JP2003279069A - Desciccant air-conditioning system - Google Patents

Desciccant air-conditioning system

Info

Publication number
JP2003279069A
JP2003279069A JP2002077457A JP2002077457A JP2003279069A JP 2003279069 A JP2003279069 A JP 2003279069A JP 2002077457 A JP2002077457 A JP 2002077457A JP 2002077457 A JP2002077457 A JP 2002077457A JP 2003279069 A JP2003279069 A JP 2003279069A
Authority
JP
Japan
Prior art keywords
air
passage
conditioning system
heat exchanger
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002077457A
Other languages
Japanese (ja)
Other versions
JP3821031B2 (en
Inventor
Masaaki Ito
正昭 伊藤
Toshihiko Fukushima
敏彦 福島
Tadakatsu Nakajima
忠克 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002077457A priority Critical patent/JP3821031B2/en
Publication of JP2003279069A publication Critical patent/JP2003279069A/en
Application granted granted Critical
Publication of JP3821031B2 publication Critical patent/JP3821031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desciccant air-conditioning system having a sufficient dehumidifying ability and also a high energy saving effect. <P>SOLUTION: The desciccant air-conditioning system has a first passage 11 leading from the indoor side to a heat exchanger 19, heating means 15, dehumidifying rotor 16 and a first fan 17, and a second passage 12 leading from a heat exchanger 20, a dehumidifying rotor and a second fan 18, wherein the arrangement further includes a compressor type air-conditioner to constitute a refrigeration cycle from the heat exchanger 19 of the first passage 11, an expansion valve 22, the heat exchanger 20 of the second passage 12, and a compressor 21 which are connected by piping round one after another, and when the cooling/ dehumidifying operation is to be made, the indoor air is exhausted through the first passage 11 while the outer air is fed through the second passage 12, and the compression type air-conditioner is operated so that the heat exchanger 19 of the first passage 11 serves as a condenser while the heat exchanger 20 of the second passage 12 serves as an evaporator. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室内の冷房除湿運
転あるいは暖房加湿運転を高効率に行うデシカント空調
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desiccant air conditioning system for highly efficiently performing a room dehumidifying operation or a heating humidifying operation.

【0002】[0002]

【従来の技術】従来、圧縮式空調機では、省エネを達成
するために、蒸発温度が上がり、十分な除湿ができず、
換気も十分にはできなかった。そこで、室内空気を加湿
器へ送り水を蒸発させてより低温空気にしてから顕熱熱
交換器に入れ、その後、加熱してゆっくり回転する除湿
ロータの水分を蒸発させて外部に排気し、一方、外気を
除湿ロータへ送り込んで除湿し、その吸着熱による温度
上昇を顕熱熱交換器で加湿器から顕熱熱交換器に入れら
れた室内空気と熱交換して室内に給気するデシカント空
調システムが知られ、例えば、特開平5−301014
号公報に記載されている。
2. Description of the Related Art Conventionally, in a compression type air conditioner, in order to achieve energy saving, the evaporation temperature rises, and sufficient dehumidification cannot be performed.
I couldn't get enough ventilation. Therefore, the indoor air is sent to the humidifier to evaporate the water to lower temperature air and then put into the sensible heat exchanger, and then the moisture of the slowly rotating dehumidifying rotor is heated and evaporated to the outside. Desiccant air conditioning that sends outside air to the dehumidifying rotor to dehumidify it and the temperature rise due to its adsorption heat is exchanged with the indoor air put in the sensible heat exchanger from the humidifier by the sensible heat exchanger to supply air to the room. A system is known, for example, Japanese Patent Laid-Open No. 5-301014.
It is described in Japanese Patent Publication No.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
は、外気から給気される空気の温度と室温の差が2℃程
度しか取れなく、十分な冷房能力が得られなかった。ま
た、給気の出口に蒸発冷却器を設けて温度を下げたり、
除湿によって温度の上がった乾燥空気を一旦外気によっ
て冷却したりするなどの方法があるが、いずれも装置が
複雑、大型化し、コストが高くなることは避けられなか
った。
In the above prior art, the difference between the temperature of the air supplied from the outside air and the room temperature is only about 2 ° C., and the sufficient cooling capacity cannot be obtained. Also, an evaporative cooler is installed at the outlet of the air supply to lower the temperature,
There is a method of once cooling the dry air whose temperature has risen due to dehumidification by the outside air, but in all cases, the device is complicated and large, and the cost is inevitable.

【0004】本発明の目的は、上記従来技術の課題を解
決し、十分な除湿能力を持った省エネ効果の高い、デシ
カント空調システムを提供することにある。また、換気
風量を必要最小限に抑え、低騒音とすることにある。さ
らに、換気、冷房、除湿のみならず、暖房、加湿を可能
とし、快適な環境を創り出すことにある。さらに、所定
の室内温度、湿度を容易に実現することにある。なお、
本発明は、上記目的の少なくとも一つを解決することに
ある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a desiccant air conditioning system having a sufficient dehumidifying ability and a high energy saving effect. In addition, the ventilation air volume should be kept to the minimum necessary to reduce noise. In addition to ventilation, cooling and dehumidification, heating and humidification are possible to create a comfortable environment. Furthermore, it is to easily realize a predetermined room temperature and humidity. In addition,
The present invention is to solve at least one of the above objects.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、室内に第1通路と第2通路とが接続され、前
記第1通路は室内側から熱交換器、加熱手段、除湿ロー
タ、第1ファンの順に、前記第2通路は熱交換器、除湿
ロータ、第2ファンの順に配置され、前記室内の空気を
排気及び外気を室内へ給気することにより室内が冷房除
湿、あるいは暖房加湿されるデシカント空調システムに
おいて、前記第1通路の熱交換器、膨脹弁、前記第2通
路の熱交換器、圧縮機を順次配管接続して冷凍サイクル
を構成した圧縮機式空調機を備え、冷房除湿運転する場
合、前記第1通路で室内空気が排気、前記第2通路で外
気が給気され、前記第1通路の熱交換器が凝縮器となる
ように、前記第2通路の熱交換器が蒸発器となるように
前記圧縮式空調機を運転するものである。また、上記の
ものにおいて、暖房加湿運転する場合、第2ファンが排
気方向に、第1ファンが給気方向に回転される。
In order to achieve the above object, the present invention has a first passage and a second passage connected to the inside of the room, and the first passage is provided from the indoor side with a heat exchanger, heating means, and a dehumidifying rotor. , The first fan in this order, the second passage is arranged in the order of the heat exchanger, the dehumidifying rotor, and the second fan, and the room is cooled and dehumidified or heated by exhausting the air in the room and supplying the outside air to the room. In a desiccant air conditioning system that is humidified, a heat exchanger for the first passage, an expansion valve, a heat exchanger for the second passage, and a compressor air conditioner that constitutes a refrigerating cycle by sequentially connecting a compressor to each other are provided, When the cooling / dehumidifying operation is performed, the indoor air is exhausted in the first passage and the outside air is supplied in the second passage, and the heat exchange in the second passage is performed so that the heat exchanger in the first passage serves as a condenser. Compressor type air conditioner so that the device becomes an evaporator It is intended to operate. Further, in the above-mentioned one, when the heating and humidifying operation is performed, the second fan is rotated in the exhaust direction and the first fan is rotated in the air supply direction.

【0006】さらに、加熱手段は固体高分子型燃料電池
の排熱を利用したことことが望ましい。さらに、加熱手
段はマイクロタービンの排熱を利用したことが望まし
い。
Further, it is desirable that the heating means utilize the exhaust heat of the polymer electrolyte fuel cell. Furthermore, it is desirable that the heating means utilize the exhaust heat of the micro turbine.

【0007】さらに、冷房除湿運転をする場合、換気
量、目標温度、目標湿度を設定し、除湿ロータの回転数
は除湿ロータ出口の絶対湿度が目標湿度に等しくなるよ
うに決定し、除湿ロータ出口の温度が目標温度より高け
れば圧縮式空調機を運転することが望ましい。さらに、
暖房加湿運転をする場合、第2ファンが排気方向に、第
1ファンが給気方向に回転され、除湿ロータは停止さ
せ、外気が除湿ロータを通過してから加熱手段で加熱
し、さらに凝縮器とされた第1通路の熱交換器に水を振
り掛けて加湿し、その温度が目標温度より低ければ、圧
縮式空調機を運転することが望ましい。さらに、上記の
ものにおいて、加湿された外気が目標温度より高けれ
ば、圧縮式空調機は停止させて加熱手段の加熱量を制御
することが望ましい。
Further, when the cooling / dehumidifying operation is performed, the ventilation amount, the target temperature and the target humidity are set, and the rotation speed of the dehumidifying rotor is determined so that the absolute humidity at the outlet of the dehumidifying rotor becomes equal to the target humidity. If the temperature is higher than the target temperature, it is desirable to operate the compression air conditioner. further,
When the heating and humidifying operation is performed, the second fan is rotated in the exhaust direction and the first fan is rotated in the air supply direction, the dehumidifying rotor is stopped, and the outside air passes through the dehumidifying rotor before being heated by the heating means, and further the condenser. It is desirable to operate the compression type air conditioner if the temperature is lower than the target temperature by sprinkling water on the heat exchanger in the first passage, which has been set so as to humidify. Furthermore, in the above, if the humidified outside air is higher than the target temperature, it is desirable to stop the compression type air conditioner and control the heating amount of the heating means.

【0008】さらに、室内空気を加熱手段で加熱し吸着
剤中の水分を除去してから室外に排気し、外気の水蒸気
を吸着剤で乾燥させ、その後冷却して室内に給気するこ
とで冷房除湿を行うデシカント空調システムにおいて、
室内空気は圧縮式空調機の凝縮器で加熱されてから排気
され、外気は圧縮式空調機の蒸発器で冷却されて室内に
給気される。
Further, the indoor air is heated by the heating means to remove the water content in the adsorbent and then exhausted to the outside of the room, the water vapor of the outside air is dried with the adsorbent, and then cooled and supplied to the room for cooling. In a desiccant air conditioning system that dehumidifies,
The indoor air is heated by the condenser of the compression type air conditioner and then discharged, and the outside air is cooled by the evaporator of the compression type air conditioner and supplied to the room.

【0009】さらに、上記のものにおいて、加熱手段は
固体高分子型燃料電池の排熱を利用したことが望まし
い。さらに、加熱手段はマイクロタービンの排熱を利用
したことが望ましい。
Further, in the above, it is desirable that the heating means utilize the exhaust heat of the polymer electrolyte fuel cell. Furthermore, it is desirable that the heating means utilize the exhaust heat of the micro turbine.

【0010】[0010]

【発明の実施の形態】以下、図を参照して本発明による
一実施の形態を説明する。図1に本発明デシカント空調
システムのシステム全体図を示し、1は、空調を必要と
する空間(室内)で、この空間に第1通路11と第2通
路12とが接続されている。第1通路11には、凝縮器
19、加熱手段15、除湿ロータ16の再生部分、第1
ファン17が組み込まれている。第2通路12には第2
ファン18、除湿ロータ16の除湿部分、蒸発器20が
組み込まれている。除湿ロータ16は、円筒状で内部に
シリカゲル、活性炭などの吸着剤が充填され、一方が第
1通路11へ他方が第2通路12に置かれ、ゆっくり回
転される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall system view of the desiccant air-conditioning system of the present invention. Reference numeral 1 denotes a space (room) that requires air conditioning, and a first passage 11 and a second passage 12 are connected to this space. In the first passage 11, the condenser 19, the heating means 15, the regenerated portion of the dehumidifying rotor 16, the first
The fan 17 is incorporated. Second in the second passage 12
The fan 18, the dehumidifying portion of the dehumidifying rotor 16, and the evaporator 20 are incorporated. The dehumidifying rotor 16 has a cylindrical shape and is filled with an adsorbent such as silica gel or activated carbon. One of the dehumidifying rotor 16 is placed in the first passage 11 and the other is placed in the second passage 12, and is slowly rotated.

【0011】凝縮器19、膨脹弁22、蒸発器20、圧
縮機21は順次配管接続され、冷凍サイクルを構成し、
圧縮式空調機となっている。圧縮機21は第1通路11
及び第2通路12の外部に設けられ、配管で各通路1
1、12の内部へ通じている。
The condenser 19, the expansion valve 22, the evaporator 20, and the compressor 21 are sequentially connected by piping to constitute a refrigeration cycle,
It is a compression type air conditioner. The compressor 21 has a first passage 11
And the outside of the second passage 12, and each passage 1 is connected by piping.
It leads to the inside of 1 and 12.

【0012】蒸発器20の前後には温度および湿度セン
サー31、32が設置され、圧縮式空調機の運転をする
ための信号を出すようになっている。加熱手段15に
は、固体高分子型燃料電池を冷却した温水が送られてき
て、除湿ロータ16の吸着剤中の水分を除去して再生さ
せるための熱源を供給している。
Temperature and humidity sensors 31 and 32 are installed in front of and behind the evaporator 20 so as to output a signal for operating the compression type air conditioner. The heating means 15 is supplied with hot water that has cooled the polymer electrolyte fuel cell, and supplies a heat source for removing moisture in the adsorbent of the dehumidifying rotor 16 to regenerate it.

【0013】図中の点線内は固体高分子型燃料電池の系
統を示し、61が水素極、63が酸素極である。水素極
61と酸素極63は、電解質膜62を挟むように配置さ
れている。水素極61から酸素極63に向かって、電解
質膜63の中を水素陽子が移動するので、外部回路に電
子が流れ、発電する。固体高分子型燃料電池は発熱する
ので、冷却器64を設け、効率の良い80℃に保ってい
る。冷却器64の中には水が流れ、燃料電池で発生した
熱を冷却水で除去する。また、冷却水は、配管65を通
って排気ガスの加熱手段15に導かれる。この加熱によ
り、排気ガス温度を80℃近辺まで上げることができ、
除湿装置16の吸着材の中に吸着した水分を追い出すこ
とができ、その結果吸着材を再生することができる。
The dotted line in the figure shows the system of the polymer electrolyte fuel cell, where 61 is a hydrogen electrode and 63 is an oxygen electrode. The hydrogen electrode 61 and the oxygen electrode 63 are arranged so as to sandwich the electrolyte membrane 62. Since hydrogen protons move in the electrolyte membrane 63 from the hydrogen electrode 61 to the oxygen electrode 63, electrons flow in the external circuit to generate power. Since the polymer electrolyte fuel cell generates heat, a cooler 64 is provided to keep the temperature at 80 ° C., which is efficient. Water flows in the cooler 64, and the heat generated in the fuel cell is removed by the cooling water. Further, the cooling water is guided to the exhaust gas heating means 15 through the pipe 65. By this heating, the exhaust gas temperature can be raised to around 80 ° C,
The moisture adsorbed in the adsorbent of the dehumidifier 16 can be expelled, and as a result, the adsorbent can be regenerated.

【0014】図2は、図1の固体高分子型燃料電池によ
る加熱手段15から、マイクロタービンに変えた場合の
システム全体図である。点線内がマイクロタービンの系
統図であり、マイクロタービンの吸入空気56は、圧縮
機51で圧縮され、再生熱交換器55で予熱され、燃焼
器52でさらに高温にされてタービン53に入る。ター
ビン53を回すことにより、発電機54を回転させ、発
電する。タービン53を出た排気ガスは、700℃近い
温度であり、再生熱交換器55に入れて燃焼器入口空気
を予熱する。再生熱交換器55を出た排ガスは、200
℃くらいの温度を保ち、除湿ロータ16の吸着材を再生
する。
FIG. 2 is an overall system diagram when the heating means 15 of the polymer electrolyte fuel cell of FIG. 1 is replaced with a micro turbine. The inside of the dotted line is a system diagram of the micro turbine, and intake air 56 of the micro turbine is compressed by the compressor 51, preheated by the regenerative heat exchanger 55, further heated by the combustor 52, and enters the turbine 53. By rotating the turbine 53, the generator 54 is rotated to generate electric power. The exhaust gas exiting the turbine 53 has a temperature close to 700 ° C. and is put into the regenerative heat exchanger 55 to preheat the combustor inlet air. The exhaust gas leaving the regenerative heat exchanger 55 is 200
The adsorbent of the dehumidifying rotor 16 is regenerated while maintaining the temperature of about ℃.

【0015】図3は図1の一部を拡大したもので、冷房
除湿運転の詳細を示し、第1通路11は排気通路とさ
れ、室内の空気が20℃、50%で凝縮器19に入る。
凝縮器19で加熱された排気空気は、加熱手段15によ
ってさらに80℃まで加熱され、除湿ロータ16に入
る。除湿ロータ16では、シリカゲルなどの吸着剤中の
水分を除去して吸着剤を再生させる。その後、室外に排
気される。
FIG. 3 is an enlarged view of a part of FIG. 1, showing the details of the cooling and dehumidifying operation. The first passage 11 serves as an exhaust passage, and the indoor air enters the condenser 19 at 20 ° C. and 50%. .
The exhaust air heated by the condenser 19 is further heated to 80 ° C. by the heating means 15 and enters the dehumidifying rotor 16. The dehumidifying rotor 16 regenerates the adsorbent by removing water contained in the adsorbent such as silica gel. Then, it is exhausted to the outside.

【0016】第2通路12は給気とされ、外気の温度、
湿度が33℃、60%であるとすると、除湿ロータ16
で水蒸気が吸着され乾燥空気となるが、吸着熱で加熱さ
れるので、除湿ロータ16出口では60℃、6%の空気
となる。これを蒸発器20によって冷却するが空気中の
水分量は変わらないので、20℃まで冷却すると湿度は
70%となる。この時に必要な圧縮式空調機の冷房能力
は、風量を3m/minと仮定すると、2.5kW程度と
なり、出力1HPクラスのエアコンの冷房能力で充分満
たされる値である。3m/minの換気量は、8畳間の
全室内空気を1時間で4回換気できる量であり、普通の
居間では十分な換気量であり、従来のものに比べ換気風
量を必要最小限に抑え、省エネ、騒音低減となってい
る。
The second passage 12 is used to supply air, and the temperature of the outside air
Assuming that the humidity is 33 ° C. and 60%, the dehumidifying rotor 16
At this time, the water vapor is adsorbed and becomes dry air, but since it is heated by the heat of adsorption, it becomes 60 ° C., 6% air at the outlet of the dehumidifying rotor 16. This is cooled by the evaporator 20, but the amount of water in the air does not change, so that the humidity becomes 70% when cooled to 20 ° C. The cooling capacity of the compression type air conditioner required at this time is about 2.5 kW, assuming an air volume of 3 m 3 / min, which is a value that is sufficiently satisfied by the cooling capacity of an air conditioner with an output of 1 HP class. The ventilation volume of 3 m 3 / min is the volume that can ventilate all the indoor air between 8 tatami mats 4 times in 1 hour, which is a sufficient ventilation volume in a normal living room, and the ventilation volume is the minimum required compared to the conventional one. It saves energy and reduces noise.

【0017】給気空気の設定温度、湿度を変える場合に
は、その設定値を実現するのに最も省エネとなる除湿ロ
ータと圧縮式空調機の運転組み合わせがあり、それをあ
らかじめプログラムで予測計算し、それに基づいて運転
制御すれば、省エネ、低騒音、快適な空調を小型、コン
パクトで実現できる。
When changing the set temperature and humidity of the supply air, there are operating combinations of the dehumidifying rotor and the compression type air conditioner, which are the most energy-saving to realize the set values. By controlling the operation based on it, energy saving, low noise, and comfortable air conditioning can be realized in a small and compact size.

【0018】図4は、同様に暖房加湿運転時の空気の温
度、湿度変化を示し、第1通路11と第2通路12を冷
房運転時と切り替えるために、第1ファン17と第2フ
ァン18の回転方向を逆にし、冷房時排気となる第1フ
ァン17を暖房時給気ファンとし、冷房時給気となる第
2ファン18を暖房時排気ファンとして用いる。これに
より、加熱手段15の位置の変更や、圧縮式空調機の冷
暖房切り変えが不要になり、装置の単純化を図ることが
できる。また、図は暖房加湿運転時の空気温度、湿度の
変化を示している。
FIG. 4 similarly shows changes in temperature and humidity of the air during the heating / humidifying operation. In order to switch the first passage 11 and the second passage 12 from the cooling operation, the first fan 17 and the second fan 18 are connected. The rotation direction is reversed, and the first fan 17 that serves as exhaust air during cooling is used as an air supply fan during heating, and the second fan 18 that serves as air supply during cooling is used as an exhaust fan during heating. As a result, it is not necessary to change the position of the heating means 15 or to switch the heating and cooling of the compression type air conditioner, and it is possible to simplify the device. The figure also shows changes in air temperature and humidity during heating and humidifying operation.

【0019】第1通路11では、0℃、30%の外気が
導入され、除湿ロータ16は停止しており、加熱手段1
5で温度を60℃まで加熱すると、絶対湿度は変わらな
くても相対湿度は2%に低下する。そこで凝縮器19に
スプレーで水を振り掛け、水の蒸発潜熱によって空気温
度は50℃に低下するが、相対湿度は20%まで上昇す
る。この時、圧縮式空調機は停止しており、凝縮器は単
なる加湿器として機能している。一方、第2通路12で
は、25℃、40%の室内空気をそのまま排気として捨
てている。このようにすると、除湿ロータも圧縮式空調
機も使わずに、燃料電池あるいはマイクロタービンなど
の排熱を利用した加熱手段のみで、新鮮な外気を導入で
き、省エネとなる。また、排熱が十分に得られない場合
は、圧縮式空調機を運転し、暖房能力を補えば良い。
In the first passage 11, outside air at 0 ° C. and 30% is introduced, the dehumidifying rotor 16 is stopped, and the heating means 1
When the temperature is heated to 60 ° C. in 5 the relative humidity drops to 2% even though the absolute humidity does not change. Therefore, water is sprinkled on the condenser 19 by spraying, and the air temperature drops to 50 ° C. due to the latent heat of vaporization of water, but the relative humidity rises to 20%. At this time, the compression type air conditioner is stopped, and the condenser functions merely as a humidifier. On the other hand, in the second passage 12, the room air at 25 ° C. and 40% is directly discharged as exhaust air. In this way, it is possible to introduce fresh outside air without using a dehumidifying rotor or a compression type air conditioner, and to introduce fresh outside air with only a heating means using exhaust heat of a fuel cell or a micro turbine, thereby saving energy. If exhaust heat is not sufficiently obtained, the compression air conditioner may be operated to supplement the heating capacity.

【0020】暖房加湿時にも、外気条件から給気の設定
温度、湿度を達成する最も省エネとなる運転方法を予測
計算で見つけ、それを実現するプログラムを組み込んで
おくと、省エネ、低騒音、快適な空調が小型、コンパク
トに実現できる。
Even when heating and humidifying, it is possible to find the most energy-saving operation method that achieves the set temperature and humidity of the supply air from the outside air condition by predictive calculation, and if a program that realizes it is installed, energy saving, low noise, comfort Air conditioning that is small and compact can be realized.

【0021】図5は、冷房除湿運転時の運転制御の一例
であり、換気量が小さいほど省エネと低騒音が可能であ
るので、最初に必要換気量を設定し、さらに、目標温度
T0、目標湿度x0を設定する。外気の温度、湿度をT
3、x3とする(図3では、33℃、60%)。除湿ロ
ータ16出口、すなわち蒸発器20入口の給気側空気の
温度、湿度をT2、x2とする(図3では60℃、6
%)。
FIG. 5 shows an example of the operation control during the cooling and dehumidifying operation. The smaller the ventilation volume is, the more energy saving and noise can be made. Therefore, the required ventilation volume is set first, and the target temperature T0 and the target temperature are set. Set the humidity x0. T of outside temperature and humidity
3 × 3 (in FIG. 3, 33 ° C., 60%). The temperature and humidity of the supply air at the outlet of the dehumidifying rotor 16, that is, at the inlet of the evaporator 20 are T2 and x2 (60 ° C. and 6 in FIG. 3).
%).

【0022】除湿ロータ出口の絶対湿度x2が目標湿度
x0に等しくなるように、除湿ロータ16の回転数を決
め、その値となるように回転数を調節する。この時の温
度T2は測定によって求め、T2がT0より高ければ、
圧縮式空調機を冷房運転して、蒸発器20出口温度T1
を目標値T0に近づける。
The rotation speed of the dehumidification rotor 16 is determined so that the absolute humidity x2 at the outlet of the dehumidification rotor becomes equal to the target humidity x0, and the rotation speed is adjusted to be that value. The temperature T2 at this time is obtained by measurement, and if T2 is higher than T0,
The compressor type air conditioner is cooled to operate, and the evaporator 20 outlet temperature T1
To a target value T0.

【0023】除湿量が小さければ、除湿ロータ16出口
の温度T2はあまり高温にならないので、圧縮機21の
冷房運転負荷は小さくなり、省エネとなる。したがっ
て、図5に示したような運転制御を行えば、必要以上に
除湿しないので省エネ化を図ることができ、目標とする
温度、湿度を達成することができる。
If the dehumidifying amount is small, the temperature T2 at the outlet of the dehumidifying rotor 16 does not become too high, so that the cooling operation load of the compressor 21 becomes small and energy is saved. Therefore, if the operation control as shown in FIG. 5 is performed, dehumidification is not performed more than necessary, so that energy saving can be achieved and the target temperature and humidity can be achieved.

【0024】暖房運転時の運転制御も冷房運転時と同様
であり、図6に示し、先ず必要換気量を最小限に抑える
ように設定し、目標温度T0、湿度x0を設定する。暖
房時には、除湿する必要はないので、除湿ロータは停止
させておく。外気温度T3、湿度x3はそのままの状態
で除湿ロータを通過し、排熱による加熱手段15により
温度がT2(60℃程度)まで加熱される。この時の湿
度x2はx3と等しい。x2は目標湿度x0より小さい
ことが多いので、圧縮式空調機の凝縮器19に水を振り
掛けて加湿する。加湿すると水の蒸発潜熱によって、凝
縮器出口温度はT1まで低下する。T1は、蒸発潜熱、
温度などより計算して予測する。T1が設定温度T0よ
り低ければ、圧縮式空調機を暖房運転して加熱する。T
1が設定温度T0より高ければ、圧縮式空調機は停止さ
せたまま、加熱手段15の加熱量を低く抑えるように制
御する。このようにして暖房運転、加熱量を制御するこ
とで余分な負荷を要せず省エネ運転とすることができ
る。
The operation control during the heating operation is similar to that during the cooling operation. As shown in FIG. 6, first, the required ventilation amount is set to the minimum, and the target temperature T0 and the humidity x0 are set. Since it is not necessary to dehumidify during heating, the dehumidification rotor is stopped. The outside air temperature T3 and the humidity x3 pass through the dehumidifying rotor in the same state, and are heated to T2 (about 60 ° C.) by the heating means 15 by the exhaust heat. The humidity x2 at this time is equal to x3. Since x2 is often smaller than the target humidity x0, water is sprinkled on the condenser 19 of the compression air conditioner to humidify it. When humidified, the condenser outlet temperature decreases to T1 due to the latent heat of vaporization of water. T1 is the latent heat of vaporization,
Calculate and predict from temperature etc. If T1 is lower than the set temperature T0, the compression type air conditioner is heated and heated. T
If 1 is higher than the set temperature T0, the heating amount of the heating unit 15 is controlled to be low while the compression type air conditioner is stopped. By controlling the heating operation and the heating amount in this way, an energy saving operation can be performed without requiring an extra load.

【0025】図7は、加熱手段15の詳細を示し、固体
高分子型燃料電池(PEFC)の冷却水を加熱手段とし
て用いている。PEFC本体では、水素極61の水素と
酸素極63の酸素が、電解質膜62を介して反応し、水
を作ると同時に発電する。発電効率は40%程度である
から、残りの60%は熱となる。これを冷却し、PEF
C本体を約80℃に保つため冷却水を冷却器64と加熱
手段15の間を冷却水配管65の中を循環させる。冷却
水の温度は80℃以下であり、このような低温排熱は、
今まで給湯や暖房の他にあまり使い道がなかったが、デ
シカント空調システムとして、この排熱を暖房、加湿だ
けでなく、冷房、除湿に利用する。
FIG. 7 shows details of the heating means 15, in which cooling water for a polymer electrolyte fuel cell (PEFC) is used as the heating means. In the PEFC main body, hydrogen of the hydrogen electrode 61 and oxygen of the oxygen electrode 63 react through the electrolyte membrane 62 to generate water and simultaneously generate power. Since the power generation efficiency is about 40%, the remaining 60% is heat. Cool this, PEF
Cooling water is circulated in the cooling water pipe 65 between the cooler 64 and the heating means 15 in order to keep the temperature of the main body C at about 80 ° C. The temperature of the cooling water is below 80 ° C, and such low temperature waste heat is
Until now, there was not much use other than hot water supply and heating, but as a desiccant air conditioning system, this exhaust heat is used not only for heating and humidification but also for cooling and dehumidification.

【0026】PEFC本体の冷却水と第1通路(冷房加
湿運転時:排気)内の空気67との熱交換器としては、
図に示すような自動車用コンデンサに多く使われている
パラレルフロー型熱交換器66が好適である。排気が通
過するフィンはアルミのコルゲートフィンであり、冷却
水が流れる通路は小さな矩形流路が平行に並んだアルミ
チューブから構成されている。パラレルフロー型熱交換
器66の代わりにプレートフィン型熱交換器で、水側の
通路を小さくしても良い。
As a heat exchanger between the cooling water of the PEFC main body and the air 67 in the first passage (during cooling / humidifying operation: exhaust air),
A parallel flow type heat exchanger 66, which is often used in automobile capacitors as shown in the figure, is suitable. The fins through which the exhaust gas passes are aluminum corrugated fins, and the passage through which the cooling water flows is composed of aluminum tubes in which small rectangular flow paths are arranged in parallel. Instead of the parallel flow type heat exchanger 66, a plate fin type heat exchanger may be used to reduce the passage on the water side.

【0027】図8は、加熱手段15をマイクロタービン
の排ガスを用いた場合を示し、マイクロタービンの吸入
空気56は、圧縮機51で圧縮され、再生熱交換器55
で予熱され、燃焼器52でさらに高温にされてタービン
53に入る。そして、タービンを回すことにより、発電
機54を回転させ、発電する。タービンを出た排気ガス
は、700℃近い温度があるので、再生熱交換器55に
入れて燃焼器入口空気を予熱する。再生熱交換器55を
出た排ガスは、200℃くらいの温度を保っているの
で、除湿ロータ16の吸着材を十分に再生することがで
きる。マイクロタービンの場合には再生熱交換器55の
出口排ガスを加熱手段15に導入しているので、57は
排ガス通路となる。マイクロタービンの排ガスはクリー
ンなので、直接排気ダクトに導入することも可能である
が、暖房時には室内に給気するので、間接的に加熱する
ことが望ましい。ガス−ガス熱交換器としては、図に示
すような直交流プレートフィン型熱交換器58を用い
る。59は、デシカント空調システムの排気あるいは給
気である。マイクロタービンの排ガス温度は、再生熱交
換器の出口でも200℃程度あるので、さらに吸収式冷
凍機、温水ボイラー、給湯などに利用し、80℃近辺ま
で下がった排ガスを使用する。
FIG. 8 shows the case where the heating means 15 uses the exhaust gas of the micro turbine. The intake air 56 of the micro turbine is compressed by the compressor 51, and the regenerated heat exchanger 55 is used.
Is preheated in the combustor 52 and further heated in the combustor 52 to enter the turbine 53. Then, by rotating the turbine, the generator 54 is rotated to generate electric power. Since the exhaust gas from the turbine has a temperature close to 700 ° C., it is put into the regenerative heat exchanger 55 to preheat the combustor inlet air. Since the exhaust gas leaving the regeneration heat exchanger 55 maintains a temperature of about 200 ° C., the adsorbent of the dehumidifying rotor 16 can be sufficiently regenerated. In the case of the micro turbine, the outlet exhaust gas of the regenerative heat exchanger 55 is introduced into the heating means 15, so that 57 serves as an exhaust gas passage. Since the exhaust gas of the micro turbine is clean, it is possible to introduce it directly into the exhaust duct, but it is desirable to indirectly heat it because it is supplied to the room during heating. As the gas-gas heat exchanger, a cross flow plate fin type heat exchanger 58 as shown in the figure is used. Reference numeral 59 is exhaust gas or air supply of the desiccant air conditioning system. Since the exhaust gas temperature of the micro turbine is about 200 ° C. even at the outlet of the regenerative heat exchanger, it is further used for an absorption refrigerator, a hot water boiler, hot water supply, etc., and the exhaust gas lowered to around 80 ° C. is used.

【0028】[0028]

【発明の効果】以上述べたように本発明によれば、デシ
カント空調システムにおいて、圧縮式空調機の蒸発器、
凝縮器を排気または給気通路に組み込んだので、十分な
除湿能力を持ち、換気、冷房、除湿のみならず、暖房、
加湿を可能とし、所定の室内温度、湿度を容易に実現す
ることができる。
As described above, according to the present invention, in the desiccant air conditioning system, the evaporator of the compression air conditioner,
Since a condenser is installed in the exhaust or air supply passage, it has sufficient dehumidification capacity, and not only ventilation, cooling and dehumidification, but also heating,
Humidification is possible, and a predetermined room temperature and humidity can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施の形態によるデシカント空調システム
の全体を示すブロック図。
FIG. 1 is a block diagram showing an entire desiccant air conditioning system according to an embodiment.

【図2】 他の実施の形態によるデシカント空調システ
ムの全体を示すブロック図。
FIG. 2 is a block diagram showing an entire desiccant air-conditioning system according to another embodiment.

【図3】 一実施の形態によるデシカント空調システム
の冷房除湿時の動作説明図。
FIG. 3 is an operation explanatory diagram of the desiccant air-conditioning system according to the embodiment when cooling and dehumidifying.

【図4】 一実施の形態によるデシカント空調システム
の暖房加湿時の動作説明図。
FIG. 4 is an operation explanatory diagram when heating and humidifying the desiccant air conditioning system according to the embodiment.

【図5】 一実施の形態によるデシカント空調システム
の冷房除湿時の運転制御を示すフローチャート。
FIG. 5 is a flowchart showing operation control during cooling and dehumidification of the desiccant air-conditioning system according to one embodiment.

【図6】 一実施の形態によるデシカント空調システム
の暖房加湿時の運転制御を示すフローチャート。
FIG. 6 is a flowchart showing operation control during heating and humidification of the desiccant air-conditioning system according to one embodiment.

【図7】 一実施の形態による加熱手段のブロック図。FIG. 7 is a block diagram of a heating unit according to one embodiment.

【図8】 他の実施の形態による加熱手段のブロック
図。
FIG. 8 is a block diagram of a heating means according to another embodiment.

【図9】 従来のデシカント空調装置を示す動作説明。FIG. 9 is an operation explanation showing a conventional desiccant air conditioner.

【符号の説明】[Explanation of symbols]

1…空調を必要とする空間、11…第1排気通路(冷房
加湿運転時:排気)、12…第2給気通路(冷房加湿運
転時:給気)、15…加熱手段、16…除湿ロータ、1
7…第1排気ファン(冷房加湿運転時:排気)、18…
第2ファン(冷房加湿運転時:給気)、19…凝縮器、
20…蒸発器、21…圧縮機、22…膨張弁、61…水
素極、62…電解質膜、63…酸素極、64…冷却器、
65…冷却水配管、66…パラレルフロー型熱交換器。
DESCRIPTION OF SYMBOLS 1 ... Space which requires air conditioning, 11 ... 1st exhaust passage (at the time of cooling humidification operation: exhaust), 12 ... 2nd air supply passage (at the time of cooling humidification operation: air supply), 15 ... Heating means, 16 ... Dehumidification rotor 1
7 ... First exhaust fan (during cooling / humidifying operation: exhaust), 18 ...
2nd fan (at the time of cooling humidification operation: air supply), 19 ... condenser,
20 ... Evaporator, 21 ... Compressor, 22 ... Expansion valve, 61 ... Hydrogen electrode, 62 ... Electrolyte membrane, 63 ... Oxygen electrode, 64 ... Cooler,
65 ... Cooling water piping, 66 ... Parallel flow type heat exchanger.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F24F 11/02 102 F24F 11/02 102V (72)発明者 中島 忠克 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3L053 BA10 BC01 BC05 3L055 AA10 BA00 CA08 3L060 AA03 CC06 EE23 EE25 4D052 AA08 CB00 DA00 DA08 DB01 FA05 FA09 GA01 GA03 GB02 GB03 GB09 HA01 HA21 HB02Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F24F 11/02 102 F24F 11/02 102V (72) Inventor Tadakatsu Nakajima 502 Kandachi-cho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Co., Ltd. Mechanical Engineering Laboratory F-term (reference) 3L053 BA10 BC01 BC05 3L055 AA10 BA00 CA08 3L060 AA03 CC06 EE23 EE25 4D052 AA08 CB00 DA00 DA08 DB01 FA05 FA09 GA01 GA03 GB02 GB03 GB09 HA01 HA21 HB02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】室内に第1通路と第2通路とが接続され、
前記第1通路は室内側から熱交換器、加熱手段、除湿ロ
ータ、第1ファンの順に、前記第2通路は熱交換器、除
湿ロータ、第2ファンの順に配置され、前記室内の空気
を排気及び外気を室内へ給気することにより室内が冷房
除湿、あるいは暖房加湿されるデシカント空調システム
において、 前記第1通路の熱交換器、膨脹弁、前記第2通路の熱交
換器、圧縮機を順次配管接続して冷凍サイクルを構成し
た圧縮機式空調機を備え、 冷房除湿運転する場合、前記第1通路で室内空気が排
気、前記第2通路で外気が給気され、前記第1通路の熱
交換器が凝縮器となるように、前記第2通路の熱交換器
が蒸発器となるように前記圧縮式空調機を運転すること
を特徴とするデシカント空調システム。
1. A first passage and a second passage are connected in a room,
The first passage is arranged from the indoor side in the order of the heat exchanger, the heating means, the dehumidifying rotor, and the first fan, and the second passage is arranged in the order of the heat exchanger, the dehumidifying rotor, and the second fan, and the air in the room is exhausted. And a desiccant air-conditioning system in which the room is cooled and dehumidified or heated and humidified by supplying outside air to the room, in which a heat exchanger in the first passage, an expansion valve, a heat exchanger in the second passage, and a compressor are sequentially arranged. When a cooling and dehumidifying operation is provided with a compressor type air conditioner that is connected to piping to form a refrigeration cycle, room air is exhausted in the first passage and outside air is supplied in the second passage, and heat of the first passage is removed. The desiccant air-conditioning system, wherein the compression type air conditioner is operated so that the exchanger serves as a condenser and the heat exchanger in the second passage serves as an evaporator.
【請求項2】請求項1に記載のものにおいて、暖房加湿
運転する場合、前記第2ファンが排気方向に、前記第1
ファンが給気方向に回転されることを特徴とするデシカ
ント空調システム。
2. The heating device according to claim 1, wherein when the heating and humidifying operation is performed, the second fan moves in the exhaust direction toward the first fan.
A desiccant air conditioning system characterized in that the fan is rotated in the air supply direction.
【請求項3】請求項1に記載のものにおいて、前記加熱
手段は固体高分子型燃料電池の排熱を利用したことを特
徴とするデシカント空調システム。
3. The desiccant air-conditioning system according to claim 1, wherein the heating means uses exhaust heat of a polymer electrolyte fuel cell.
【請求項4】請求項1に記載のものにおいて、前記加熱
手段はマイクロタービンの排熱を利用したことを特徴と
するデシカント空調システム。
4. The desiccant air-conditioning system according to claim 1, wherein the heating means uses exhaust heat of a micro turbine.
【請求項5】請求項1に記載のものにおいて、冷房除湿
運転をする場合、換気量、目標温度、目標湿度を設定
し、前記除湿ロータの回転数は前記除湿ロータ出口の絶
対湿度が前記目標湿度に等しくなるように決定し、前記
除湿ロータ出口の温度が前記目標温度より高ければ前記
圧縮式空調機を運転することを特徴とするデシカント空
調システム。
5. The cooling air dehumidifying operation according to claim 1, wherein a ventilation amount, a target temperature and a target humidity are set, and the rotation speed of the dehumidifying rotor is the absolute humidity at the outlet of the dehumidifying rotor. The desiccant air-conditioning system is characterized in that the compression type air conditioner is operated if the temperature at the outlet of the dehumidifying rotor is higher than the target temperature.
【請求項6】請求項1に記載のものにおいて、暖房加湿
運転をする場合、前記第2ファンが排気方向に、前記第
1ファンが給気方向に回転され、前記除湿ロータは停止
させ、外気が前記除湿ロータを通過してから前記加熱手
段で加熱し、さらに凝縮器とされた前記第1通路の熱交
換器に水を振り掛けて加湿し、その温度が目標温度より
低ければ、前記圧縮式空調機を運転することを特徴とす
るデシカント空調システム。
6. The heating and humidifying operation according to claim 1, wherein the second fan is rotated in an exhaust direction and the first fan is rotated in an air supply direction, the dehumidifying rotor is stopped, and the outside air is cooled. Is heated by the heating means after passing through the dehumidifying rotor, and water is sprinkled on the heat exchanger of the first passage, which is a condenser, to humidify it, and if the temperature is lower than the target temperature, the compression type A desiccant air conditioning system that operates an air conditioner.
【請求項7】請求項6に記載のものにおいて、加湿され
た外気が前記目標温度より高ければ、前記圧縮式空調機
は停止させて前記加熱手段の加熱量を制御することを特
徴とするデシカント空調システム。
7. The desiccant according to claim 6, wherein when the humidified outside air is higher than the target temperature, the compression type air conditioner is stopped to control the heating amount of the heating means. Air conditioning system.
【請求項8】室内空気を加熱手段で加熱し吸着剤中の水
分を除去してから室外に排気し、外気の水蒸気を前記吸
着剤で乾燥させ、その後冷却して室内に給気することで
冷房除湿を行うデシカント空調システムにおいて、 室内空気は圧縮式空調機の凝縮器で加熱されてから排気
され、外気は前記圧縮式空調機の蒸発器で冷却されて室
内に給気されることを特徴とするデシカント空調システ
ム。
8. The indoor air is heated by a heating means to remove the water content in the adsorbent and then exhausted to the outside of the room, the water vapor in the outside air is dried by the adsorbent, and then cooled to supply the air to the room. In a desiccant air conditioning system that performs cooling and dehumidification, indoor air is heated by a condenser of a compression air conditioner and then exhausted, and outside air is cooled by an evaporator of the compression air conditioner and supplied indoors. Desiccant air conditioning system.
【請求項9】請求項8に記載のものにおいて、前記加熱
手段は固体高分子型燃料電池の排熱を利用したことを特
徴とするデシカント空調システム。
9. The desiccant air-conditioning system according to claim 8, wherein the heating means uses exhaust heat of a polymer electrolyte fuel cell.
【請求項10】請求項8に記載のものにおいて、前記加
熱手段はマイクロタービンの排熱を利用したことを特徴
とするデシカント空調システム。
10. The desiccant air-conditioning system according to claim 8, wherein the heating means uses exhaust heat of a micro turbine.
JP2002077457A 2002-03-20 2002-03-20 Desiccant air conditioning system Expired - Fee Related JP3821031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077457A JP3821031B2 (en) 2002-03-20 2002-03-20 Desiccant air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077457A JP3821031B2 (en) 2002-03-20 2002-03-20 Desiccant air conditioning system

Publications (2)

Publication Number Publication Date
JP2003279069A true JP2003279069A (en) 2003-10-02
JP3821031B2 JP3821031B2 (en) 2006-09-13

Family

ID=29227984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077457A Expired - Fee Related JP3821031B2 (en) 2002-03-20 2002-03-20 Desiccant air conditioning system

Country Status (1)

Country Link
JP (1) JP3821031B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126605A1 (en) * 2005-05-24 2006-11-30 Daikin Industries, Ltd. Humidity control device
JP2008096069A (en) * 2006-10-13 2008-04-24 Fuji Electric Retail Systems Co Ltd Dehumidification air conditioner
JP2008256307A (en) * 2007-04-06 2008-10-23 Mitsubishi Electric Corp Air-conditioner
JP2010151438A (en) * 2008-12-23 2010-07-08 Tai-Her Yang Rotary type heat exchange apparatus
US7803340B2 (en) * 2004-09-27 2010-09-28 The University Of Electro-Communications Process for producing siox particles
CN102506488A (en) * 2011-10-20 2012-06-20 广东美的电器股份有限公司 Control method of air conditioner dehumidification mode control device
CN106016502A (en) * 2016-07-29 2016-10-12 江苏赛诺浦节能科技有限公司 Refrigeration and fresh air integration type outdoor unit special for water-cooled fungus mushroom house
CN106705258A (en) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 Dehumidifier
CN110726188A (en) * 2019-10-21 2020-01-24 珠海格力电器股份有限公司 Air treatment equipment and control method, device and equipment thereof
JP2021039824A (en) * 2019-08-30 2021-03-11 株式会社東芝 Water recovery device and water recovery system
CN113357716A (en) * 2021-06-18 2021-09-07 龙岩烟草工业有限责任公司 Control method and controller for constant temperature and humidity system and constant temperature and humidity system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803340B2 (en) * 2004-09-27 2010-09-28 The University Of Electro-Communications Process for producing siox particles
KR100924635B1 (en) 2005-05-24 2009-11-02 다이킨 고교 가부시키가이샤 Humidity control device
WO2006126605A1 (en) * 2005-05-24 2006-11-30 Daikin Industries, Ltd. Humidity control device
JP2008096069A (en) * 2006-10-13 2008-04-24 Fuji Electric Retail Systems Co Ltd Dehumidification air conditioner
JP2008256307A (en) * 2007-04-06 2008-10-23 Mitsubishi Electric Corp Air-conditioner
TWI507654B (en) * 2008-12-23 2015-11-11 Tai Her Yang Rotary type heat exchange apparatus with automatic flow rate exchange modulation
JP2010151438A (en) * 2008-12-23 2010-07-08 Tai-Her Yang Rotary type heat exchange apparatus
CN102506488A (en) * 2011-10-20 2012-06-20 广东美的电器股份有限公司 Control method of air conditioner dehumidification mode control device
CN106016502A (en) * 2016-07-29 2016-10-12 江苏赛诺浦节能科技有限公司 Refrigeration and fresh air integration type outdoor unit special for water-cooled fungus mushroom house
CN106705258A (en) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 Dehumidifier
JP2021039824A (en) * 2019-08-30 2021-03-11 株式会社東芝 Water recovery device and water recovery system
JP7297602B2 (en) 2019-08-30 2023-06-26 株式会社東芝 Water recovery device and water recovery system
CN110726188A (en) * 2019-10-21 2020-01-24 珠海格力电器股份有限公司 Air treatment equipment and control method, device and equipment thereof
CN110726188B (en) * 2019-10-21 2023-11-24 珠海格力电器股份有限公司 Air treatment equipment, control method and device thereof and equipment
CN113357716A (en) * 2021-06-18 2021-09-07 龙岩烟草工业有限责任公司 Control method and controller for constant temperature and humidity system and constant temperature and humidity system

Also Published As

Publication number Publication date
JP3821031B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3425088B2 (en) Desiccant air conditioning system
KR101782839B1 (en) Air-conditioner capable of cooling and humidity control and the method thereof
JP3649236B2 (en) Air conditioner
CN101266067A (en) Energy-saving -type dehumidifying air-conditioning system
JP3821031B2 (en) Desiccant air conditioning system
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2007255780A (en) Desiccant air conditioning system utilizing solar energy
JPH11132593A (en) Air conditioner
JP2002022291A (en) Air conditioner
JPH1144439A (en) Air conditioner
JPH06221618A (en) Dehumidifying type air conditioning device
JP2011208828A (en) Air conditioning system using steam adsorbent
JP2004092956A (en) Desiccant air conditioning method and desiccant air conditioner
KR101420595B1 (en) Desiccant air conditioner
JP2010038432A (en) Air conditioning system and control method of air-conditioning system
JP3435531B2 (en) Air conditioner using dehumidifying cooler
JP4467357B2 (en) Air conditioner
JPH05301014A (en) Open adsorption type air conditioner
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JP7036491B2 (en) Humidity control device
JPH11304194A (en) Desiccant air-conditioning method
JP2002130738A (en) Air conditioner
JP4423683B2 (en) Desiccant air conditioning method
JP2000117042A (en) Dry type dehumidifier
JP4538931B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees