じている。
【0012】
蒸発器20の前後には温度および湿度センサー31、32が設置され、圧縮式空調機の運転をするための信号を出すようになっている。加熱手段15には、固体高分子型燃料電池を冷却した温水が送られてきて、除湿ロータ16の吸着剤中の水分を除去して再生させるための熱源を供給している。
【0013】
図中の点線内は固体高分子型燃料電池の系統を示し、61が水素極、63が酸素極である。水素極61と酸素極63は、電解質膜62を挟むように配置されている。水素極61から酸素極63に向かって、電解質膜63の中を水素陽子が移動するので、外部回路に電子が流れ、発電する。固体高分子型燃料電池は発熱するので、冷却器64を設け、効率の良い80℃に保っている。冷却器64の中には水が流れ、燃料電池で発生した熱を冷却水で除去する。また、冷却水は、配管65を通って排気ガスの加熱手段15に導かれる。この加熱により、排気ガス温度を80℃近辺まで上げることができ、除湿装置16の吸着材の中に吸着した水分を追い出すことができ、その結果吸着材を再生することができる。
【0014】
図2は、図1の固体高分子型燃料電池による加熱手段15から、マイクロタービンに変えた場合のシステム全体図である。点線内がマイクロタービンの系統図であり、マイクロタービンの吸入空気56は、圧縮機51で圧縮され、再生熱交換器55で予熱され、燃焼器52でさらに高温にされてタービン53に入る。タービン53を回すことにより、発電機54を回転させ、発電する。タービン53を出た排気ガスは、700℃近い温度であり、再生熱交換器55に入れて燃焼器入口空気を予熱する。再生熱交換器55を出た排ガスは、200℃くらいの温度を保ち、除湿ロータ16の吸着材を再生する。
【0015】
図3は図1の一部を拡大したもので、冷房除湿運転の詳細を示し、第1通路11は排気通路とされ、室内の空気が20℃、50%で凝縮器19に入る。凝縮器19で加熱された排気空気は、加熱手段15によってさらに80℃まで加熱され、除湿ロータ16に入る。除湿ロータ16では、シリカゲルなどの吸着剤中の水分を除去して吸着剤を再生させる。その後、室外に排気される。
【0016】
第2通路12は給気とされ、外気の温度、湿度が33℃、60%であるとすると、除湿ロータ16で水蒸気が吸着され乾燥空気となるが、吸着熱で加熱されるので、除湿ロータ16出口では60℃、6%の空気となる。これを蒸発器20によって冷却するが空気中の水分量は変わらないので、20℃まで冷却すると湿度は70%となる。この時に必要な圧縮式空調機の冷房能力は、風量を3m/minと仮定すると、2.5kW程度となり、出力1HPクラスのエアコンの冷房能力で充分満たされる値である。3m/minの換気量は、8畳間の全室内空気を1時間で4回換気できる量であり、普通の居間では十分な換気量であり、従来のものに比べ換気風量を必要最小限に抑え、省エネ、騒音低減となっている。
【0017】
給気空気の設定温度、湿度を変える場合には、その設定値を実現するのに最も省エネとなる除湿ロータと圧縮式空調機の運転組み合わせがあり、それをあらかじめプログラムで予測計算し、それに基づいて運転制御すれば、省エネ、低騒音、快適な空調を小型、コンパクトで実現できる。
【0018】
図4は、同様に暖房加湿運転時の空気の温度、湿度変化を示し、第1通路11と第2通路12を冷房運転時と切り替えるために、第1ファン17と第2ファン18の回転方向を逆にし、冷房時排気となる第1ファン17を暖房時給気ファンとし、冷房時給気となる第2ファン18を暖房時排気ファンとして用いる。これにより、加熱手段15の位置の変更や、圧縮式空調機の冷暖房切り変えが不要になり、装置の単純化を図ることができる。また、図は暖房加湿運転時の空気温度、湿度の変化を示している。
【0019】
第1通路11では、0℃、30%の外気が導入され、除湿ロータ16は停止しており、加熱手段15で温度を60℃まで加熱すると、絶対湿度は変わらなくても相対湿度は2%に低下する。そこで凝縮器19にスプレーで水を振り掛け、水の蒸発潜熱によって空気温度は50℃に低下するが、相対湿度は20%まで上昇する。この時、圧縮式空調機は停止しており、凝縮器は単なる加湿器として機能している。一方、第2通路12では、25℃、40%の室内空気をそのまま排気として捨てている。このようにすると、除湿ロータも圧縮式空調機も使わずに、燃料電池あるいはマイクロタービンなどの排熱を利用した加熱手段のみで、新鮮な外気を導入でき、省エネとなる。また、排熱が十分に得られない場合は、圧縮式空調機を運転し、暖房能力を補えば良い。
【0020】
暖房加湿時にも、外気条件から給気の設定温度、湿度を達成する最も省エネとなる運転方法を予測計算で見つけ、それを実現するプログラムを組み込んでおくと、省エネ、低騒音、快適な空調が小型、コンパクトに実現できる。
【0021】
図5は、冷房除湿運転時の運転制御の一例であり、換気量が小さいほど省エネと低騒音が可能であるので、最初に必要換気量を設定し、さらに、目標温度T0、目標湿度x0を設定する。外気の温度、湿度をT3、x3とする(図3では、33℃、60%)。除湿ロータ16出口、すなわち蒸発器20入口の給気側空気の温度、湿度をT2、x2とする(図3では60℃、6%)。
【0022】
除湿ロータ出口の絶対湿度x2が目標湿度x0に等しくなるように、除湿ロータ16の回転数を決め、その値となるように回転数を調節する。この時の温度T2は測定によって求め、T2がT0より高ければ、圧縮式空調機を冷房運転して、蒸発器20出口温度T1を目標値T0に近づける。
【0023】
除湿量が小さければ、除湿ロータ16出口の温度T2はあまり高温にならないので、圧縮機21の冷房運転負荷は小さくなり、省エネとなる。したがって、図5に示したような運転制御を行えば、必要以上に除湿しないので省エネ化を図ることができ、目標とする温度、湿度を達成することができる。
【0024】
暖房運転時の運転制御も冷房運転時と同様であり、図6に示し、先ず必要換気量を最小限に抑えるように設定し、目標温度T0、湿度x0を設定する。暖房時には、除湿する必要はないので、除湿ロータは停止させておく。外気温度T3、湿度x3はそのままの状態で除湿ロータを通過し、排熱による加熱手段15により温度がT2(60℃程度)まで加熱される。この時の湿度x2はx3と等しい。x2は目標湿度x0より小さいことが多いので、圧縮式空調機の凝縮器19に水を振り掛けて加湿する。加湿すると水の蒸発潜熱によって、凝縮器出口温度はT1まで低下する。T1は、蒸発潜熱、温度などより計算して予測する。T1が設定温度T0より低ければ、圧縮式空調機を暖房運転して加熱する。T1が設定温度T0より高ければ、圧縮式空調機は停止させたまま、加熱手段15の加熱量を低く抑えるように制御する。このようにして暖房運転、加熱量を制御することで余分な負荷を要せず省エネ運転とすることができる。
【0025】
図7は、加熱手段15の詳細を示し、固体高分子型燃料電池(PEFC)の冷却水を加熱手段として用いている。PEFC本体では、水素極61の水素と酸素極63の酸素が、電解質膜62を介して反応し、水を作ると同時に発電する。発電効率は40%程度であるから、残りの60%は熱となる。これを冷却し、PEFC本体を約80℃に保つため冷却水を冷却器64と加熱手段15の間を冷却水配管65の中を循環させる。冷却水の温度は80℃以下であり、このような低温排熱は、今まで給湯や暖房の他にあまり使い道がなかったが、デシカント空調システムとして、この排熱を暖房、加湿だけでなく、冷房、除湿に利用する。
【0026】
PEFC本体の冷却水と第1通路(冷房加湿運転時:排気)内の空気67との熱交換器としては、図に示すような自動車用コンデンサに多く使われているパラレルフロー型熱交換器66が好適である。排気が通過するフィンはアルミのコルゲートフィンであり、冷却水が流れる通路は小さな矩形流路が平行に並んだアルミチューブから構成されている。パラレルフロー型熱交換器66の代わりにプレートフィン型熱交換器で、水側の通路を小さくしても良い。
【0027】
図8は、加熱手段15をマイクロタービンの排ガスを用いた場合を示し、マイクロタービンの吸入空気56は、圧縮機51で圧縮され、再生熱交換器55で予熱され、燃焼器52でさらに高温にされてタービン53に入る。そして、タービンを回すことにより、発電機54を回転させ、発電する。タービンを出た排気ガスは、700℃近い温度があるので、再生熱交換器55に入れて燃焼器入口空気を予熱する。再生熱交換器55を出た排ガスは、200℃くらいの温度を保っているので、除湿ロータ16の吸着材を十分に再生することができる。マイクロタービンの場合には再生熱交換器55の出口排ガスを加熱手段15に導入しているので、57は排ガス通路となる。マイクロタービンの排ガスはクリーンなので、直接排気ダクトに導入することも可能であるが、暖房時には室内に給気するので、間接的に加熱することが望ましい。ガス−ガス熱交換器としては、図に示すような直交流プレートフィン型熱交換器58を用いる。59は、デシカント空調システムの排気あるいは給気である。マイクロタービンの排ガス温度は、再生熱交換器の出口でも200℃程度あるので、さらに吸収式冷凍機、温水ボイラー、給湯などに利用し、80℃近辺まで下がった排ガスを使用する。
【0028】
【発明の効果】
以上述べたように本発明によれば、デシカント空調システムにおいて、圧縮式空調機の蒸発器、凝縮器を排気または給気通路に組み込んだので、十分な除湿能力を持ち、換気、冷房、除湿のみならず、暖房、加湿を可能とし、所定の室内温度、湿度を容易に実現することができる。
【図面の簡単な説明】
【図1】 一実施の形態によるデシカント空調システムの全体を示すブロック図。
【図2】 他の実施の形態によるデシカント空調システムの全体を示すブロック図。
【図3】 一実施の形態によるデシカント空調システムの冷房除湿時の動作説明図。
【図4】 一実施の形態によるデシカント空調システムの暖房加湿時の動作説明図。
【図5】 一実施の形態によるデシカント空調システムの冷房除湿時の運転制御を示すフローチャート。
【図6】 一実施の形態によるデシカント空調システムの暖房加湿時の運転制御を示すフローチャート。
【図7】 一実施の形態による加熱手段のブロック図。
【図8】 他の実施の形態による加熱手段のブロック図。
【図9】 従来のデシカント空調装置を示す動作説明。
【符号の説明】
1…空調を必要とする空間、11…第1排気通路(冷房加湿運転時:排気)、12…第2給気通路(冷房加湿運転時:給気)、15…加熱手段、16…除湿ロータ、17…第1排気ファン(冷房加湿運転時:排気)、18…第2ファン(冷房加湿運転時:給気)、19…凝縮器、20…蒸発器、21…圧縮機、22…膨張弁、61…水素極、62…電解質膜、63…酸素極、64…冷却器、65…冷却水配管、66…パラレルフロー型熱交換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desiccant air-conditioning system that performs indoor cooling / dehumidifying operation or heating / humidifying operation with high efficiency.
[0002]
[Prior art]
Conventionally, in a compression type air conditioner, in order to achieve energy saving, the evaporating temperature is increased, sufficient dehumidification cannot be performed, and ventilation cannot be sufficiently performed. Therefore, the indoor air is sent to the humidifier to evaporate the water to make it cooler, and then put into the sensible heat exchanger. After that, the moisture of the dehumidifying rotor that rotates slowly by heating is evaporated and exhausted outside. The desiccant air conditioner supplies air to the room by sending heat to the dehumidification rotor and dehumidifying it, and exchanging the temperature rise due to the heat of adsorption with the indoor air from the humidifier to the sensible heat exchanger. A system is known, and is described, for example, in JP-A-5-301014.
[0003]
[Problems to be solved by the invention]
In the above prior art, the difference between the temperature of the air supplied from the outside air and the room temperature is only about 2 ° C., and sufficient cooling capacity cannot be obtained. In addition, there are methods such as evaporative coolers installed at the outlet of the supply air to lower the temperature, and dry air whose temperature has been raised by dehumidification is once cooled by the outside air. High costs were inevitable.
[0004]
An object of the present invention is to provide a desiccant air-conditioning system that solves the above-described problems of the prior art and has a high energy-saving effect with sufficient dehumidifying ability. In addition, the ventilation air volume is minimized and the noise is reduced. In addition to ventilation, cooling, and dehumidification, heating and humidification are possible to create a comfortable environment. Furthermore, it is to easily realize a predetermined room temperature and humidity.
The present invention is to solve at least one of the above objects.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a first passage and a second passage are connected indoors, and the first passage starts from the indoor side in the order of a heat exchanger, a heating means, a dehumidifying rotor, and a first fan. In the desiccant air conditioning system in which the two passages are arranged in the order of a heat exchanger, a dehumidification rotor, and a second fan, and the room is cooled and dehumidified or heated and humidified by exhausting the indoor air and supplying outside air into the room. A heat exchanger of the first passage, an expansion valve, a heat exchanger of the second passage, and a compressor type air conditioner configured to form a refrigeration cycle by sequentially connecting the compressor,
When performing the cooling and dehumidifying operation, heat is exchanged in the second passage so that indoor air is exhausted in the first passage, outside air is supplied in the second passage, and a heat exchanger in the first passage becomes a condenser. When the compression air conditioner is operated so that the evaporator becomes an evaporator and heating / humidifying operation is performed, in order to switch from cooling operation to heating operation, the rotation directions of the first fan and the second fan are reversed, The first fan that is used for exhausting air is used as an air supply fan for heating, and the second fan that is used for supplying air during cooling is used as an exhaust fan for heating .
[0006]
Further, it is desirable that the heating means utilize the exhaust heat of the polymer electrolyte fuel cell.
Furthermore, it is desirable that the heating means utilize the exhaust heat of the micro turbine.
[0007]
Furthermore, when performing cooling and dehumidifying operation, the ventilation volume, target temperature, and target humidity are set, and the rotation speed of the dehumidifying rotor is determined so that the absolute humidity at the outlet of the dehumidifying rotor is equal to the target humidity. If it is higher than the target temperature, it is desirable to operate the compression type air conditioner.
Further, when performing the heating / humidifying operation, the second fan is rotated in the exhaust direction, the first fan is rotated in the air supply direction, the dehumidification rotor is stopped, the outside air is heated by the heating means after passing through the dehumidification rotor, It is desirable to operate the compression type air conditioner if water is sprinkled on the heat exchanger of the first passage which is a condenser to humidify it, and the temperature is lower than the target temperature.
Furthermore, in the above, it is desirable to stop the compression air conditioner and control the heating amount of the heating means if the humidified outside air is higher than the target temperature.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 shows an overall system view of the desiccant air conditioning system of the present invention. Reference numeral 1 denotes a space (indoor) that requires air conditioning, and a first passage 11 and a second passage 12 are connected to this space. In the first passage 11, a condenser 19, a heating unit 15, a regeneration portion of the dehumidifying rotor 16, and a first fan 17 are incorporated. In the second passage 12, a second fan 18, a dehumidifying portion of the dehumidifying rotor 16, and an evaporator 20 are incorporated. The dehumidifying rotor 16 has a cylindrical shape and is filled with an adsorbent such as silica gel and activated carbon. One is placed in the first passage 11 and the other is placed in the second passage 12 and is rotated slowly.
[0011]
The condenser 19, the expansion valve 22, the evaporator 20, and the compressor 21 are sequentially connected by pipes to constitute a refrigeration cycle, which is a compression type air conditioner. The compressor 21 is provided outside the first passage 11 and the second passage 12, and communicates with the inside of each passage 11, 12 by piping.
[0012]
Temperature and humidity sensors 31 and 32 are installed before and after the evaporator 20 to output a signal for operating the compression air conditioner. Warm water that has cooled the polymer electrolyte fuel cell is sent to the heating means 15, and a heat source for removing water in the adsorbent of the dehumidifying rotor 16 and regenerating it is supplied.
[0013]
The dotted line in the figure indicates a solid polymer fuel cell system, in which 61 is a hydrogen electrode and 63 is an oxygen electrode. The hydrogen electrode 61 and the oxygen electrode 63 are arranged so as to sandwich the electrolyte membrane 62. Since hydrogen protons move in the electrolyte membrane 63 from the hydrogen electrode 61 toward the oxygen electrode 63, electrons flow to the external circuit and generate electricity. Since the polymer electrolyte fuel cell generates heat, a cooler 64 is provided and kept at an efficient 80 ° C. Water flows into the cooler 64, and heat generated in the fuel cell is removed by the cooling water. The cooling water is guided to the exhaust gas heating means 15 through the pipe 65. By this heating, the exhaust gas temperature can be raised to around 80 ° C., moisture adsorbed in the adsorbent of the dehumidifying device 16 can be driven out, and as a result, the adsorbent can be regenerated.
[0014]
FIG. 2 is an overall view of the system when the heating means 15 by the polymer electrolyte fuel cell of FIG. 1 is changed to a micro turbine. The inside of the dotted line is a system diagram of the micro turbine. The intake air 56 of the micro turbine is compressed by the compressor 51, preheated by the regenerative heat exchanger 55, further increased in temperature by the combustor 52, and enters the turbine 53. By rotating the turbine 53, the generator 54 is rotated to generate power. The exhaust gas exiting the turbine 53 has a temperature close to 700 ° C., and enters the regenerative heat exchanger 55 to preheat the combustor inlet air. The exhaust gas exiting the regeneration heat exchanger 55 maintains a temperature of about 200 ° C. and regenerates the adsorbent of the dehumidifying rotor 16.
[0015]
FIG. 3 is an enlarged view of a part of FIG. 1 and shows details of the cooling and dehumidifying operation. The first passage 11 is an exhaust passage, and the indoor air enters the condenser 19 at 20 ° C. and 50%. The exhaust air heated by the condenser 19 is further heated to 80 ° C. by the heating means 15 and enters the dehumidifying rotor 16. In the dehumidifying rotor 16, moisture in the adsorbent such as silica gel is removed to regenerate the adsorbent. After that, it is exhausted to the outside.
[0016]
If the second passage 12 is supplied with air and the temperature and humidity of the outside air are 33 ° C. and 60%, water vapor is adsorbed by the dehumidification rotor 16 to become dry air, but is heated by adsorption heat. At 16 outlets, the air is 60 ° C. and 6% air. Although this is cooled by the evaporator 20, the amount of moisture in the air does not change, so when it is cooled to 20 ° C., the humidity becomes 70%. The cooling capacity of the compression air conditioner required at this time is about 2.5 kW assuming that the air volume is 3 m 3 / min, which is a value that is sufficiently satisfied by the cooling capacity of the air conditioner of the output 1 HP class. The ventilation volume of 3m 3 / min is the volume that can ventilate the whole room air between 8 tatami mats 4 times in 1 hour, and the ventilation volume is sufficient in a normal living room, and the ventilation air volume is the minimum necessary compared to the conventional one Energy saving and noise reduction.
[0017]
When changing the set temperature and humidity of the supply air, there are operating combinations of the dehumidification rotor and the compression air conditioner that are the most energy-saving to realize the set values. By controlling the operation, energy saving, low noise, and comfortable air conditioning can be realized in a compact and compact manner.
[0018]
FIG. 4 shows the air temperature and humidity changes during the heating / humidification operation in the same manner, and the rotation directions of the first fan 17 and the second fan 18 in order to switch the first passage 11 and the second passage 12 to the cooling operation. On the other hand, the first fan 17 serving as the exhaust during cooling is used as a heating air supply fan, and the second fan 18 serving as the cooling air supply is used as a heating exhaust fan. As a result, it is not necessary to change the position of the heating means 15 or to change the heating / cooling of the compression type air conditioner, thereby simplifying the apparatus. Moreover, the figure has shown the change of the air temperature and humidity at the time of heating humidification operation.
[0019]
In the first passage 11, 0 ° C., 30% outside air is introduced, the dehumidification rotor 16 is stopped, and when the heating means 15 heats the temperature to 60 ° C., the relative humidity is 2% even if the absolute humidity does not change. To drop. Therefore, water is sprinkled on the condenser 19 by spraying, and the air temperature decreases to 50 ° C. due to the latent heat of evaporation of water, but the relative humidity increases to 20%. At this time, the compression type air conditioner is stopped, and the condenser functions as a simple humidifier. On the other hand, in the second passage 12, the room air at 25 ° C. and 40% is discarded as it is. If it does in this way, fresh outside air can be introduced only by the heating means using exhaust heat, such as a fuel cell or a micro turbine, without using a dehumidification rotor and a compression air conditioner, and it becomes energy saving. If sufficient exhaust heat is not obtained, the compression air conditioner may be operated to supplement the heating capacity.
[0020]
Even when heating and humidifying, finding the most energy-saving operation method that achieves the set temperature and humidity of the supply air from the outside air conditions by predictive calculation, and incorporating a program to realize it, energy saving, low noise, comfortable air conditioning Small and compact.
[0021]
FIG. 5 shows an example of operation control during the cooling and dehumidifying operation. The smaller the ventilation amount, the more energy saving and noise reduction is possible. Therefore, the necessary ventilation amount is set first, and the target temperature T0 and the target humidity x0 are set. Set. The temperature and humidity of the outside air are T3 and x3 (33 ° C., 60% in FIG. 3). Let T2 and x2 be the temperature and humidity of the supply side air at the outlet of the dehumidifying rotor 16, that is, the inlet of the evaporator 20 (in FIG. 3, 60 ° C., 6%).
[0022]
The rotational speed of the dehumidifying rotor 16 is determined so that the absolute humidity x2 at the outlet of the dehumidifying rotor becomes equal to the target humidity x0, and the rotational speed is adjusted so as to be the value. The temperature T2 at this time is obtained by measurement. If T2 is higher than T0, the compressor type air conditioner is cooled and the outlet temperature T1 of the evaporator 20 is brought close to the target value T0.
[0023]
If the amount of dehumidification is small, the temperature T2 at the outlet of the dehumidification rotor 16 does not become so high, so that the cooling operation load of the compressor 21 is reduced, and energy saving is achieved. Therefore, if the operation control as shown in FIG. 5 is performed, dehumidification is not performed more than necessary, energy saving can be achieved, and target temperature and humidity can be achieved.
[0024]
The operation control during the heating operation is the same as that during the cooling operation. As shown in FIG. 6, first, the required ventilation amount is set to be minimized, and the target temperature T0 and the humidity x0 are set. Since it is not necessary to dehumidify during heating, the dehumidification rotor is stopped. The outside air temperature T3 and humidity x3 pass through the dehumidification rotor as they are, and are heated to T2 (about 60 ° C.) by the heating means 15 by exhaust heat. The humidity x2 at this time is equal to x3. Since x2 is often smaller than the target humidity x0, water is sprinkled on the condenser 19 of the compression air conditioner to humidify it. When humidified, the condenser outlet temperature decreases to T1 due to the latent heat of vaporization of water. T1 is calculated and predicted from latent heat of vaporization, temperature, and the like. If T1 is lower than the set temperature T0, the compression air conditioner is heated and heated. If T1 is higher than the set temperature T0, control is performed so that the heating amount of the heating means 15 is kept low while the compression air conditioner is stopped. By controlling the heating operation and the heating amount in this way, an energy saving operation can be performed without requiring an extra load.
[0025]
FIG. 7 shows the details of the heating means 15 and uses cooling water of a polymer electrolyte fuel cell (PEFC) as the heating means. In the PEFC main body, the hydrogen in the hydrogen electrode 61 and the oxygen in the oxygen electrode 63 react via the electrolyte membrane 62 to generate water and at the same time generate electricity. Since the power generation efficiency is about 40%, the remaining 60% is heat. In order to cool this and keep the PEFC main body at about 80 ° C., the cooling water is circulated between the cooler 64 and the heating means 15 in the cooling water pipe 65. The temperature of the cooling water is 80 ° C or less, and such low-temperature exhaust heat has not been used for much other than hot water supply and heating until now, but as a desiccant air conditioning system, this exhaust heat is not only heated and humidified, Used for cooling and dehumidification.
[0026]
As a heat exchanger between the cooling water of the PEFC main body and the air 67 in the first passage (during cooling and humidification operation: exhaust), a parallel flow type heat exchanger 66 often used for an automobile condenser as shown in the figure. Is preferred. The fin through which the exhaust passes is an aluminum corrugated fin, and the passage through which the cooling water flows is composed of an aluminum tube in which small rectangular channels are arranged in parallel. Instead of the parallel flow type heat exchanger 66, a plate-fin type heat exchanger may be used to reduce the water-side passage.
[0027]
FIG. 8 shows the case where the exhaust gas of the micro turbine is used as the heating means 15. The intake air 56 of the micro turbine is compressed by the compressor 51, preheated by the regenerative heat exchanger 55, and further heated by the combustor 52. And enters the turbine 53. Then, by rotating the turbine, the generator 54 is rotated to generate power. Since the exhaust gas exiting the turbine has a temperature close to 700 ° C., it is put into the regenerative heat exchanger 55 to preheat the combustor inlet air. Since the exhaust gas exiting the regeneration heat exchanger 55 maintains a temperature of about 200 ° C., the adsorbent of the dehumidification rotor 16 can be sufficiently regenerated. In the case of a microturbine, the exhaust gas at the outlet of the regenerative heat exchanger 55 is introduced into the heating means 15, so 57 becomes an exhaust gas passage. Since the exhaust gas from the microturbine is clean, it can be introduced directly into the exhaust duct, but it is preferably heated indirectly because it is supplied to the room during heating. As the gas-gas heat exchanger, a cross-flow plate fin heat exchanger 58 as shown in the figure is used. Reference numeral 59 denotes exhaust or supply air of the desiccant air conditioning system. Since the exhaust gas temperature of the microturbine is about 200 ° C. even at the outlet of the regenerative heat exchanger, it is further used for an absorption chiller, a hot water boiler, hot water supply, etc., and the exhaust gas lowered to around 80 ° C. is used.
[0028]
【The invention's effect】
As described above, according to the present invention, in the desiccant air conditioning system, the evaporator and condenser of the compression type air conditioner are incorporated in the exhaust or air supply passage, so that it has a sufficient dehumidifying capacity, and only ventilation, cooling, and dehumidification. In addition, heating and humidification are possible, and a predetermined indoor temperature and humidity can be easily realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the entirety of a desiccant air conditioning system according to an embodiment.
FIG. 2 is a block diagram showing an entire desiccant air conditioning system according to another embodiment.
FIG. 3 is an operation explanatory diagram of the desiccant air-conditioning system according to one embodiment during cooling and dehumidification.
FIG. 4 is an operation explanatory diagram of the desiccant air conditioning system according to the embodiment when heating and humidifying.
FIG. 5 is a flowchart showing operation control during cooling and dehumidification of the desiccant air conditioning system according to the embodiment.
FIG. 6 is a flowchart showing operation control during heating and humidification of the desiccant air conditioning system according to the embodiment.
FIG. 7 is a block diagram of heating means according to one embodiment.
FIG. 8 is a block diagram of heating means according to another embodiment.
FIG. 9 is an operation explanation showing a conventional desiccant air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Space which requires air conditioning, 11 ... 1st exhaust passage (at the time of air_conditioning | cooling humidification operation: exhaust), 12 ... 2nd air supply passage (at the time of air_conditioning | cooling humidification operation: air supply), 15 ... Heating means, 16 ... Dehumidification rotor , 17 ... 1st exhaust fan (during cooling and humidification operation: exhaust), 18 ... 2nd fan (during cooling and humidification operation: supply), 19 ... condenser, 20 ... evaporator, 21 ... compressor, 22 ... expansion valve 61 ... Hydrogen electrode, 62 ... Electrolyte membrane, 63 ... Oxygen electrode, 64 ... Cooler, 65 ... Cooling water piping, 66 ... Parallel flow type heat exchanger.

Claims (6)

室内に第1通路と第2通路とが接続され、前記第1通路は室内側から熱交換器、加熱手段、除湿ロータ、第1ファンの順に、前記第2通路は熱交換器、除湿ロータ、第2ファンの順に配置され、前記室内の空気を排気及び外気を室内へ給気することにより室内が冷房除湿、あるいは暖房加湿されるデシカント空調システムにおいて、
前記第1通路の熱交換器、膨脹弁、前記第2通路の熱交換器、圧縮機を順次配管接続して冷凍サイクルを構成した圧縮機式空調機を備え、
冷房除湿運転する場合、前記第1通路で室内空気が排気、前記第2通路で外気が給気され、前記第1通路の熱交換器が凝縮器となるように、前記第2通路の熱交換器が蒸発器となるように前記圧縮式空調機が運転され、
暖房加湿運転する場合、冷房運転から暖房運転に切り替えるために、前記第1ファンと前記第2ファンの回転方向を逆にし、冷房時排気となる前記第1ファンを暖房時給気ファンとし、冷房時給気となる前記第2ファンを暖房時排気ファンとして用いることを特徴とするデシカント空調システム。
A first passage and a second passage are connected to the interior of the room, the first passage from the indoor side in the order of a heat exchanger, a heating means, a dehumidification rotor, and a first fan, and the second passage is a heat exchanger, a dehumidification rotor, In a desiccant air conditioning system that is arranged in the order of the second fan, the room is cooled and dehumidified or heated and humidified by exhausting the room air and supplying outside air to the room.
A compressor type air conditioner comprising a refrigeration cycle in which the heat exchanger of the first passage, the expansion valve, the heat exchanger of the second passage, and the compressor are sequentially connected by piping;
When performing the cooling and dehumidifying operation, heat is exchanged in the second passage so that indoor air is exhausted in the first passage, outside air is supplied in the second passage, and a heat exchanger in the first passage becomes a condenser. The compression air conditioner is operated so that the evaporator becomes an evaporator ,
When performing the heating and humidifying operation, in order to switch from the cooling operation to the heating operation, the rotation directions of the first fan and the second fan are reversed, and the first fan that is the exhaust air during cooling is used as a heating air supply fan. The desiccant air conditioning system, wherein the second fan to be worried is used as an exhaust fan during heating .
請求項1に記載のものにおいて、前記加熱手段は固体高分子型燃料電池の排熱を利用したことを特徴とするデシカント空調システム。  2. The desiccant air conditioning system according to claim 1, wherein the heating means uses exhaust heat of a polymer electrolyte fuel cell. 請求項1に記載のものにおいて、前記加熱手段はマイクロタービンの排熱を利用したことを特徴とするデシカント空調システム。  2. The desiccant air conditioning system according to claim 1, wherein the heating means uses exhaust heat of a micro turbine. 請求項1に記載のものにおいて、冷房除湿運転をする場合、換気量、目標温度、目標湿度を設定し、前記除湿ロータの回転数は前記除湿ロータ出口の絶対湿度が前記目標湿度に等しくなるように決定し、前記除湿ロータ出口の温度が前記目標温度より高ければ前記圧縮式空調機を運転することを特徴とするデシカント空調システム。  In the thing of Claim 1, when carrying out air_conditioning | cooling dehumidification operation, a ventilation amount, target temperature, and target humidity are set, and the rotation speed of the said dehumidification rotor makes the absolute humidity of the said dehumidification rotor exit equal to the said target humidity. The desiccant air-conditioning system is characterized in that if the temperature at the outlet of the dehumidifying rotor is higher than the target temperature, the compression-type air conditioner is operated. 請求項1に記載のものにおいて、暖房加湿運転をする場合、前記第2ファンが排気方向に、前記第1ファンが給気方向に回転され、前記除湿ロータは停止させ、外気が前記除湿ロータを通過してから前記加熱手段で加熱し、さらに凝縮器とされた前記第1通路の熱交換器に水を振り掛けて加湿し、その温度が目標温度より低ければ、前記圧縮式空調機を運転することを特徴とするデシカント空調システム。  2. When heating / humidifying operation is performed according to claim 1, the second fan is rotated in the exhaust direction, the first fan is rotated in the air supply direction, the dehumidification rotor is stopped, and the outside air causes the dehumidification rotor to move. After passing, it is heated by the heating means, and further, water is sprinkled on the heat exchanger of the first passage which is a condenser to humidify. If the temperature is lower than the target temperature, the compression air conditioner is operated. Desiccant air conditioning system characterized by that. 請求項に記載のものにおいて、加湿された外気が前記目標温度より高ければ、前記圧縮式空調機は停止させて前記加熱手段の加熱量を制御することを特徴とするデシカント空調システム。6. The desiccant air conditioning system according to claim 5 , wherein when the humidified outside air is higher than the target temperature, the compression type air conditioner is stopped to control the heating amount of the heating means.
JP2002077457A 2002-03-20 2002-03-20 Desiccant air conditioning system Expired - Fee Related JP3821031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077457A JP3821031B2 (en) 2002-03-20 2002-03-20 Desiccant air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077457A JP3821031B2 (en) 2002-03-20 2002-03-20 Desiccant air conditioning system

Publications (2)

Publication Number Publication Date
JP2003279069A JP2003279069A (en) 2003-10-02
JP3821031B2 true JP3821031B2 (en) 2006-09-13

Family

ID=29227984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077457A Expired - Fee Related JP3821031B2 (en) 2002-03-20 2002-03-20 Desiccant air conditioning system

Country Status (1)

Country Link
JP (1) JP3821031B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966486B2 (en) * 2004-09-27 2012-07-04 国立大学法人電気通信大学 Method for producing crystalline silicon-containing SiOx molded body and use thereof
JP3995006B2 (en) 2005-05-24 2007-10-24 ダイキン工業株式会社 Humidity control device
JP2008096069A (en) * 2006-10-13 2008-04-24 Fuji Electric Retail Systems Co Ltd Dehumidification air conditioner
JP5127280B2 (en) * 2007-04-06 2013-01-23 三菱電機株式会社 Air conditioner
US8973649B2 (en) * 2008-12-23 2015-03-10 Tai-Her Yang Heat exchange apparatus with a rotating disk and automatic control of heat exchange between two fluid streams by modulation of disk rotating speed and/or flow rate
CN102506488B (en) * 2011-10-20 2014-01-22 美的集团股份有限公司 Control method of air conditioner dehumidification mode control device
CN106016502A (en) * 2016-07-29 2016-10-12 江苏赛诺浦节能科技有限公司 Refrigeration and fresh air integration type outdoor unit special for water-cooled fungus mushroom house
CN106705258A (en) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 Dehumidifier
JP7297602B2 (en) * 2019-08-30 2023-06-26 株式会社東芝 Water recovery device and water recovery system
CN110726188B (en) * 2019-10-21 2023-11-24 珠海格力电器股份有限公司 Air treatment equipment, control method and device thereof and equipment
CN113357716B (en) * 2021-06-18 2022-08-19 龙岩烟草工业有限责任公司 Control method and controller for constant temperature and humidity system and constant temperature and humidity system

Also Published As

Publication number Publication date
JP2003279069A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3425088B2 (en) Desiccant air conditioning system
WO1999022182A1 (en) Dehumidifying air-conditioning system and method of operating the same
WO2007141901A1 (en) Humidity controller
JP2006329600A (en) Air conditioning system
JP3821031B2 (en) Desiccant air conditioning system
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2002022291A (en) Air conditioner
JP2011208828A (en) Air conditioning system using steam adsorbent
KR101420595B1 (en) Desiccant air conditioner
JP3408024B2 (en) Desiccant air conditioner
JP2010038432A (en) Air conditioning system and control method of air-conditioning system
JP3435531B2 (en) Air conditioner using dehumidifying cooler
JP4283361B2 (en) Desiccant air conditioning method
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JP2002054838A (en) Dehumidifying air conditioning apparatus
JP4467357B2 (en) Air conditioner
JP5917787B2 (en) Air conditioning system
JP2011094904A (en) Desiccant type ventilation fan
WO1996006311A1 (en) Air conditioning device and air conditioning system including the same
JP3327543B1 (en) Gas turbine cogeneration air conditioner
JP7312894B1 (en) Air conditioners and air conditioning systems
JP2002130738A (en) Air conditioner
JP4538931B2 (en) Air conditioning system
JP2002333161A (en) Dehumidifying air conditioning system
JP3262462B2 (en) Hybrid air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees