WO1996006311A1 - Air conditioning device and air conditioning system including the same - Google Patents

Air conditioning device and air conditioning system including the same Download PDF

Info

Publication number
WO1996006311A1
WO1996006311A1 PCT/JP1995/001675 JP9501675W WO9606311A1 WO 1996006311 A1 WO1996006311 A1 WO 1996006311A1 JP 9501675 W JP9501675 W JP 9501675W WO 9606311 A1 WO9606311 A1 WO 9606311A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
passage
humidity
air conditioning
Prior art date
Application number
PCT/JP1995/001675
Other languages
French (fr)
Japanese (ja)
Inventor
Kanichi Kadotani
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6199585A external-priority patent/JPH0861705A/en
Priority claimed from JP25217594A external-priority patent/JP3262462B2/en
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to KR1019970701163A priority Critical patent/KR970705729A/en
Priority to EP95929217A priority patent/EP0777087A1/en
Publication of WO1996006311A1 publication Critical patent/WO1996006311A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1008Rotary wheel comprising a by-pass channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1076Rotary wheel comprising three rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Definitions

  • the present invention relates to an air conditioner and an air conditioning system including the same.
  • the present invention relates to an air conditioner that adjusts the temperature and humidity of air using a thermoelectric temperature controller using a thermoelectric element and a humidity controller using a moisture absorbent, and an air conditioning system including the same.
  • thermoelectric elements Small dehumidifiers and refrigerators are currently in practical use as devices that control the temperature and humidity of air using only thermoelectric elements.
  • the air in order to dehumidify only by adjusting the temperature, the air must be cooled and the relative humidity in the air must be reduced to 100% to cause dew condensation, so an operation that creates a large temperature difference is required.
  • the efficiency of thermoelectric elements becomes worse as the temperature difference increases, and there is a problem that the cost and efficiency are insufficient for application to medium and large dehumidifiers and refrigerators.
  • thermoelectric element uses a thermoelectric element and a desiccant such as silica gel to control the temperature with the thermoelectric element and to control the humidity with the desiccant
  • desiccant such as silica gel
  • thermoelectric element and a desiccant uses a heating / cooling device (thermostat) using a thermoelectric element and a dehumidifier (humidifier) using a desiccant in an apparatus Not only are they separated, but there is no connection in the control functions of temperature control and humidity control.
  • thermostat heating / cooling device
  • dehumidifier humidity control
  • the efficiency of the thermoelectric element is low, and the temperature and humidity of a predetermined amount of air are large and poorly controlled.
  • One object of the present invention in view of the above-mentioned problems, is to reduce the load on the thermoelectric element in an air conditioner using a thermoelement and a desiccant, and to improve the efficiency of the air conditioner. It is an object of the present invention to provide an air conditioner capable of accurately controlling the temperature and humidity of the air conditioner, and at the same time, reducing the size and cost.
  • Another conventional air conditioner particularly an air conditioner using a thermoelectric temperature controller, is disclosed in Japanese Unexamined Utility Model Application Publication No. Heisei 2-1-211117 and Japanese Unexamined Patent Publication No. Heisei 5-10543. Are known.
  • the former of the above-mentioned conventional hybrid air conditioners has a configuration in which a solar cell is used as a power supply for a thermoelectric element of a thermoelectric cooling unit and a power supply for a fan.
  • thermoelectric element uses a solar cell as a power supply for the thermoelectric element, and supplies air heated by solar heat to the heat absorption side of the thermoelectric element and supplies the air into the living space. To heat it.
  • thermoelectric element In both of the above conventional hybrid air conditioners, the elimination of humidity in the air is performed by lowering the air temperature with a thermoelectric element and condensing the moisture in the air. Therefore, dehumidifier Therefore, a heavy load is imposed on the thermoelectric element, and the thermoelectric element in the current technology cannot withstand this burden due to thermoelectric efficiency and the like. Therefore, the above-mentioned conventional hybrid air conditioner could not actively remove moisture in the air, and could not efficiently perform air conditioning including humidity adjustment.
  • another object of the present invention is to perform air dehumidification without cooling air by an electric temperature controller, and to provide an electric temperature controller for a humidity control function. Load, and the efficiency of the solar cell and humidity controller can be improved, and the hybrid can be operated with high efficiency even in winter. It is intended to provide a head-type air conditioning system. Disclosure of the invention
  • An air conditioner including a humidifier and a regeneration passage formed by connecting another part of each of the thermoelectric heating / cooling units in series is provided.
  • the above configuration further includes a heat exchanger, wherein a part of the heat exchanger forms a part of the air conditioning passage, and another part of the heat exchanger forms a part of the regeneration passage. Is also good.
  • a heating source may be arranged on the regeneration passage upstream of the humidity controller.
  • the air sucked into the air conditioning passage from inside or outside the room is dehumidified or humidified by passing through a part of the humidifier. Heated or cooled, or heated or cooled in a heat exchanger to a temperature close to the temperature of the final air-conditioning air, and then cooled or heated to the final air-conditioning temperature in a thermoelectric heating / cooling device.
  • the humidifier is humidified or dehumidified by the air-conditioning action of the conditioned air passing through the air-conditioning passage, the heat exchanger is cooled or heated, and the thermoelectric heating / cooling device is heated or cooled. Are regenerated by the regeneration air flowing through the regeneration passage.
  • the load on the thermoelement can be reduced, the efficiency can be improved, and the outlet temperature can be accurately controlled by a thermoelectric heating / cooling device using the thermoelectric element. Can be controlled. Further, since the air-conditioning passage and the regeneration passage have a body structure, the size and cost of the entire air-conditioning system can be reduced.
  • a hybrid solar panel including a power generation unit and a heat collection unit using solar energy, and a hybrid air conditioner including an adsorption type humidity controller and an electric temperature controller disposed in an air conditioning passage;
  • a heat collecting section is connected to a regeneration passage section of the adsorption type humidity controller and a regeneration passage section of the electric temperature regulator via a heat collection path, and the power generation section is connected to a power receiving section of the electric temperature regulator.
  • a connected air conditioning system will be provided.
  • a temperature measuring section for measuring a temperature of the power generation section;
  • a control unit for controlling the operation of the fan may be provided.
  • thermoelement in the electric temperature controller.
  • the air sucked into the air conditioning passage is humidified by the adsorption type humidifier, and then the temperature is adjusted by the electric temperature controller and flows into the room.
  • the power generation unit power is generated by the power generation unit and air heated by the heat collection unit is supplied.
  • the heated air from the heat collecting section is used not only as regeneration air for the adsorption type humidity controller, but also as a heat source for heating (for regeneration) the electric temperature controller. .
  • the power generation unit is used as a power source of an electric temperature controller.
  • the electric temperature controller controls the dehumidification of the air. This can be performed without the need to cool the air by means of air, and the burden on the electric temperature controller for the humidity control function can be reduced. In particular, this effect is remarkable when a thermoelement is used for an electric temperature controller.
  • the amount of heat and power supplied from the hybrid solar panel it is possible to improve the efficiency of the solar cell and the humidity controller, and in winter It can be operated with high efficiency.
  • FIG. 1 is a schematic structural explanatory view showing an embodiment of an air conditioner according to the present invention.
  • FIG. 2 is an explanatory diagram showing an example of the path of the regenerated air in the above embodiment
  • FIG. 3 is an explanatory diagram showing another example of the path of the regeneration air in the above embodiment.
  • FIG. 4 is an explanatory view showing still another example of the path of the regeneration air in the above embodiment.
  • FIG. 5 is an explanatory diagram showing changes in the temperature and humidity of the conditioned air on the psychrometric chart.
  • FIG. 6 is a configuration explanatory view showing a first specific example of the above embodiment.
  • FIG. 7 is an explanatory diagram of a configuration showing a second specific example of the above embodiment.
  • FIG. 8 is a configuration explanatory view showing a third specific example of the above embodiment.
  • FIG. 9 is a cross-sectional view showing a first application example of the first specific example.
  • FIG. 10 is a sectional view showing a second application example of the first specific example.
  • FIG. 11 is a sectional view showing a third application example of the first specific example.
  • FIG. 12 is a partially cutaway perspective view showing another specific example of the humidity controller.
  • FIG. 13 is a configuration explanatory view schematically showing one embodiment of the air conditioning system according to the present invention.
  • FIG. 14 is a schematic configuration explanatory view showing an example of an air conditioner using a compression type temperature controller as an electric temperature controller.
  • FIG. 1 shows a schematic configuration of an embodiment of an air conditioner according to the present invention, in which 1 is a humidity controller, 2 is a heat exchanger, and 3 is a thermoelectric heating / cooling device (temperature controlling device). is there. 4 is an air conditioning passage, and 5 is a regeneration passage.
  • the humidity controller 1 has a large number of honeycomb-shaped partitions constituting a ventilation path, and has a configuration in which a hygroscopic agent such as silica gel is applied to the surfaces of the respective brackets.
  • a part of the humidifier 1 is an air-conditioning passage 1a which is a part of the air-conditioning passage 4, and another part is a regeneration passage 1b which is a part of the regeneration passage 5.
  • a specific example of the humidity controller 1 is a rotary dehumidifier that is commercially available as a dehumidifier rotor.
  • a part of the heat exchanger 2 is an air-conditioning passage 2 a that is a part of the air-conditioning passage 4, and another part is a regeneration passage 2 b that is a part of the regeneration passage 5.
  • the heat exchanger 2 include a conventionally known rotary regenerative heat exchanger, a stationary plate heat exchanger, a stationary heat pipe heat exchanger, and the like.
  • thermoelectric heating / cooling device 3 has a configuration in which a large number of thermoelectric elements are integrated, and one electrode of each thermoelectric element faces the air conditioning passage 3 a which is a part of the air conditioning passage 4, and the other electrode. These electrodes face the regeneration passage 3b which is a part of the regeneration passage 5.
  • the air conditioning passage 4 consists of a humidity controller 1, a heat exchanger 2, and a thermoelectric heating / cooling device.
  • the air-conditioning passages la, 2a, and 3a in Fig. 3 are connected in series, and the inlet side is open to the inside or outside of the room, and the outlet side is used to supply conditioned air such as a clean room or living room. It is open to the required room to be conditioned.
  • the regeneration passage 5 has a configuration in which the regeneration passages 3 b, 2 b, and lb of the thermoelectric heating / cooling device 3, the heat exchanger 2, and the humidity controller 1 are connected in series. It is opposite to the flow direction of the air conditioning passage 4.
  • the entrance side is opened indoors or outdoors, and the exit side is opened indoors or outdoors.
  • an intake / exhaust passage 6 a communicating with another system passage such as indoor or outdoor is connected downstream of the thermoelectric heating / cooling device 3.
  • the regeneration passage 5 has a heat exchange bypass passage 7 that bypasses the heat exchanger 2.
  • the heat exchange bypass passage 7 has an intake / exhaust passage that communicates with another system such as an indoor or outdoor passage. 6 b is connected.
  • a heater 8 for heating the regeneration air entering the regeneration passage 1 b of the humidity controller 1 is provided upstream of the humidity controller 1.
  • a directional switching valve 9 such as a three-way switching valve is interposed at each connection point between the intake and exhaust passages 6a and 6b, the bypass passage 7, and the regeneration passage 5. The operation of the above embodiment will be described below.
  • the high-temperature, high-humidity air sucked into the air conditioning passage 4 from the room or outside is first dehumidified in the air conditioning passage 1a of the humidity controller 1 to reduce the absolute humidity.
  • the dehumidifying effect at this time is due to a moisture absorbent such as silica gel. Done. Therefore, the latent heat is released by the condensation of water at this time, and the temperature of the air exiting the air conditioning passage 1a of the humidity controller 1 rises more than at the time of inhalation.
  • the moisture absorbent in the air conditioning passage 1a of the humidifier 1 gradually deteriorates due to moisture absorption, but when a rotary dehumidifier is used for the humidifier 1, the air conditioning passage facing the air conditioning passage 1 is used. 1 a gradually replaces the regeneration passage 1 b facing the regeneration passage 5, and the desiccant is regenerated sequentially as it approaches the regeneration passage 5.
  • the conditioned air whose temperature has risen due to dehumidification in the air conditioning passage la of the humidity controller 1 is cooled to a temperature close to the required temperature in the air conditioning passage 2 a of the heat exchanger 2. You. Accordingly, the relative humidity of the air-conditioned air at that time rises. The absolute humidity at this time does not change.
  • the conditioned air is adjusted to a predetermined temperature in the air conditioning passage 3 a of the thermoelectric heating / cooling device 3.
  • the air conditioning passage 3a of the thermoelectric heating / cooling device 3 is on the cooling side, and the conditioned air is cooled by absorbing the sensible heat as it passes through it. Then, the cooling temperature at this time is accurately controlled by controlling the amount of electricity to the thermoelectric element.
  • the heat in the regeneration passage 3b of the thermoelectric heating and cooling device 3 is taken away by the regeneration air passing through the regeneration passage 5, and the heat absorbed in the air conditioning passage 3a is released from the regeneration passage 3b. .
  • the heat of the regeneration passage 2b of the heat exchanger 2 is taken away, and the heat absorbed in the air conditioning passage 2a is released from the regeneration passage 2b.
  • the passage of the regeneration air at this time is generally a system in which the regeneration passages 3b, 2b, and lb of the thermoelectric heating / cooling unit 3, heat exchanger 2, and humidity controller 1 are connected in series.
  • the regeneration passage 2b of the exchanger 2 may be bypassed, or as shown in Fig. 3, separate regeneration air may be used for the regeneration passage 3b of the thermoelectric heating / cooling device 3 and its downstream side.
  • separate regeneration air is used for the regeneration passage 3b of the thermoelectric heating / cooling unit 3 and its downstream side, and another system is located downstream of the regeneration passage 2b of the heat exchanger 2. May be allowed to flow in.
  • the heat exchanger 2 is used.However, when the absolute humidity is relatively low, the same effect can be obtained with an air conditioner including only the humidity controller 1 and the thermoelectric heating / cooling device 3. .
  • the absolute humidity of the conditioned air at this time is 0.011 kg / kg (humidity of dry air).
  • the absolute humidity of the air-conditioned air in the air-conditioning passage 1a of the humidity controller 1 is 0.01 15 kg / kg (dry air humidity) Dehumidify until dry.
  • the temperature and humidity in this case change along the isoenthalpy line to the absolute humidity 0.01 15 kg / kg (dry air humidity:> point B) where the temperature changes. 5
  • the humidity is about 10%.
  • the temperature in the dehumidified state is cooled to, for example, 38 ° C. so as to approach the temperature of the final conditioned air of 26 ° C.
  • the humidity of the conditioned air at this time becomes 28% (: C point).
  • the conditioned air is further cooled to a predetermined 26 by the thermoelectric heating / cooling device 3, and the humidity at this time becomes 55% (point D).
  • the temperature difference between the air at the outlet of the heat exchanger 2 and the final conditioned air is 12 ° C.
  • thermoelectric element which is a conventional technique
  • air that has been cooled to 16 ° C and dehumidified is then heated to the desired temperature of 26 and requires additional heat transfer.
  • thermoelectric heating / cooling device 3 If the temperature and humidity at the inlet side of the air to be conditioned are lower than those of the final conditioned air, first humidify the air in the humidifier 1 and then heat exchanger 2 to a temperature close to the temperature of the final conditioned air. , And finally heated to a predetermined temperature by the thermoelectric heating / cooling device 3.
  • FIG. 6 to 8 show specific examples of the air conditioner according to the present invention.
  • a rotary dehumidifier 10 is used as the humidity controller 1
  • a rotary heat exchanger 11 is used as the heat exchanger 2.
  • the second specific example shown in FIG. 7 uses a stationary plate type heat exchanger 12 as the heat exchanger 2.
  • a fixed heat pipe type heat exchanger 13 is used as the heat exchanger 2.
  • FIG. 9 shows a first application example in which an air conditioner 14 as the first specific example is used in a house, which is used for indoor cooling and heating by embedding the air conditioner 14 in a wall 15. It is used.
  • FIGS. 10 and 11 show second and third application examples, respectively, in which the first specific example is used for indoor cooling and heating.
  • the inlet side and the outlet side of the air conditioning passage 4 are both open to the room. Then, outside air is taken into the regeneration passage 3b of the thermoelectric heating / cooling device 3, which cools it and discharges it to the outside again.
  • the third application example shown in FIG. 11 is the one shown in FIG. 10 described above, in which an air inlet is also provided on the upstream side of the regeneration passage 1 b of the humidity controller 1.
  • outside air intakes 15a, 15b, 15 are located upstream of the regeneration passages 3b, 2b, and lb of the thermoelectric heating / cooling unit 3, the heat exchanger 2, and the humidity controller 1, respectively.
  • c is provided.
  • Each of the outside air intakes 15a, 15b, 15c is connected to a solar collector via a switchgear 16a, 16b, 16c. 17 and the outside air inlets 15a and 15b of both the thermoelectric heating / cooling unit 3 and the heat exchanger 2 are connected to the ducts by the open / close plates 16a and 16b.
  • each open / close plate 16a, 16b, 16c is changed depending on whether it is hot in summer or cold in winter. It is like that.
  • thermoelectric heating / cooling unit 3 when it is hot in summer, outside air is supplied to the thermoelectric heating / cooling unit 3 and the heat exchanger 2, and hot air from the solar collector is supplied to the humidity controller 1 from the duct 17.
  • the humidifier 1 is a rotary type and uses a moisture absorbent such as silica gel, but as another example, the humidifier 1 is used. Some use a membrane module configuration.
  • FIG. 12 shows a specific example of the humidity controller 1, in which a number of hollow fiber membranes 20 are arranged between upper and lower headers 19a and 19b. A moisture-absorbing fluid or a regeneration fluid is caused to flow through the hollow fiber membrane 20, and conditioned air is caused to flow outside the hollow fiber membrane 20. Then, the conditioned air flowing outside the hollow fiber membrane 20 is dehumidified or humidified by the moisture absorbing or regenerating fluid flowing through the hollow fiber membrane 20 via the hollow fiber membrane 20. It has become.
  • FIG. 13 shows an embodiment of an air conditioning system in which the third application example is actually incorporated in a house.
  • 101 is a hybrid air conditioner and 102 is a hybrid solar panel.
  • the hybrid air conditioner 101 has a housing 10 having an air conditioning passage 104 divided into two by a partition wall 103 in a direction perpendicular to the axis and a regeneration passage (outside air passage) 105. 6 and an adsorption type humidity controller 107, a heat exchanger 108, and a thermoelectric temperature controller 109 arranged sequentially in the housing 106 in the axial direction. . Both ends of the air conditioning passage 104 are open to the room RM. Both ends of the regeneration passage 105 are electrically connected to the outside of the room via the duct 100.
  • the adsorption-type humidity controller 107 has a large number of honeycomb-shaped partition walls constituting a ventilation path, and has a configuration in which a hygroscopic agent such as silica gel is applied to the surface of each partition wall. .
  • Each of the air conditioning passages and the regeneration passages is also formed in a rotating cylindrical shape supported by the partition wall 103 so that the air conditioning passages and the regeneration passages are sequentially rotated. Has come to be replaced.
  • thermoelectric thermostat 109 has a configuration in which a large number of thermoelectric elements are integrated. One electrode of each thermoelectric element faces the air-conditioning passage 104, and the other electrode is a regeneration passage 109. We are facing 5.
  • An air-conditioning fan 110 is provided at the inlet of the air-conditioning passageway 104 of the housing 106 so that the air sucked from one end of the air-conditioning passageway 104 can absorb the air of the adsorption-type humidifier 1.
  • the air is discharged to the other end of the air conditioning passageway 104 through the heat exchanger 107, the heat exchanger 108, and the thermoelectric temperature controller 109.
  • a humidifier 111 is disposed at the outlet of the other end of the air conditioning passage 104.
  • the regeneration passage 105 has a first regeneration passage 105a through which air flows outdoor through the adsorption type humidity controller 107, and air adsorbs to the heat exchanger 108.
  • a second regeneration passageway 105b which flows outside through a humidity controller 107, and a second passageway, which allows air to flow outside through a thermoelectric temperature controller 109. It consists of 3 regeneration passages 1 0 5 c and.
  • the first, second, and third regeneration passages 105a, 105b, and 105c are independent opening / closing valves 112a, 112, respectively. It is connected to the outside air introduction duct 113 via b and 112c.
  • the open / close valves 112, 112c of the second and third regeneration passages 105b, 105c are connected to the outside air introduction duct 113, and the duct 114 connected to the outside. a, any outside air introduction duct 1 1 3 Each of the passed ducts 1 1 and 4b is selectively opened.
  • blow-out fans 115a and 115b are disposed, respectively.
  • the hybrid solar panel 102 consists of a plate-like solar cell 1 16 and a solar collector 1 17 provided on the back side of the solar cell 1 16 and these are installed on the top surface of the roof RF. Have been.
  • the solar collector 1 17 is composed of a cavity 1 18 along the back of the solar cell 1 16 and an outside air suction fan 1 19 that sucks outside air into the cavity 1 18. I have. The number of revolutions of the fan 1 19 is controlled by the control device 1 23. Then, the cavities 1 18 of the solar collector 1 17 are introduced into the outside air of the hybrid air conditioner 101 via the ducts 120 and the switching section 121. Connected to ducts 1 1 and 3. The switching section 121 is configured so that a part or all of the heated air from the solar collector 117 can flow into the room A as needed.
  • the solar cell 116 is connected to a thermoelectric element of a thermoelectric thermostat 109 of the hybrid air conditioner 101. This thermoelectric element is also connected to a commercial power supply.
  • High-temperature, high-humidity air drawn into the air-conditioning passage 104 from the indoor RM is first dehumidified by the adsorption-type humidity controller 107 to reduce the absolute temperature.
  • Latent heat is released by the water condensation at this time due to the adsorbent, and the temperature of the air exiting the air conditioning passage of the adsorption type humidity controller 107 rises from the suction port side. I do.
  • the water absorption capacity of the adsorbent in the portion of the adsorption type humidity controller 107 facing the air conditioning passage 104 gradually deteriorates due to the adsorption of moisture, but the adsorption and dehumidification device 107 gradually reduces the water absorption capacity. Due to this rotation, the deteriorated portion gradually replaces the portion facing the regeneration passage 105 side, and is sequentially reproduced.
  • the air-conditioned air whose temperature has risen by being dehumidified by the adsorption-type humidity controller 107 is exchanged with outside air in the heat exchanger 108 to be cooled.
  • the relative humidity of the conditioned air at the time increases.
  • the absolute humidity at this time does not change.
  • thermoelectric temperature controller 109 the conditioned air is adjusted to a predetermined temperature by a thermoelectric temperature controller 109 and discharged again into the room RM.
  • thermoelectric temperature controller 109 the air conditioning passage 104 side of the thermoelectric temperature controller 109 is on the cooling side, and by passing through it, the conditioned air absorbs its sensible heat and is cooled. You. Then, the cooling temperature at this time is accurately controlled by controlling the amount of electricity to the thermoelectric element. The power for this is from the solar cells 1 16 of the hybrid solar panel 102.
  • the outdoor air or the solar collector 110 of the hybrid solar panel 102 is switched to the regeneration passage 105 during the air-conditioning operation by switching the selectors 112a, 112b and 112c.
  • the air from 7 flows in, and the adsorbing section of the adsorption type humidity controller 107 is dried and reproduced by the inflowing air.
  • an electric heater 122 is interposed on the upstream side of the regeneration passage 105 of the adsorption type humidity controller 107 to heat the intake air.
  • the heater 122 is used by using the heated air from the hybrid solar panel 102 as the outside air for regeneration of the adsorption type humidity controller i07. Sufficient heat can be used to heat the intake air.
  • Tables 1 to 4 show the system operation modes in summer and winter. Tables 1 and 2 show the system operation modes in summer, and Tables 3 and 4 show the system operation modes in winter.
  • the operation of the hybrid solar panel 0 N, ⁇ FF means that 0 N is when the hybrid solar panel 102 is operated, that is, when there is solar radiation, and OFF is when it is not operated, that is, there is no solar radiation. The case is shown.
  • the strength of the operation of the solar heater refers to an operation state in which the operation of the outside air intake fan 119 is controlled to capture a large amount of solar heat or a small amount of solar heat.
  • T1 be the temperature of the outside air
  • T2 be the temperature on the back side of the solar cell 116
  • T3 be the temperature of the air from the solar collector 117 that is introduced into the hybrid air conditioner 101.
  • the indoor temperature is set to ⁇ 4
  • the indoor humidity is set to ⁇ 4
  • the indoor set temperature is set to ⁇ 5
  • the indoor set humidity is set to ⁇ 5
  • the set temperature of the solar cell 116 is set to ⁇ 6.
  • Each of the temperature and the humidity is measured by a temperature measuring unit and a humidity measuring unit (both not shown).
  • the indoor set temperature ⁇ 5 and the set humidity ⁇ 5 are compared with the indoor temperature ⁇ 4 and the humidity ⁇ 4.
  • the indoor temperature ⁇ 4 and the humidity ⁇ 4 are compared with the indoor temperature ⁇ 4 and the humidity ⁇ 4.
  • Table 5 the four cases shown in Table 5 below.
  • the control method differs depending on the case
  • This air conditioning system is a system that independently controls temperature control and humidity control.That is, group I in Table 5 above is a part related to temperature control, and is controlled by a thermoelectric temperature controller 109.
  • Group II is a part related to humidity control, and is controlled by the adsorption type humidity controller 107, heat exchanger 108, and heater 111.
  • thermoelectric temperature controller 109 is driven by electricity, but the output from the solar cell 116 is used preferentially, and in the case of insufficient power from the commercial power supply. Also, the regeneration of the moisture absorption part of the adsorption type humidity controller 107 is performed by heating, but the heat output from the solar collector 117 is used preferentially. Use an electric heater that generates more heat.
  • both the electrical output from the solar cell 1 16 and the heat output from the solar collector 1 17 are required, so both the solar cell 1 16 and the solar collector 1 17 are required. Control so that the output increases as much as possible. Specifically, when T 2 becomes T 1 + 10 ° C or more, the fan 1 19 of the solar collector 1 17 is turned on, and T 3 reaches its set temperature, for example, 60. The rotation speed of fan 1 19 is controlled by controller 1 2 3. If T2 and T3 exceed 60, increase the rotation speed of fan 119 so that T2 and T3 can be suppressed to 60 : C. .
  • the efficiency of the solar cell 1 16 is prevented from lowering due to the high temperature, and the efficiency of the adsorption type humidity controller 1 107 is increased by the heat output from the solar collector 1 17. Can be improved at the same time.
  • the heat output from the solar collector 117 enters the adsorption type humidity controller 107 and is used for dehumidifying indoor air. At this time, the temperature level is important.
  • thermoelectric thermostat 109 power to the thermoelectric thermostat 109 is required, but heat to the adsorption humidity controller 107 is unnecessary, so the output from the solar cell 116 is maximized.
  • the rotation speed of the fan 1 19 is increased by the controller 1 23 so that T 2 becomes equal to or less than T 1 +5.
  • thermoelectric temperature controller 109 both power to the thermoelectric temperature controller 109 and heat to the adsorption type humidity controller 107 are required, both heating and dehumidification require more heat. Control so as to take in as much heat as possible. More specifically, when T 2 exceeds T 1 +5 ° C, the fan 1 19 of the solar collector 1 17 is set to 0 N. Their to, T 3 is a set temperature, for example, I to 6 0 S C The rotation speed of fan 119 is controlled by control device 123 as described above, but it is not necessary to suppress the temperature of T3 even when the temperature exceeds 60 ° C.
  • thermoelectric temperature controller 109 The heat output from the solar collector 117 is given to the thermoelectric temperature controller 109, and to the heat exchanger 108 and the adsorption humidity controller 107, These percentages depend on the set temperature and humidity levels. At this time, both the temperature level and the amount of heat are important.
  • thermoelectric temperature controller 109 The power and heat to the thermoelectric temperature controller 109 are required, but the heat output needs to be more than the temperature level. Therefore, lower the temperature level to get more heat. Specifically, when T 2 becomes Tl + 5 ° C or more, the fan of the solar collector 1 17 is turned ON. Then, the control device 123 controls the number of revolutions of the fan 119 so that ⁇ T 3 becomes a set temperature, for example, 40 ° C. If T3 becomes 40 ° C or more, increase the rotation speed of fan 119 so that the temperature of T3 can be kept at 40 ° C.
  • the heat output from the solar collector 117 is given to the thermoelectric heater 109 partly and to the heat exchanger 108 partly.These ratios are the set temperature and humidity. Depends on the level. In this case, the amount of heat is important.
  • thermoelectric temperature controller 109 using thermoelectric elements is used as an example of an electric temperature controller, but the electric temperature controller is shown in FIG. 14.
  • a compression temperature controller 124 may be used.
  • This compression-type thermostat 124 uses a normal heat pump, and has an outside air side 125 located on the third regeneration passage 105 c side and an air conditioning passage 104 side.
  • An outdoor unit consisting of a three-way valve 1 2 8, a compressor 1 2 9, an expansion valve 13 0, etc., through a refrigerant pipe 1 2 7 with the indoor side 1 2 6 located Connected to 1 3 1.
  • the load on the thermoelectric element can be reduced, the efficiency can be improved, and the outlet temperature can be reduced. It can be controlled accurately by the thermoelectric heating and cooling equipment used. Further, since the air-conditioning passage and the regeneration passage have a body structure, the size and cost of the entire air-conditioning apparatus can be reduced.
  • an air-conditioning system of an bridge type using a solar cell as a power source of an electric temperature controller and using air heated by the sun.
  • the air can be dehumidified without being cooled by the electric temperature controller, thereby reducing the load of the electric temperature controller on the humidity control function.
  • the effect is remarkable when a thermoelectric element is used for an electric temperature controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Central Air Conditioning (AREA)

Abstract

An air conditioning device comprising a humidity control equipment using a moisture absorbent, a thermoelectric heating and cooling apparatus utilizing a thermoelectric element, an air conditioning path formed by connecting in series a part of the humidity control equipment and a part of the thermoelectric heating and coooling apparatus and a regenerating path formed by connecting in series the other part of the humidity control equipment and the other part of the thermoelectric heating and cooling apparatus. An air conditioning system including a hybrid solar panel comprising a power generating portion utilizing solar energy and a heat collecting portion and a hybrid air conditioner having an adsorption type humidity control equipment and an electric type temperature controlling apparatus both disposed in an air conditioning path, wherein the heat collecting portion is connected to the regenerating paths of the adsorption type humidity control equipment and electric type temperature controlling apparatus, respectively, via a heat collecting path and the power generating portion is connected to a power receiving portion of the electric type temperature controlling apparatus.

Description

明細書 空調装置及びそれを含む空調システム 技術分野  TECHNICAL FIELD The present invention relates to an air conditioner and an air conditioning system including the same.
こ の発明は、 熱電素子を用いた熱電式調温器と吸湿剤を用いた 調湿器を用いて空気の温度と湿度を調節するよ う に した空調装置 及びそれを含む空調システムに関する。 背景技術  The present invention relates to an air conditioner that adjusts the temperature and humidity of air using a thermoelectric temperature controller using a thermoelectric element and a humidity controller using a moisture absorbent, and an air conditioning system including the same. Background art
熱電素子だけを用いて空気の温度と湿度を調節するよう に した ものと して小型の除湿機や冷蔵庫が現在実用化されている。 しか し、 調温だけで除湿するには、 空気を冷却 して空気中の相対湿度 を 1 0 0 %に して結露させなければならないため、 大温度差を作 り出す運転が必要となるが、 熱電素子は温度差が大き く なるほど 効率が悪く なるため、 中, 大型の除湿機や冷蔵庫に適用するには コ ス ト及び効率の点で不十分であるという問題があった。  Small dehumidifiers and refrigerators are currently in practical use as devices that control the temperature and humidity of air using only thermoelectric elements. However, in order to dehumidify only by adjusting the temperature, the air must be cooled and the relative humidity in the air must be reduced to 100% to cause dew condensation, so an operation that creates a large temperature difference is required. However, the efficiency of thermoelectric elements becomes worse as the temperature difference increases, and there is a problem that the cost and efficiency are insufficient for application to medium and large dehumidifiers and refrigerators.
一方、 熱電素子とシ リ カゲル等の吸湿剤とを用い、 熱電素子で 調温を行ない、 吸湿剤にて調湿をするよう に した空調装置が、 実 開昭 6 4 — 1 3 7 4号, 実開平 4 一 5 0 3 8 6号の各公報で知ら れている。  On the other hand, an air conditioner that uses a thermoelectric element and a desiccant such as silica gel to control the temperature with the thermoelectric element and to control the humidity with the desiccant has been disclosed in Jpn. This is known from the official gazettes of Jpn.
しかしながら、 熱電素子と吸湿剤とを用いた上記従来の技術は、 熱電素子を用いた加熱冷却機 (調温器) と、 吸湿剤を用いた除湿 機 (調湿器) とが、 装置内において分離しているのみならず、 調 温, 調湿という制御機能上のつながり も無く 、 全く 独立に存在し ているに過ぎない構成となっていたため、 熱電素子の効率が悪い 点も相俟って、 所定の量の空気を調温, 調湿するためには、 大が かりで、 しかも制御性の悪い装置となって しま う という 問題が のった However, the above-described conventional technology using a thermoelectric element and a desiccant uses a heating / cooling device (thermostat) using a thermoelectric element and a dehumidifier (humidifier) using a desiccant in an apparatus Not only are they separated, but there is no connection in the control functions of temperature control and humidity control. In addition to this, the efficiency of the thermoelectric element is low, and the temperature and humidity of a predetermined amount of air are large and poorly controlled. The problem of becoming a device
なお、 圧縮機を用いて空気の調温, 調湿をする ものでは、 上記 問題はないが、 熱媒体に代替フロ ンを用いたと しても、 代替フ ロ ンの使用が将来的には環境上の問題となるこ とは避けられない。 そ 二で、 本発明の一つの目的は、 前述の問題点に鑑み、 熱電素 子と吸湿剤とを用いた空調装置において、 熱電素子に対する負荷 を軽減できて、 これの効率向上を図る こ とができる と共に、 空調 温度及び湿度を正確に制御でき、 あわせて小型化と低コス 卜化を 図るこ とができるようにした空調装置を提供するこ とにある。 また、 他の従来の空調装置、 特に熱電式調温器を用いた空調装 置 と し て 実開 平 2 — 1 2 1 1 1 7 号公報及 び特開平 5 — 1 0 5 4 3号公報に示されたものが知られている。  In the case of using a compressor to control the temperature and humidity of air, the above problem does not occur. However, even if a substitute for the heat medium is used, the use of a substitute for the environment will not affect the environment in the future. The above problems are inevitable. One object of the present invention, in view of the above-mentioned problems, is to reduce the load on the thermoelectric element in an air conditioner using a thermoelement and a desiccant, and to improve the efficiency of the air conditioner. It is an object of the present invention to provide an air conditioner capable of accurately controlling the temperature and humidity of the air conditioner, and at the same time, reducing the size and cost. Another conventional air conditioner, particularly an air conditioner using a thermoelectric temperature controller, is disclosed in Japanese Unexamined Utility Model Application Publication No. Heisei 2-1-211117 and Japanese Unexamined Patent Publication No. Heisei 5-10543. Are known.
そ して、 上記従来のハイブリ ツ ド空調装置の前者は、 電子冷却 ュニッ 卜の熱電素子の電源とフ ァ ンの電源に太陽電池を用いた構 成となっている。  The former of the above-mentioned conventional hybrid air conditioners has a configuration in which a solar cell is used as a power supply for a thermoelectric element of a thermoelectric cooling unit and a power supply for a fan.
また、 上記従来のハイブリ ツ ド空調装置の後者は、 熱電素子の 電源に太陽電池を用いており、 また太陽熱にて暖められた空気を 熱電素子の吸熱側に通すと共に、 居住空間内に供給して暖房する ようにしている。  In addition, the latter conventional hybrid air conditioner uses a solar cell as a power supply for the thermoelectric element, and supplies air heated by solar heat to the heat absorption side of the thermoelectric element and supplies the air into the living space. To heat it.
上記両従来のハイプリ ッ ド空調装置でも、 空気中の湿度の除去 は、 熱電素子にて空気温度を低く して、 この空気中の水分を結露 させるこ とによ り行う よう になっていた。 そのため、 除湿しょう とすると熱電素子に大きな負担がかかり、 現在の技術における熱 電素子では、 熱電効率等からこの負担に耐える こ とができなかつ た。 従って、 上記従来のハイブリ ツ ド空調装置では、 積極的に空 気中の水分を除去するこ とができず、 湿度調整を含む空調を効率 よ く行なう ことができなかった。 In both of the above conventional hybrid air conditioners, the elimination of humidity in the air is performed by lowering the air temperature with a thermoelectric element and condensing the moisture in the air. Therefore, dehumidifier Therefore, a heavy load is imposed on the thermoelectric element, and the thermoelectric element in the current technology cannot withstand this burden due to thermoelectric efficiency and the like. Therefore, the above-mentioned conventional hybrid air conditioner could not actively remove moisture in the air, and could not efficiently perform air conditioning including humidity adjustment.
そこで、 本発明の他の目的は、 上記問題点に鑑み、 空気の除湿 を電気式調温器による空気の冷却による こ とな く 行なう こ とかで きて、 調湿機能に対する電気式調温器の負担を軽減でき、 また太 陽電池の効率向上と調湿機の効率向上を図る こ とができ、 さ らに 冬期の場合にも高効率で運転する こ とができるよ う に したハイブ リ ッ ド式の空調システムを提供することを目的とするものである。 発明の開示  In view of the above problems, another object of the present invention is to perform air dehumidification without cooling air by an electric temperature controller, and to provide an electric temperature controller for a humidity control function. Load, and the efficiency of the solar cell and humidity controller can be improved, and the hybrid can be operated with high efficiency even in winter. It is intended to provide a head-type air conditioning system. Disclosure of the invention
上記一つの目的を達成するために、 本発明の一つの態様によれ ば、  In order to achieve one of the above objects, according to one aspect of the present invention,
吸湿剤を用いた調湿器と、 熱電素子を用いた熱電式加熱冷却器 と、 前記調湿器と前記熱電式加熱冷却器のそれぞれの一部を直列 に接続して成る空調通路と、 前記調湿器と前記熱電式加熱冷却器 のそれぞれの他の一部を直列に接続して成る再生通路とを含む空 調装置が提供される。  A humidity controller using a moisture absorbent, a thermoelectric heating / cooling device using a thermoelectric element, an air conditioning passage formed by connecting a part of each of the humidity controller and the thermoelectric heating / cooling device in series, An air conditioner including a humidifier and a regeneration passage formed by connecting another part of each of the thermoelectric heating / cooling units in series is provided.
上記構成において、 さ らに熱交換器を含み、 前記熱交換器の一 部が前記空調通路の一部を成し、 前記熱交換器の他部が前記再生 通路の一部を成すようにしても良い。  The above configuration further includes a heat exchanger, wherein a part of the heat exchanger forms a part of the air conditioning passage, and another part of the heat exchanger forms a part of the regeneration passage. Is also good.
さ らに、 上記構成において、 さ らに前記再生通路の前記調湿器 の上流側に加熱源を配置しても良い。 上記構成によれば、 室内または室外から空調通路に吸入された 空気は、 調湿器の一部を通る こ とによ り除湿あるいは加湿され ついで、 熱電式加熱冷却器にて最終の空調温度に加熱あるいは冷 却され、 あるいは熱交換器で最終空調空気の温度に近い温度に加 熱あるいは冷却され、 ついで熱電式加熱冷却器にて最終の空調温 度になるように冷却あるいは加熱される。 Further, in the above configuration, a heating source may be arranged on the regeneration passage upstream of the humidity controller. According to the above configuration, the air sucked into the air conditioning passage from inside or outside the room is dehumidified or humidified by passing through a part of the humidifier. Heated or cooled, or heated or cooled in a heat exchanger to a temperature close to the temperature of the final air-conditioning air, and then cooled or heated to the final air-conditioning temperature in a thermoelectric heating / cooling device.
一方、 上記空調通路を通る空調空気の空調作用によ り調湿器は 加湿あるいは除湿され、 また熱交換器は冷却あるいは加熱され さ らに熱電式加熱冷却器は加熱あるいは冷却されるが、 これらは 再生通路を流れる再生空気にてそれぞれ再生される。  On the other hand, the humidifier is humidified or dehumidified by the air-conditioning action of the conditioned air passing through the air-conditioning passage, the heat exchanger is cooled or heated, and the thermoelectric heating / cooling device is heated or cooled. Are regenerated by the regeneration air flowing through the regeneration passage.
従って、 熱電素子と吸湿剤を用いた空調装置において、 熱電素 子の負担を軽減できて、 その効率向上を図る こ とができる と共に 出口温度を熱電素子を用いた熱電式加熱冷却装置にて正確に制御 できる。 また、 空調通路と再生通路とがー体構成となっているの で、 空調装置全体の小型化と低コス ト化を図る こ とができる。  Therefore, in an air conditioner using a thermoelectric element and a desiccant, the load on the thermoelement can be reduced, the efficiency can be improved, and the outlet temperature can be accurately controlled by a thermoelectric heating / cooling device using the thermoelectric element. Can be controlled. Further, since the air-conditioning passage and the regeneration passage have a body structure, the size and cost of the entire air-conditioning system can be reduced.
さ らに、 上記他の目的を達成するために、 本発明の他の態様に よれば、  Furthermore, according to another aspect of the present invention, there is provided another aspect of the present invention,
太陽エネルギによる発電部及び集熱部とからなるハイプリ ッ ド ソーラパネルと、 空調通路内に吸着式調湿器と電気式調温器とを 配置してなるハイプリ ッ ド空調機とを含み、 前記集熱部を前記吸 着式調湿器の再生通路部と前記電気式調温器の再生通路部とに集 熱通路を介して接続し、 前記発電部を電気式調温器の受電部に接 続した空調システムが提供される。  A hybrid solar panel including a power generation unit and a heat collection unit using solar energy, and a hybrid air conditioner including an adsorption type humidity controller and an electric temperature controller disposed in an air conditioning passage; A heat collecting section is connected to a regeneration passage section of the adsorption type humidity controller and a regeneration passage section of the electric temperature regulator via a heat collection path, and the power generation section is connected to a power receiving section of the electric temperature regulator. A connected air conditioning system will be provided.
上記構成において、 前記発電部の温度を測定する温度測定部と . 該温度測定部にて測定された温度に応じて前記集熱部の外気吸引 フ ァ ンの運転を制御する制御部とを備えていても良い。 In the above configuration, a temperature measuring section for measuring a temperature of the power generation section; A control unit for controlling the operation of the fan may be provided.
さ らに、 上記構成において、 前記電気式調温器において熱電素 子を用いるのが望ま しい。  Further, in the above configuration, it is desirable to use a thermoelement in the electric temperature controller.
上記構成によれば、 ハイブリ ツ ド空調機では、 空調通路へ吸入 された空気は吸着式調湿器にて調湿され、 ついで電気式調温器に て調温されて室内へ流入される。 一方、 ハイブリ ツ ドソーラパネ ルでは、 発電部にて発電され、 集熱部にて加熱された空気を供給 する。 そ して、 上記集熱部からの加熱空気は、 吸着式調湿器の再 生空気と して用いられる と共に、 電気式調温器の加熱用 (再生 用) の熱源と しても作用する。 また、 上記発電部が電気式調温器 の電源と して用いられる。  According to the above configuration, in the hybrid air conditioner, the air sucked into the air conditioning passage is humidified by the adsorption type humidifier, and then the temperature is adjusted by the electric temperature controller and flows into the room. On the other hand, in a hybrid solar panel, power is generated by the power generation unit and air heated by the heat collection unit is supplied. The heated air from the heat collecting section is used not only as regeneration air for the adsorption type humidity controller, but also as a heat source for heating (for regeneration) the electric temperature controller. . Further, the power generation unit is used as a power source of an electric temperature controller.
従って、 電気式調温器の電源に太陽電池を用い、 さ らに太陽に て暖められた空気を利用するよう に したハイプリ ッ ド式の空調シ ステムにおいて、 空気の除湿を電気式調温器による空気の冷却に よる こ となく行なう ことができて、 調湿機能に対する電気式調温 器の負担を軽減できる。 特に、 こ の点は、 電気式調温器に熱電素 子を用いた場合に、 効果が顕著である。 また、 ハイブリ ツ ドソー ラパネルからの熱量と電力の供給を適宜制御する こ とによ り、 太 陽電池の効率向上と、 調湿機の効率向上を図る こ とができ、 さ ら に冬期の場合にも高効率で運転することができる。 図面の簡単な説明  Therefore, in a hybrid air-conditioning system that uses solar cells as the power source for the electric temperature controller and uses the air warmed by the sun, the electric temperature controller controls the dehumidification of the air. This can be performed without the need to cool the air by means of air, and the burden on the electric temperature controller for the humidity control function can be reduced. In particular, this effect is remarkable when a thermoelement is used for an electric temperature controller. In addition, by appropriately controlling the amount of heat and power supplied from the hybrid solar panel, it is possible to improve the efficiency of the solar cell and the humidity controller, and in winter It can be operated with high efficiency. BRIEF DESCRIPTION OF THE FIGURES
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定する ことを意図する ものではな く 、 単 に説明及び理解を容易とするものである。 The invention will be better understood from the following detailed description and the accompanying drawings illustrating an embodiment of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but are merely examples. To facilitate explanation and understanding.
図中、  In the figure,
図 1 は、 本発明による空調装置の一実施例を示す概略的な構成 説明図である。  FIG. 1 is a schematic structural explanatory view showing an embodiment of an air conditioner according to the present invention.
図 2 は、 上記実施例における再生空気の経路の一例を示す説明 図である,  FIG. 2 is an explanatory diagram showing an example of the path of the regenerated air in the above embodiment,
図 3 は 上記実施例における再生空気の経路の他例を示す説明 図である  FIG. 3 is an explanatory diagram showing another example of the path of the regeneration air in the above embodiment.
図 4 は 上記実施例における再生空気の経路のさ らに他例を示 す説明図である。  FIG. 4 is an explanatory view showing still another example of the path of the regeneration air in the above embodiment.
図 5 は、 湿り空気線図上における空調空気の温度及び湿度の変 化を示す説明図である。  FIG. 5 is an explanatory diagram showing changes in the temperature and humidity of the conditioned air on the psychrometric chart.
図 6は、 上記実施例の第 1具体例を示す構成説明図である。 図 7は、 上記実施例の第 2具体例を示す構成説明図である。 図 8は、 上記実施例の第 3具体例を示す構成説明図である。 図 9は、 上記第 1具体例の第 1 応用例を示す断面図である。 図 1 0 は、 上記第 1具体例の第 2応用例を示す断面図である。 図 1 1 は、 上記第 1具体例の第 3応用例を示す断面図である。 図 1 2は、 調湿器の他の具体例を示す一部破断斜視図である。 図 1 3 は、 本発明による空調システムの一実施例を模式的に示 す構成説明図である。  FIG. 6 is a configuration explanatory view showing a first specific example of the above embodiment. FIG. 7 is an explanatory diagram of a configuration showing a second specific example of the above embodiment. FIG. 8 is a configuration explanatory view showing a third specific example of the above embodiment. FIG. 9 is a cross-sectional view showing a first application example of the first specific example. FIG. 10 is a sectional view showing a second application example of the first specific example. FIG. 11 is a sectional view showing a third application example of the first specific example. FIG. 12 is a partially cutaway perspective view showing another specific example of the humidity controller. FIG. 13 is a configuration explanatory view schematically showing one embodiment of the air conditioning system according to the present invention.
図 1 4 は、 電気式調温器と して圧縮式調温器を用いた空調装置 の一例を示す模式的な構成説明図である。 発明を _実施するための好適な態 以下に、 本発明の好適実施例による空調装置を添付図面を参照 しながら説明する。 FIG. 14 is a schematic configuration explanatory view showing an example of an air conditioner using a compression type temperature controller as an electric temperature controller. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an air conditioner according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
図 1 は本発明に係る空調装置の一実施例の概略的な構成を示し ており、 図中 1 は調湿器、 2 は熱交換器、 3 は熱電式加熱冷却器 (調温器) である。 そして、 4は空調通路、 5は再生通路である。 上記調湿器 1 は、 通風路を構成する多数のハニカム状の隔壁を 有しており、 かっこの各隔壁の表面にシ リ カゲル等の吸湿剤を塗 布した構成となっている。 この調湿器 1 の一部が空調通路 4 の一 部である空調通路部 1 a となり、 他の一部が再生通路 5 の一部で ある再生通路部 1 b となっている 。 そして、 この調湿器 1 を回転 式とするこ とによ り、 両通路部 1 a , 1 b は順次入れ替わるよう になっている。  FIG. 1 shows a schematic configuration of an embodiment of an air conditioner according to the present invention, in which 1 is a humidity controller, 2 is a heat exchanger, and 3 is a thermoelectric heating / cooling device (temperature controlling device). is there. 4 is an air conditioning passage, and 5 is a regeneration passage. The humidity controller 1 has a large number of honeycomb-shaped partitions constituting a ventilation path, and has a configuration in which a hygroscopic agent such as silica gel is applied to the surfaces of the respective brackets. A part of the humidifier 1 is an air-conditioning passage 1a which is a part of the air-conditioning passage 4, and another part is a regeneration passage 1b which is a part of the regeneration passage 5. By making the humidity controller 1 a rotary type, the two passage portions 1a and 1b are sequentially switched.
この調湿器 1 の具体的な例と しては、 除湿ロータ と して市販さ れている回転式除湿器がある。  A specific example of the humidity controller 1 is a rotary dehumidifier that is commercially available as a dehumidifier rotor.
熱交換器 2 は、 その一部が空調通路 4 の一部である空調通路部 2 a となり、 他の一部が再生通路 5 の一部である再生通路部 2 b となっている。  A part of the heat exchanger 2 is an air-conditioning passage 2 a that is a part of the air-conditioning passage 4, and another part is a regeneration passage 2 b that is a part of the regeneration passage 5.
この熱交換器 2の具体的な例と しては、 従来公知の回転蓄熱式 熱交換器、 定置式のプレー ト型熱交換器、 定置式ヒー トパイプ型 熱交換器等がある。  Specific examples of the heat exchanger 2 include a conventionally known rotary regenerative heat exchanger, a stationary plate heat exchanger, a stationary heat pipe heat exchanger, and the like.
熱電式加熱冷却器 3 は、 多数の熱電素子を集積した構成となつ ていて、 この各熱電素子の一方の電極が上記空調通路 4 の一部で ある空調通路部 3 a に臨んでおり、 他方の電極が再生通路 5 の一 部である再生通路部 3 bに臨んでいる。  The thermoelectric heating / cooling device 3 has a configuration in which a large number of thermoelectric elements are integrated, and one electrode of each thermoelectric element faces the air conditioning passage 3 a which is a part of the air conditioning passage 4, and the other electrode. These electrodes face the regeneration passage 3b which is a part of the regeneration passage 5.
上記空調通路 4 は、 調湿器 1 , 熱交換器 2, 熱電式加熱冷却器 3 の各空調通路部 l a , 2 a , 3 a を直列状に接続 した構成と なっていて、 その入口側が室内まはた室外に開口され、 また出口 側がク リー ンルームや居室等、 空調空気を必要とする被空調室に 開口されている。 The air conditioning passage 4 consists of a humidity controller 1, a heat exchanger 2, and a thermoelectric heating / cooling device. The air-conditioning passages la, 2a, and 3a in Fig. 3 are connected in series, and the inlet side is open to the inside or outside of the room, and the outlet side is used to supply conditioned air such as a clean room or living room. It is open to the required room to be conditioned.
上記再生通路 5 は、 熱電式加熱冷却器 3 , 熱交換器 2 , 調湿器 1 の各再生通路部 3 b , 2 b , l bを直列に接続した構成となつ ていて、 その流れ方向が上記空調通路 4 の流れ方向と逆になつて いる。 そ して、 その入口側が室内または室外に開口され、 また出 口側が室内または室外へ開口されている。  The regeneration passage 5 has a configuration in which the regeneration passages 3 b, 2 b, and lb of the thermoelectric heating / cooling device 3, the heat exchanger 2, and the humidity controller 1 are connected in series. It is opposite to the flow direction of the air conditioning passage 4. The entrance side is opened indoors or outdoors, and the exit side is opened indoors or outdoors.
また、 再生通路 5 においては、 熱電式加熱冷却器 3 の下流側に 室内または室外等の他の系路に連通した吸排気通路 6 a が接続さ れている。 また、 再生通路 5 は、 熱交換器 2 をバイ パスする熱交 換バイパス通路 7を有しており、 こ の熱交換器バイパス通路 7 に 室内または室外等他の系路に連通した吸排気通路 6 bが接続され ている。  In the regeneration passage 5, an intake / exhaust passage 6 a communicating with another system passage such as indoor or outdoor is connected downstream of the thermoelectric heating / cooling device 3. The regeneration passage 5 has a heat exchange bypass passage 7 that bypasses the heat exchanger 2. The heat exchange bypass passage 7 has an intake / exhaust passage that communicates with another system such as an indoor or outdoor passage. 6 b is connected.
上記再生通路 5 においては、 調湿器 1 の上流側に、 この調湿器 1 の再生通路部 1 b に入る再生空気を加熱するための ヒータ 8 が 介装してある。  In the regeneration passage 5, a heater 8 for heating the regeneration air entering the regeneration passage 1 b of the humidity controller 1 is provided upstream of the humidity controller 1.
上記各吸排気通路 6 a , 6 b とバイパス通路 7 と再生通路 5 と の各接続点には三方切換弁等の方向切換弁 9が介装してある。 上記実施例の作用を以下に説明する。  A directional switching valve 9 such as a three-way switching valve is interposed at each connection point between the intake and exhaust passages 6a and 6b, the bypass passage 7, and the regeneration passage 5. The operation of the above embodiment will be described below.
( 1 ) 高温 ♦ 高湿空気の空調  (1) High temperature ♦ High humidity air conditioning
室内または室外から空調通路 4 へ吸入された高温 , 高湿の空気 は、 まず調湿器 1 の空調通路部 1 aで除湿されて絶対湿度が低下 させられる。 このときの除湿作用はシ リ カゲル等の吸湿剤によ り 行なわれる。 そのため、 このときの水分凝縮によ り潜熱が放出さ れて、 調湿器 1 の空調通路部 1 a を出る空気の温度は吸入時よ り 上昇する。 The high-temperature, high-humidity air sucked into the air conditioning passage 4 from the room or outside is first dehumidified in the air conditioning passage 1a of the humidity controller 1 to reduce the absolute humidity. The dehumidifying effect at this time is due to a moisture absorbent such as silica gel. Done. Therefore, the latent heat is released by the condensation of water at this time, and the temperature of the air exiting the air conditioning passage 1a of the humidity controller 1 rises more than at the time of inhalation.
また、 調湿器 1 の空調通路部 1 a の吸湿剤は吸湿によ り徐々 に 劣化するが、 この調湿器 1 に回転式除湿器を用いた場合、 空調通 路 1 に臨む空調通路部 1 a は徐々 に再生通路 5 に臨む再生通路部 1 b と入れ替り、 吸湿剤は再生通路 5に臨む時に順次再生される。 調湿器 1 の空調通路部 l a にて除湿される こ とによ り温度が上 昇した空調空気は、 熱交換器 2 の空調通路部 2 a で必要とする温 度に近い温度まで冷却される。 これに伴って、 そのときの空調空 気の相対湿度は上昇する。 なお、 このときの絶対湿度は変わらな い。  The moisture absorbent in the air conditioning passage 1a of the humidifier 1 gradually deteriorates due to moisture absorption, but when a rotary dehumidifier is used for the humidifier 1, the air conditioning passage facing the air conditioning passage 1 is used. 1 a gradually replaces the regeneration passage 1 b facing the regeneration passage 5, and the desiccant is regenerated sequentially as it approaches the regeneration passage 5. The conditioned air whose temperature has risen due to dehumidification in the air conditioning passage la of the humidity controller 1 is cooled to a temperature close to the required temperature in the air conditioning passage 2 a of the heat exchanger 2. You. Accordingly, the relative humidity of the air-conditioned air at that time rises. The absolute humidity at this time does not change.
次に、 空調空気は、 熱電式加熱冷却器 3 の空調通路部 3 a にて 所定の温度に調温される。  Next, the conditioned air is adjusted to a predetermined temperature in the air conditioning passage 3 a of the thermoelectric heating / cooling device 3.
このときの熱電式加熱冷却器 3 の空調通路 3 a は冷却側となつ ており、 空調空気はこ こを通過する こ とによ りその顕熱が吸収さ れて冷却される。 そ して、 この時の冷却温度は熱電素子への通電 量を制御することにより正確に制御される。  At this time, the air conditioning passage 3a of the thermoelectric heating / cooling device 3 is on the cooling side, and the conditioned air is cooled by absorbing the sensible heat as it passes through it. Then, the cooling temperature at this time is accurately controlled by controlling the amount of electricity to the thermoelectric element.
次に、 上記空調通路 4 に対する再生通路 5側の作用を説明する。 再生通路 5を通る再生空気によ り熱電式加熱冷却器 3 の再生通 路部 3 bの熱が奪われて、 空調通路部 3 a にて吸収した熱は再生 通路部 3 bから放出される。  Next, the operation of the regeneration passage 5 on the air conditioning passage 4 will be described. The heat in the regeneration passage 3b of the thermoelectric heating and cooling device 3 is taken away by the regeneration air passing through the regeneration passage 5, and the heat absorbed in the air conditioning passage 3a is released from the regeneration passage 3b. .
また、 同様に熱交換器 2の再生通路部 2 bの熱が奪われて、 空 調通路部 2 aにて吸収した熱は再生通路部 2 bから放出される。 上記熱電式加熱冷却器 3 の再生通路部 3 b と熱交換器 2 の再生 通路部 2 bを通る間に、 これらから熱を吸収して温度が上昇した 再生空気は、 ヒータ 8にてさ らに昇温されて調湿器 1 の再生通路 部 1 bを通り、 空調通路部 1 a にて吸湿した後再生通路部 1 に 来た吸湿剤を乾燥して再生する。 Similarly, the heat of the regeneration passage 2b of the heat exchanger 2 is taken away, and the heat absorbed in the air conditioning passage 2a is released from the regeneration passage 2b. Regeneration of the regeneration passage 3b of the thermoelectric heating / cooling unit 3 and regeneration of the heat exchanger 2 While passing through the passage 2b, the regenerated air whose temperature has risen by absorbing heat from them is further heated by the heater 8, passes through the regeneration passage 1b of the humidity controller 1, and passes through the air conditioning passage. After absorbing moisture in section 1a, the desiccant that has entered regeneration passage section 1 is dried and regenerated.
このときの再生空気の通過系路は、 一般的には熱電式加熱冷却 器 3 , 熱交換器 2 , 調湿器 1 の各再生通路部 3 b , 2 b , l b を 直列状に接続した系路となるか、 再生空気の温度と熱電式加熱冷 却器 3 , 熱交換器 2 の各再生通路部 3 b , 2 b の温度との高低関 係によっては、 図 2 に示すよう に、 熱交換器 2 の再生通路部 2 b をバイパス したり、 図 3 に示すよう に、 熱電式加熱冷却器 3 の再 生通路部 3 b とその下流側とに別々の再生空気を用いたり、 さ ら に図 4 に示すように、 熱電式加熱冷却器 3 の再生通路 3 b とその 下流側を別々の再生空気を用いる と共に、 熱交換器 2 の再生通路 部 2 bの下流側に他の系路からの再生空気を流入させても良い。  The passage of the regeneration air at this time is generally a system in which the regeneration passages 3b, 2b, and lb of the thermoelectric heating / cooling unit 3, heat exchanger 2, and humidity controller 1 are connected in series. Depending on the relationship between the temperature of the regeneration air and the temperatures of the regeneration passages 3 b and 2 b of the thermoelectric heating / cooling device 3 and heat exchanger 2, as shown in FIG. The regeneration passage 2b of the exchanger 2 may be bypassed, or as shown in Fig. 3, separate regeneration air may be used for the regeneration passage 3b of the thermoelectric heating / cooling device 3 and its downstream side. As shown in Fig. 4, separate regeneration air is used for the regeneration passage 3b of the thermoelectric heating / cooling unit 3 and its downstream side, and another system is located downstream of the regeneration passage 2b of the heat exchanger 2. May be allowed to flow in.
また、 上記実施例では熱交換器 2を用いているが、 絶対湿度が 比較的低い場合には、 調湿器 1 と熱電式加熱冷却器 3 だけからな る空調器でも同様な効果が得られる。  In the above embodiment, the heat exchanger 2 is used.However, when the absolute humidity is relatively low, the same effect can be obtained with an air conditioner including only the humidity controller 1 and the thermoelectric heating / cooling device 3. .
上記空調通路 4 における空調空気の温度と湿度の推移を、 図 5 の湿り空気線図にて説明する。  The transition of the temperature and humidity of the conditioned air in the air conditioning passage 4 will be described with reference to the psychrometric chart of FIG.
例えば、 温度が 2 6 、 湿度が 5 5 % (相対湿度、 以下同 じ) の最終空調空気を得よう とする場合には、 このときの空調空気の 絶対湿度は 0 . 0 1 1 5 k g / k g (乾燥空気の湿度) となる。  For example, to obtain the final conditioned air at a temperature of 26 and a humidity of 55% (relative humidity, the same applies hereinafter), the absolute humidity of the conditioned air at this time is 0.011 kg / kg (humidity of dry air).
今、 空調される空気の入口温度が 3 3 、 入口湿度が 6 3 % ( A点) である場合、 調湿器 1 の空調通路部 1 aでは空調空気の 絶対湿度が上記の 0 . 0 1 1 5 k g / k g (乾燥空気の湿度) に なるまで除湿する。 この場合の温度は、 除湿作用に伴って発生す る水分凝固による潜熱の放出によ り上昇する。 そ して、 この場合 の温度 と 湿度 は等ェ ン タ ル ピ線 に沿 っ て上記絶対湿度 0 . 0 1 1 5 k g / k g (乾燥空気の湿度 : > になる B点まで変化 し 温度が 5 3て、 湿度が約 1 0 %となる。 Now, when the inlet temperature of the air to be air-conditioned is 33 and the inlet humidity is 63% (point A), the absolute humidity of the air-conditioned air in the air-conditioning passage 1a of the humidity controller 1 is 0.01 15 kg / kg (dry air humidity) Dehumidify until dry. In this case, the temperature rises due to the release of latent heat due to moisture coagulation that occurs with the dehumidifying action. Then, the temperature and humidity in this case change along the isoenthalpy line to the absolute humidity 0.01 15 kg / kg (dry air humidity:> point B) where the temperature changes. 5 The humidity is about 10%.
次に、 熱交換器 2では、 上記除湿状態の温度 5 3 てがなるベく 最終空調空気の温度 2 6 °Cに近づく よう に、 例えば 3 8 °Cにまで 冷却する。 これによ り、 このときの空調空気の湿度は 2 8 % (: C 点.) になる。  Next, in the heat exchanger 2, the temperature in the dehumidified state is cooled to, for example, 38 ° C. so as to approach the temperature of the final conditioned air of 26 ° C. As a result, the humidity of the conditioned air at this time becomes 28% (: C point).
この空調空気は、 さ らに熱電式加熱冷却器 3 にて所定の 2 6 て まで冷却され、 このときの湿度は 5 5 % ( D点) になる。  The conditioned air is further cooled to a predetermined 26 by the thermoelectric heating / cooling device 3, and the humidity at this time becomes 55% (point D).
上記作用によれば、 熱交換器 2の出口の空気と最終空調空気の 温度差は 1 2 °Cである。 そ して、 熱電素子は絶対湿度を変える こ とな く 、 温度のみを 3 8 °Cから 2 6 。Cにすればよ く 、 その間のェ ンタル ビの移動量は、 図 5 に示すよ う に 1 . 6 + 1 . 3 = 2 . 9 k c a 1 / k gで済む。  According to the above operation, the temperature difference between the air at the outlet of the heat exchanger 2 and the final conditioned air is 12 ° C. The thermoelectric element does not change the absolute humidity, and the temperature is only 38 ° C to 26 ° C. With C, the amount of movement of the enthalbi during that time is only 1.6 + 1.3 = 2.9 kca 1 / kg as shown in FIG.
なお、 上記実施例との比較のために、 上記図 5 を参照して、 従 来の技術であるところの、 熱電素子だけで除湿冷却を行なう場合 について説明すると、 以下のようになる。  For comparison with the above embodiment, a case of performing dehumidification cooling only by a thermoelectric element, which is a conventional technique, with reference to FIG. 5 will be described as follows.
温度 3 3 、 湿度 6 3 %の空気を除湿するには、 図中点線で示 すような変化で冷却して湿度を 1 0 0 %と して結露によ り除湿し な ければな ら ない。 従 っ て、 ま ず、 湿度 5 5 % にする に は、 1 6てまで空気を冷却する必要がある。  In order to dehumidify air with a temperature of 33 and a humidity of 63%, it is necessary to cool it down to a humidity of 100% and dehumidify it by condensation as shown by the dotted line in the figure. . Therefore, it is necessary to cool the air down to 16% before the humidity reaches 55%.
このように、 湿度 6 3 %の空気を湿度 5 5 %の空気にするには、 すなわち、 温度 3 3での空気を温度 1 6 °Cの空気にするには、 9 . 5 k c a 1 / k gのェンタルビの移動が必要である。 Thus, to convert air with a humidity of 63% to air with a humidity of 55%, that is, to convert air with a temperature of 33 into air with a temperature of 16 ° C, 9. A transfer of 5 kca 1 / kg enthalbi is required.
さ らに、 1 6 °Cまで冷却されて除湿された空気は、 その次に所 望の温度 2 6 までヒー夕で加熱されるため、 さ らに別の熱量の 移動を必要とする。  In addition, air that has been cooled to 16 ° C and dehumidified is then heated to the desired temperature of 26 and requires additional heat transfer.
( 2 ) 低温 · 低湿空気の空調  (2) Low temperature and low humidity air conditioning
空調される空気の入口側での温度と湿度が最終空調空気のそれら よ り低い場合には、 まず調湿器 1 で加湿 し、 次に熱交換器 2 で最 終空調空気の温度に近い温度まで加熱し、 最後に熱電式加熱冷却 器 3 にて所定の温度に加熱すれば良い。  If the temperature and humidity at the inlet side of the air to be conditioned are lower than those of the final conditioned air, first humidify the air in the humidifier 1 and then heat exchanger 2 to a temperature close to the temperature of the final conditioned air. , And finally heated to a predetermined temperature by the thermoelectric heating / cooling device 3.
図 6乃至図 8 はそれぞれ本発明に係る空調装置の具体例を示し ている。 図 6に示す第 1 具体例は、 調湿器 1 と して回転式除湿器 1 0を、 熱交換器 2 と して回転式熱交換器 1 1 をそれぞれ用いた ものである。  6 to 8 show specific examples of the air conditioner according to the present invention. In the first specific example shown in FIG. 6, a rotary dehumidifier 10 is used as the humidity controller 1, and a rotary heat exchanger 11 is used as the heat exchanger 2.
以下同様に、 図 7 に示す第 2具体例は、 熱交換器 2 と して定置 式プレー ト型熱交換器 1 2 を用いたものである。 また、 図 8 に示 す第 3具体例は、 熱交換器 2 と して定置式ヒー トパイプ型熱交換 器 1 3を用いたものである。  Similarly, the second specific example shown in FIG. 7 uses a stationary plate type heat exchanger 12 as the heat exchanger 2. In the third specific example shown in FIG. 8, a fixed heat pipe type heat exchanger 13 is used as the heat exchanger 2.
図 9は、 上記第 1 具体例である空調装置 1 4 を住宅に用いた第 1 応用例を示しており、 これは、 空調装置 1 4 を壁 1 5 内に埋込 んで室内の冷暖房用と して用いるものである。  FIG. 9 shows a first application example in which an air conditioner 14 as the first specific example is used in a house, which is used for indoor cooling and heating by embedding the air conditioner 14 in a wall 15. It is used.
図 1 0及び図 1 1 は、 それぞれ上記第 1 具体例を室内の冷暖房 用に用いた第 2及び第 3応用例を示している。  FIGS. 10 and 11 show second and third application examples, respectively, in which the first specific example is used for indoor cooling and heating.
図 1 0に示す第 2応用例は、 空調通路 4 の入口側と出口側が共 に室内に開口 している。 そ して、 熱電式加熱冷却器 3 の再生通路 部 3 bには外気が取入れられ、 これを冷却 して再び室外へ放出す 06311 In the second application example shown in FIG. 10, the inlet side and the outlet side of the air conditioning passage 4 are both open to the room. Then, outside air is taken into the regeneration passage 3b of the thermoelectric heating / cooling device 3, which cools it and discharges it to the outside again. 06311
- 13 - るようになっている。 また、 回転式の熱交換器 2及び回転式の調 湿器 1 の各再生通路部 2 b , 1 b には、 熱交換器 2 の上流側から 別の室外空気を取入れ、 これを再び室外に放出するよ う になって いる。 -13- In addition, another outdoor air is taken into the regeneration passage sections 2b and 1b of the rotary heat exchanger 2 and the rotary humidity controller 1 from the upstream side of the heat exchanger 2, and the outdoor air is returned to the outdoor again. Release.
図 1 1 に示す第 3 応用例は、 上記図 1 0 に示すものにおいて 調湿器 1 の再生通路部 1 bの上流側にも空気取入口が設けたもの である。  The third application example shown in FIG. 11 is the one shown in FIG. 10 described above, in which an air inlet is also provided on the upstream side of the regeneration passage 1 b of the humidity controller 1.
すなわち、 熱電式加熱冷却器 3 , 熱交換器 2 , 調湿器 1 のそれ ぞれの再生通路部 3 b, 2 b , l b の上流部に外気取入口 1 5 a , 1 5 b , 1 5 c が設けてある。 そ して、 この各外気取入口 1 5 a , 1 5 b , 1 5 c のそれぞれは開閉板 1 6 a, 1 6 b , 1 6 c を介 して太陽集熱器に接続されたダク ト 1 7 に接続されており、 また 熱電式加熱冷却器 3 と熱交換器 2 の両方の外気取入口 1 5 a , 1 5 bには、 上記開閉板 1 6 a, 1 6 bにて上記ダク ト 1 7側と 交互に連通 · 遮断される外気口 1 8 a, 1 8 bが接続されている c なお、 上記各開閉板 1 6 a , 1 6 b , 1 6 c は温度によ り開閉動 作するように した形状記憶合金を用いてもよい。 That is, outside air intakes 15a, 15b, 15 are located upstream of the regeneration passages 3b, 2b, and lb of the thermoelectric heating / cooling unit 3, the heat exchanger 2, and the humidity controller 1, respectively. c is provided. Each of the outside air intakes 15a, 15b, 15c is connected to a solar collector via a switchgear 16a, 16b, 16c. 17 and the outside air inlets 15a and 15b of both the thermoelectric heating / cooling unit 3 and the heat exchanger 2 are connected to the ducts by the open / close plates 16a and 16b. Note c sheet 1 7 side outside air inlet 1 8 and is communicating and blocking alternately a, 1 8 b are connected, each closing plate 1 6 a, 1 6 b, 1 6 c are shorted with a temperature-off An operative shape memory alloy may be used.
そ して、 この図 1 1 に示す第 3応用例では、 夏期の熱い時と冬 期の寒い時とで、 各開閉板 1 6 a , 1 6 b , 1 6 c の開閉位置を 変えて用いるようになつている。  In the third application example shown in Fig. 11, the open / close position of each open / close plate 16a, 16b, 16c is changed depending on whether it is hot in summer or cold in winter. It is like that.
すなわち、 夏期の熱い時には、 熱電式加熱冷却器 3 と熱交換器 2 に外気を入れ、 調湿器 1 にはダク ト 1 7から太陽集熱器よ りの 温風を入れる。  That is, when it is hot in summer, outside air is supplied to the thermoelectric heating / cooling unit 3 and the heat exchanger 2, and hot air from the solar collector is supplied to the humidity controller 1 from the duct 17.
また、 冬期の寒い時には、 熱電式加熱冷却器 3 と熱交換器 2 に 太陽集熱器よりの温風を入れ、 調湿器 1 の入口は閉じておく なお、 上記各例では、 調湿器 1 と して回転式で、 かつシ リ カ ゲ ル等の吸湿剤を使用 したもの用いているが、 その他の例 と しては 調湿器 1 と して膜モジュール構成のものを用いたものがある。 図 1 2 は、 この調湿器 1 の具体例を示 してお り 、 こ れは上下の ヘ ッ ダ 1 9 a , 1 9 b 間に多数の中空糸膜 2 0 が配置 し てあ り こ の中空糸膜 2 0 の中に吸湿流体あるいは再生流体を流 し、 中空 糸膜 2 0 の外側に空調空気を流すよ う にな つている。 そ して、 中 空糸膜 2 0 の外側を流れる空調空気は、 中空糸膜 2 0 を介 して こ の中空糸膜 2 0 内を流れる吸湿流体あるいは再生流体にて除湿 あるいは加湿されるよ う になっている。 Also, when the temperature is cold in winter, warm air from the solar collector is put into the thermoelectric heating / cooling unit 3 and the heat exchanger 2, and the inlet of the humidity controller 1 is closed. In each of the above examples, the humidifier 1 is a rotary type and uses a moisture absorbent such as silica gel, but as another example, the humidifier 1 is used. Some use a membrane module configuration. FIG. 12 shows a specific example of the humidity controller 1, in which a number of hollow fiber membranes 20 are arranged between upper and lower headers 19a and 19b. A moisture-absorbing fluid or a regeneration fluid is caused to flow through the hollow fiber membrane 20, and conditioned air is caused to flow outside the hollow fiber membrane 20. Then, the conditioned air flowing outside the hollow fiber membrane 20 is dehumidified or humidified by the moisture absorbing or regenerating fluid flowing through the hollow fiber membrane 20 via the hollow fiber membrane 20. It has become.
図 1 3 は、 上記第 3 応用例を実際に家屋に組み込んだ空調シス テムの一実施例を示 している。  FIG. 13 shows an embodiment of an air conditioning system in which the third application example is actually incorporated in a house.
図中、 1 0 1 はハイ ブ リ ッ ド空調機、 1 0 2 はハイ ブ リ ッ ド ソーラパネルである。  In the figure, 101 is a hybrid air conditioner and 102 is a hybrid solar panel.
ハイ ブリ ッ ド空調機 1 0 1 は、 軸直角方向に仕切り 壁 1 0 3 に て 2 分 してなる空調通路 1 0 4 と再生通路 (外気通路) 1 0 5 と を有するハウ ジ ング 1 0 6 と、 こ のハウ ジ ング 1 0 6 内に軸方向 に順次配置される吸着式調湿器 1 0 7 , 熱交換器 1 0 8 , 熱電式 調温器 1 0 9 とからな っ ている。 そ して、 上記空調通路 1 0 4 の 両端は室内 R Mに開放されている。 ま た、 再生通路 1 0 5 の両端 はダク 卜 1 0 0 を介して室外に導通されている。  The hybrid air conditioner 101 has a housing 10 having an air conditioning passage 104 divided into two by a partition wall 103 in a direction perpendicular to the axis and a regeneration passage (outside air passage) 105. 6 and an adsorption type humidity controller 107, a heat exchanger 108, and a thermoelectric temperature controller 109 arranged sequentially in the housing 106 in the axial direction. . Both ends of the air conditioning passage 104 are open to the room RM. Both ends of the regeneration passage 105 are electrically connected to the outside of the room via the duct 100.
上記吸着式調湿器 1 0 7 は、 通風路を構成する多数のハニカム 状の隔壁を有 してお り 、 かつ各隔壁の表面に シ リ カゲル等の吸湿 剤を塗布 した構成となっている。  The adsorption-type humidity controller 107 has a large number of honeycomb-shaped partition walls constituting a ventilation path, and has a configuration in which a hygroscopic agent such as silica gel is applied to the surface of each partition wall. .
そ して、 こ の吸着式調湿器 1 0 7 と熱交換器 1 0 8 は、 いずれ も上記仕切り壁 1 0 3 に軸支された回転円筒形になっていて、 回 転する こ とによ り各空調通路部と各再生通路部が順次空調通路 1 0 4 と再生通路 1 0 5に入れ替り臨むようになつている。 The adsorption-type humidity controller 107 and the heat exchanger 108 Each of the air conditioning passages and the regeneration passages is also formed in a rotating cylindrical shape supported by the partition wall 103 so that the air conditioning passages and the regeneration passages are sequentially rotated. Has come to be replaced.
熱電式調温器 1 0 9は、 多数の熱電素子を集積した構成となつ ていて、 この各熱電素子の一方の電極が空調通路 1 0 4 に臨んで おり、 他方の電極が再生通路 1 0 5に臨んでいる。  The thermoelectric thermostat 109 has a configuration in which a large number of thermoelectric elements are integrated. One electrode of each thermoelectric element faces the air-conditioning passage 104, and the other electrode is a regeneration passage 109. We are facing 5.
上記ハウジング 1 0 6 の空調通路 1 0 4 の入口部に空調フ ァ ン 1 1 0が設けてあり、 これによ り空調通路 1 0 4 の一端から吸引 された空気が吸着式調湿器 1 0 7 , 熱交換器 1 0 8 , 熱電式調温 器 1 0 9を経て空調通路 1 0 4 の他端へ排出されるよう になって いる。 そ して、 こ の空調通路 1 0 4 の他端の出 口 には加湿器 1 1 1 が配置されている。  An air-conditioning fan 110 is provided at the inlet of the air-conditioning passageway 104 of the housing 106 so that the air sucked from one end of the air-conditioning passageway 104 can absorb the air of the adsorption-type humidifier 1. The air is discharged to the other end of the air conditioning passageway 104 through the heat exchanger 107, the heat exchanger 108, and the thermoelectric temperature controller 109. A humidifier 111 is disposed at the outlet of the other end of the air conditioning passage 104.
上記再生通路 1 0 5 は、 空気が吸着式調湿器 1 0 7を通って室 外へ流れるようになつている第 1 再生通路 1 0 5 a と、 空気が熱 交換器 1 0 8 と吸着式調湿器 1 0 7 を経て室外へ流れるよ う に なっている第 2再生通路 1 0 5 b と、 空気が熱電式調温器 1 0 9 を通って室外へ流れるよう になつている第 3再生通路 1 0 5 c と からなつている。  The regeneration passage 105 has a first regeneration passage 105a through which air flows outdoor through the adsorption type humidity controller 107, and air adsorbs to the heat exchanger 108. A second regeneration passageway 105b, which flows outside through a humidity controller 107, and a second passageway, which allows air to flow outside through a thermoelectric temperature controller 109. It consists of 3 regeneration passages 1 0 5 c and.
そ し て 、 上記第 1 , 第 2 , 第 3 の各再生通路 1 0 5 a , 1 0 5 b , 1 0 5 c は そ れ ぞれ独立 し た 開 閉弁 1 1 2 a , 1 1 2 b , 1 1 2 c を介して外気導入ダク ト 1 1 3 に接続されて いる。  The first, second, and third regeneration passages 105a, 105b, and 105c are independent opening / closing valves 112a, 112, respectively. It is connected to the outside air introduction duct 113 via b and 112c.
なお、 第 2 , 第 3 の再生通路 1 0 5 b , 1 0 5 c の開閉弁 1 1 2 , 1 1 2 c は、 外気導入ダク ト 1 1 3 と室外に導通され たダク ト 1 1 4 aのいずれか、 外気導入ダク ト 1 1 3 と室外に導 通されたダク 卜 1 1 4 bのいずれかに、 それぞれ選択的に開く よ う になつている。 The open / close valves 112, 112c of the second and third regeneration passages 105b, 105c are connected to the outside air introduction duct 113, and the duct 114 connected to the outside. a, any outside air introduction duct 1 1 3 Each of the passed ducts 1 1 and 4b is selectively opened.
上記第 1 , 第 3の再生通路 1 0 5 a , 1 0 5 c の出口には、 そ れぞれ吹き出しフ ァ ン 1 1 5 a , 1 1 5 bが配置されている。  At the outlets of the first and third regeneration passages 105a and 105c, blow-out fans 115a and 115b are disposed, respectively.
ハイブリ ツ ドソーラパネル 1 0 2 は、 板状の太陽電池 1 1 6 と この太陽電池 1 1 6の裏側に設けられた太陽集熱器 1 1 7 とから 成っており、 これらは屋根 R Fの上面に設置されている。  The hybrid solar panel 102 consists of a plate-like solar cell 1 16 and a solar collector 1 17 provided on the back side of the solar cell 1 16 and these are installed on the top surface of the roof RF. Have been.
太陽集熱器 1 1 7は、 太陽電池 1 1 6 の裏側に沿う空胴 1 1 8 と、 こ の空胴 1 1 8内に外気を吸引する外気吸引フ ァ ン 1 1 9 と から成っている。 こ のフ ァ ン 1 1 9 は、 制御装置 1 2 3 によ り そ の回転数が制御される。 そ して、 こ の太陽集熱器 1 1 7 の空胴 1 1 8 は、 ダク ト 1 2 0 及び切換部 1 2 1 を介 して上記ハイ ブ リ ッ ド空調機 1 0 1 の外気導入ダク ト 1 1 3 に接続してある。 上 記切換部 1 2 1 は太陽集熱器 1 1 7からの加熱空気の一部あるい は全部を、 必要に応じて室内 Aへ流入させる こ とが可能な構成に なっている。  The solar collector 1 17 is composed of a cavity 1 18 along the back of the solar cell 1 16 and an outside air suction fan 1 19 that sucks outside air into the cavity 1 18. I have. The number of revolutions of the fan 1 19 is controlled by the control device 1 23. Then, the cavities 1 18 of the solar collector 1 17 are introduced into the outside air of the hybrid air conditioner 101 via the ducts 120 and the switching section 121. Connected to ducts 1 1 and 3. The switching section 121 is configured so that a part or all of the heated air from the solar collector 117 can flow into the room A as needed.
上記太陽電池 1 1 6 は、 ハイプリ ッ ド空調機 1 0 1 の熱電式調 温器 1 0 9の熱電素子に接続してある。 なお、 この熱電素子は商 用電源にも接続されている。  The solar cell 116 is connected to a thermoelectric element of a thermoelectric thermostat 109 of the hybrid air conditioner 101. This thermoelectric element is also connected to a commercial power supply.
次に、 上記空調システムの作用を説明する。  Next, the operation of the air conditioning system will be described.
室内 R Mから空調通路 1 0 4 へ吸入された高温 · 高湿の空気は まず吸着式調湿器 1 0 7 にて除湿されて絶対温度が低下される このときの除湿作用はシ リ カゲル等の吸着剤によ り行なわれる , このため、 このときの水分凝縮によ り潜熱が放出されて、 吸着式 調湿器 1 0 7の空調通路部を出た空気の温度は吸入口側よ り上昇 する。 High-temperature, high-humidity air drawn into the air-conditioning passage 104 from the indoor RM is first dehumidified by the adsorption-type humidity controller 107 to reduce the absolute temperature. Latent heat is released by the water condensation at this time due to the adsorbent, and the temperature of the air exiting the air conditioning passage of the adsorption type humidity controller 107 rises from the suction port side. I do.
このとき、 吸着式調湿器 1 0 7 の空調通路 1 0 4 に臨む部分の 吸着剤の吸水能力は水分の吸着によ り徐々 に劣化するが、 こ の吸 着除湿器 1 0 7が徐々に回転している こ とによ り、 この劣化した 部分が徐々 に再生通路 1 0 5側に臨む部分と入れ替り、 順次再生 される。  At this time, the water absorption capacity of the adsorbent in the portion of the adsorption type humidity controller 107 facing the air conditioning passage 104 gradually deteriorates due to the adsorption of moisture, but the adsorption and dehumidification device 107 gradually reduces the water absorption capacity. Due to this rotation, the deteriorated portion gradually replaces the portion facing the regeneration passage 105 side, and is sequentially reproduced.
吸着式調湿器 1 0 7 にて除湿される こ とによ り温度上昇した空 調空気は、 熱交換器 1 0 8 にて外気と熱交換されて降温される , これに伴って、 このときの空調空気の相対湿度は上昇する。 なお このときの絶対湿度は変わらない。  The air-conditioned air whose temperature has risen by being dehumidified by the adsorption-type humidity controller 107 is exchanged with outside air in the heat exchanger 108 to be cooled. The relative humidity of the conditioned air at the time increases. The absolute humidity at this time does not change.
次に、 空調空気は、 熱電式調温器 1 0 9 にて所定の温度に調温 されて再び室内 R Mへ排出される。  Next, the conditioned air is adjusted to a predetermined temperature by a thermoelectric temperature controller 109 and discharged again into the room RM.
このときの熱電式調温器 1 0 9の空調通路 1 0 4側は冷却側と してあり、 こ こを通過する こ とによ り、 空調空気はその顕熱が吸 収されて冷却される。 そ して、 この時の冷却温度は熱電素子への 通電量を制御するこ とによ り正確に制御される。 このための電力 はハイ ブリ ツ ドソーラパネル 1 0 2 の太陽電池 1 1 6 からの もの を使う。  At this time, the air conditioning passage 104 side of the thermoelectric temperature controller 109 is on the cooling side, and by passing through it, the conditioned air absorbs its sensible heat and is cooled. You. Then, the cooling temperature at this time is accurately controlled by controlling the amount of electricity to the thermoelectric element. The power for this is from the solar cells 1 16 of the hybrid solar panel 102.
上記空調作用時における再生通路 1 0 5 へは切換器 1 1 2 a , 1 1 2 b , 1 1 2 c の切換によ り室外空気、 あるいはハイブリ ツ ドソーラパネル 1 0 2の太陽集熱器 1 1 7からの空気が流入され、 この流入空気によ り吸着式調湿器 1 0 7 の吸着部が乾燥されて再 生される。 この場合、 必要に応じて吸着式調湿器 1 0 7 の再生通 路 1 0 5 の上流側に電熱器 1 2 2 を介装してこの吸入外気を加温 する。 なお、 上記吸着式調湿器 i 0 7 の再生用外気にハイ プ リ ッ ド ソーラパネル 1 0 2 からの加温空気を用いる こ と によ り 、 上記電 熱器 1 2 2 を用いる こ とな く 充分な熱量を吸入外気の加温に利用 する こ とができ る。 The outdoor air or the solar collector 110 of the hybrid solar panel 102 is switched to the regeneration passage 105 during the air-conditioning operation by switching the selectors 112a, 112b and 112c. The air from 7 flows in, and the adsorbing section of the adsorption type humidity controller 107 is dried and reproduced by the inflowing air. In this case, if necessary, an electric heater 122 is interposed on the upstream side of the regeneration passage 105 of the adsorption type humidity controller 107 to heat the intake air. The heater 122 is used by using the heated air from the hybrid solar panel 102 as the outside air for regeneration of the adsorption type humidity controller i07. Sufficient heat can be used to heat the intake air.
次に、 夏期と冬期における シ ステム運転モー ドを表 1 乃至表 4 に示す。 なお、 表 1 , 表 2 は夏期の シ ス テ ム運転モ ー ド、 表 3 表 4 は冬期のシステム運転モー ドをそれぞれ示 している。 各表中 ハイ ブ リ ッ ドソーラパネルの運転 0 N , 〇 F F とは、 0 Nはハイ プ リ ッ ドソーラパネル 1 0 2 を運転する場合即ち太陽 日射のある 場合、 O F F は運転 しない場合即ち太陽 日射のない場合を示 して い る 。 ま た、 太陽 ½熱器の運転の強弱 と は 、 外気吸入 フ ァ ン 1 1 9 の運転を制御 して、 太陽熱を多量に取り 込む場合と少量取 り込む場合の運転状態をいう。  Tables 1 to 4 show the system operation modes in summer and winter. Tables 1 and 2 show the system operation modes in summer, and Tables 3 and 4 show the system operation modes in winter. In each table, the operation of the hybrid solar panel 0 N, 〇 FF means that 0 N is when the hybrid solar panel 102 is operated, that is, when there is solar radiation, and OFF is when it is not operated, that is, there is no solar radiation. The case is shown. In addition, the strength of the operation of the solar heater refers to an operation state in which the operation of the outside air intake fan 119 is controlled to capture a large amount of solar heat or a small amount of solar heat.
Figure imgf000020_0001
2
Figure imgf000021_0001
Figure imgf000020_0001
Two
Figure imgf000021_0001
Figure imgf000021_0002
4
Figure imgf000021_0002
Four
Figure imgf000022_0001
Figure imgf000022_0001
次に上記の空調システムの制御について以下に説明する。 Next, control of the air conditioning system will be described below.
今、 外気の温度を T 1 、 太陽電池 1 1 6の裏側の温度を T 2 、 ハ イブリ ツ ド空調機 1 0 1 に導入される太陽集熱器 1 1 7からの空 気の温度を T3 、 室内の温度を Τ4 、 室内の湿度を Η4 、 室内の設 定温度を Τ5 、 室内の設定湿度を Η5 、 さ らに太陽電池 1 1 6の衷 側の設定温度を Τ6 とする。 そ して、 上記各温度及び湿度は、 それ ぞれの温度測定部及び湿度測定部 (いずれも図示せず) にて则定 するようになつている。  Now, let T1 be the temperature of the outside air, T2 be the temperature on the back side of the solar cell 116, and T3 be the temperature of the air from the solar collector 117 that is introduced into the hybrid air conditioner 101. The indoor temperature is set to Τ4, the indoor humidity is set to Η4, the indoor set temperature is set to Τ5, the indoor set humidity is set to Η5, and the set temperature of the solar cell 116 is set to Τ6. Each of the temperature and the humidity is measured by a temperature measuring unit and a humidity measuring unit (both not shown).
まず、 室内の設定温度 Τ5 , 設定湿度 Η5 と室内の温度 Τ4 , 湿 度 Η4 とを比較する。 この場合、 下記表 5 に示す 4つのケースが考 れる して、 の各ケースによって制御方法は異なる First, the indoor set temperature Τ5 and the set humidity Η5 are compared with the indoor temperature Τ4 and the humidity Η4. In this case, consider the four cases shown in Table 5 below. The control method differs depending on the case
Figure imgf000023_0001
Figure imgf000023_0001
• 制御の基本原則 • Basic principles of control
この空調システムは調温と調湿を独立して制御する方式である , すなわち、 上記表 5 の I 群は、 調温に関わる部分であり、 熱電式 調温器 1 0 9 によって制御され、 また Π群は、 調湿に関わる部分 であり、 吸着式調湿器 1 0 7 と熱交換器 1 0 8及び加温器 1 1 1 によって制御される。  This air conditioning system is a system that independently controls temperature control and humidity control.That is, group I in Table 5 above is a part related to temperature control, and is controlled by a thermoelectric temperature controller 109. Group II is a part related to humidity control, and is controlled by the adsorption type humidity controller 107, heat exchanger 108, and heater 111.
熱電式調温器 1 0 9の駆動は電気によって行なわれるが、 太陽 電池 1 1 6からの出力が優先的に用いられ、 不足の場合には商用 電源からの電力が用いられる。 また、 吸着式調湿器 1 0 7の吸湿 部の再生は加熱によって行なわれるが、 太陽集熱器 1 1 7 からの 熱出力が優先的に用いられ、 不足の場合に商用電源からの電力に よ り発熱する電熱器 1 2 2を用いる。  The thermoelectric temperature controller 109 is driven by electricity, but the output from the solar cell 116 is used preferentially, and in the case of insufficient power from the commercial power supply. Also, the regeneration of the moisture absorption part of the adsorption type humidity controller 107 is performed by heating, but the heat output from the solar collector 117 is used preferentially. Use an electric heater that generates more heat.
• 具体的な制御方法  • Specific control method
以下、 それぞれのケースにおけるハイ ブ リ ツ ドソーラノぐ ネル In the following, the hybrid blind solar cell in each case
1 0 2を用いた場合における制御方法を説明する。 ( ) ケース 1 (冷却、 除湿) The control method when 102 is used will be described. () Case 1 (cooling, dehumidification)
この場合には、 太陽電池 1 1 6 か らの電気出力及び太陽集熱器 1 1 7 からの熱出力が共に必要となるため、 太陽電池 1 1 6 及び 太陽集熱器 1 1 7 の両方の出力ができ る だけ多 く なる よ う 制御す る。 具体的には、 T 2 が T 1 + 1 0 °C以上にな る と太陽集熱器 1 1 7 のフ ァ ン 1 1 9 を O N と し、 T 3 がその設定温度、 例えば 6 0 になる よ う フ ァ ン 1 1 9 の回転数を制御装置 1 2 3 にて制 御する。 T 2 及び T 3 が 6 0 て以上になる よ う な場合には、 フ ァ ン 1 1 9 の回転数を強に して T 2 及び T 3 を 6 0 :Cに押える よ う にす る。 こ うする こ とによ っ て、 太陽電池 1 1 6 の高温化によ る効率 低下防止と太陽集熱器 1 1 7 か らの熱出力 に よ る 吸着式調湿器 1 0 7 の効率向上 と を同時に 図 る こ と かでき る 。 太陽集熱器 1 1 7 からの熱出力は吸着式調湿器 1 0 7 に入っ て室内空気の除 湿に用いられる。 このとき、 温度レベルが重要である。 In this case, both the electrical output from the solar cell 1 16 and the heat output from the solar collector 1 17 are required, so both the solar cell 1 16 and the solar collector 1 17 are required. Control so that the output increases as much as possible. Specifically, when T 2 becomes T 1 + 10 ° C or more, the fan 1 19 of the solar collector 1 17 is turned on, and T 3 reaches its set temperature, for example, 60. The rotation speed of fan 1 19 is controlled by controller 1 2 3. If T2 and T3 exceed 60, increase the rotation speed of fan 119 so that T2 and T3 can be suppressed to 60 : C. . As a result, the efficiency of the solar cell 1 16 is prevented from lowering due to the high temperature, and the efficiency of the adsorption type humidity controller 1 107 is increased by the heat output from the solar collector 1 17. Can be improved at the same time. The heat output from the solar collector 117 enters the adsorption type humidity controller 107 and is used for dehumidifying indoor air. At this time, the temperature level is important.
( b ) ケース 2 (冷却、 加湿)  (b) Case 2 (cooling, humidification)
こ の場合には、 熱電式調温器 1 0 9 への電力は必要であ る が 吸着式調湿器 1 0 7 への熱は不要なので、 太陽電池 1 1 6 か らの 出力を最大にする よ う に、 制御装置 1 2 3 によ り フ ァ ン 1 1 9 の 回転数を上げて、 T 2 を T 1 + 5 て以下になるよう にする。  In this case, power to the thermoelectric thermostat 109 is required, but heat to the adsorption humidity controller 107 is unnecessary, so the output from the solar cell 116 is maximized. In such a manner, the rotation speed of the fan 1 19 is increased by the controller 1 23 so that T 2 becomes equal to or less than T 1 +5.
( c ) ケース 3 (加温、 除湿)  (c) Case 3 (heating, dehumidification)
熱電式調温器 1 0 9 への電力 と熱及び吸着式調湿器 1 0 7 への 熱の両方が必要となるが、 加温, 除湿共に熱の方がよ り必要とな るため、 熱をなるベ く 多 く 取り込むよ う に制御する。 具体的には T 2 が T 1 + 5 °C以上にな っ た時、 太陽集熱器 1 1 7 のフ ァ ン 1 1 9 を 0 Nにする。 そ して、 T 3 が設定温度、 例えば 6 0 SCにな るように制御装置 1 2 3 によ り フ ァ ン 1 1 9の回転数を制御する が、 6 0 °C以上になっても T 3の温度を押えるようにする必要はな い。 太陽集熱器 1 1 7 か らの熱出力は、 一部は熱電式調温器 1 0 9へ、 またその他は熱交換器 1 0 8及び吸着式調湿器 1 0 7 に与えられるが、 これらの割合は設定の温度 ' 湿度レベルによつ て異なる。 このとき、 温度レベルと熱量がともに重要である。 Although both power to the thermoelectric temperature controller 109 and heat to the adsorption type humidity controller 107 are required, both heating and dehumidification require more heat. Control so as to take in as much heat as possible. More specifically, when T 2 exceeds T 1 +5 ° C, the fan 1 19 of the solar collector 1 17 is set to 0 N. Their to, T 3 is a set temperature, for example, I to 6 0 S C The rotation speed of fan 119 is controlled by control device 123 as described above, but it is not necessary to suppress the temperature of T3 even when the temperature exceeds 60 ° C. The heat output from the solar collector 117 is given to the thermoelectric temperature controller 109, and to the heat exchanger 108 and the adsorption humidity controller 107, These percentages depend on the set temperature and humidity levels. At this time, both the temperature level and the amount of heat are important.
(: d ) ケース 4 (加温、 加湿)  (: D) Case 4 (heating, humidification)
熱電式調温器 1 0 9への電力と熱が必要となるが、 熱出力は温 度レベルよ り も熱量か必要である。 従って、 温度レベルを下げて 熱を多く取り込めるようにする。 具体的には、 T 2 が T l + 5 °C以 上になった時、 太陽集熱器 1 1 7のフ ァ ンを O Nにする。 そ して- T 3 が設定温度、 例えば 4 0 °Cになるよう制御装置 1 2 3により ファ ン 1 1 9の回転数を制御する。 T 3が 4 0 °C以上になるような 場合には、 ファ ン 1 1 9の回転数を強にして T 3の温度を 4 0 °Cに 押えるようにする。 太陽集熱器 1 1 7からの熱出力は、 一部は熱 電式調温器 1 0 9へ、 またその他は熱交換器 1 0 8 に与えられる が、 これらの割合は設定の温度 . 湿度レベルによって異なる。 こ の場合、 熱量が重要である。  The power and heat to the thermoelectric temperature controller 109 are required, but the heat output needs to be more than the temperature level. Therefore, lower the temperature level to get more heat. Specifically, when T 2 becomes Tl + 5 ° C or more, the fan of the solar collector 1 17 is turned ON. Then, the control device 123 controls the number of revolutions of the fan 119 so that −T 3 becomes a set temperature, for example, 40 ° C. If T3 becomes 40 ° C or more, increase the rotation speed of fan 119 so that the temperature of T3 can be kept at 40 ° C. The heat output from the solar collector 117 is given to the thermoelectric heater 109 partly and to the heat exchanger 108 partly.These ratios are the set temperature and humidity. Depends on the level. In this case, the amount of heat is important.
上記実施例では電気式調温器の一例と して熱電素子を用いた熱 電式の調温器 1 0 9 を用いているが、 電気式調温器と しては図 1 4 に示すように、 圧縮式調温器 1 2 4を用いてもよい。  In the above embodiment, a thermoelectric temperature controller 109 using thermoelectric elements is used as an example of an electric temperature controller, but the electric temperature controller is shown in FIG. 14. Alternatively, a compression temperature controller 124 may be used.
この圧縮式調温器 1 2 4 は、 通常の ヒー ト ポ ンプが用いられ、 第 3の再生通路 1 0 5 c側に位置する外気側部 1 2 5 と、 空調通 路 1 0 4側に位置する室内側部 1 2 6 とが冷媒配管 1 2 7を介し て 3方弁 1 2 8 , 圧縮機 1 2 9 , 膨張弁 1 3 0等からなる室外機 1 3 1 に接続されている。 This compression-type thermostat 124 uses a normal heat pump, and has an outside air side 125 located on the third regeneration passage 105 c side and an air conditioning passage 104 side. An outdoor unit consisting of a three-way valve 1 2 8, a compressor 1 2 9, an expansion valve 13 0, etc., through a refrigerant pipe 1 2 7 with the indoor side 1 2 6 located Connected to 1 3 1.
上述のよう に、 本発明によれば、 熱電素子と吸湿剤を用いた空 調装置において、 熱電素子の負担を軽減できて、 その効率向上を 図る こ とができると共に、 出口温度を熱電素子を用いた熱電式加 熱冷却装置にて正確に制御できる。 また、 空調通路と再生通路と がー体構成となっているので、 空調装置全体の小型化と低コス ト 化を図ることができる。  As described above, according to the present invention, in an air conditioner using a thermoelectric element and a desiccant, the load on the thermoelectric element can be reduced, the efficiency can be improved, and the outlet temperature can be reduced. It can be controlled accurately by the thermoelectric heating and cooling equipment used. Further, since the air-conditioning passage and the regeneration passage have a body structure, the size and cost of the entire air-conditioning apparatus can be reduced.
さ らに、 本発明によれば、 電気式調温器の電源に太陽電池を用 い、 さ らに太陽にて暖められた空気を利用するよう に した イ ブ リ ッ ド式の空調システムにおいて、 空気の除湿を電気式調温器に よる空気の冷却によるこ とな く 行なう こ とができて、 調湿機能に 対する電気式調温器の負担を軽減できる。 特に、 この点は、 電気 式調温器に熱電素子を用いた場合に、 効果が顕著である。 また ハイプリ ッ ドソーラパネルからの熱量と電力の供給を適宜制御す る こ とによ り、 太陽電池の効率向上と、 調湿機の効率向上を図る こ とができ、 さ らに冬期の場合にも高効率で運転する こ とができ る。  Further, according to the present invention, in an air-conditioning system of an bridge type using a solar cell as a power source of an electric temperature controller and using air heated by the sun. In addition, the air can be dehumidified without being cooled by the electric temperature controller, thereby reducing the load of the electric temperature controller on the humidity control function. In particular, the effect is remarkable when a thermoelectric element is used for an electric temperature controller. By appropriately controlling the amount of heat and power supplied from the hybrid solar panel, it is possible to improve the efficiency of the solar cell and the humidity controller, and even in winter. It can be operated with high efficiency.
なお、 本発明は例示的な実施例について説明 したが、 開示した 実施例に関 して、 本発明の要旨及び範囲を逸脱する こ とな く 種々の変更、 省略、 追加が可能である こ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施例に限定される もので はな く 、 請求の範囲に記載された要素によ って規定される範囲及 びその均等範囲を包含するものと して理解されなければならない。  Although the present invention has been described with reference to exemplary embodiments, various modifications, omissions, and additions can be made to the disclosed embodiments without departing from the spirit and scope of the present invention. Is obvious to those skilled in the art. Therefore, the present invention should not be construed as being limited to the above-described embodiments, but as including the scope defined by the elements recited in the claims and their equivalents. Must.

Claims

請求の範囲 The scope of the claims
1 . 吸湿剤を用いた調湿器と、 熱電素子を用いた熱電式加熱冷却 器と、 前記調湿器と前記熱電式加熱冷却器のそれぞれの一部を直 列に接続して成る空調通路と、 前記調湿器と前記熱電式加熱冷却 器のそれぞれの他の一部を直列に接続して成る再生通路とを含む 空調装置。  1. A humidity controller using a moisture absorbent, a thermoelectric heating / cooling device using a thermoelectric element, and an air conditioning passage formed by connecting a part of each of the humidity controlling device and the thermoelectric heating / cooling device in series An air conditioner comprising: a regeneration passage formed by connecting another part of each of the humidity controller and the thermoelectric heating / cooling unit in series.
2 . さ らに熱交換器を含み、 前記熱交換器の一部が前記空調通路 の一部を成し、 前記熱交換器の他部が前記再生通路の一部を成す よう に した、 請求の範囲 1 に記載の空調装置。 2. The heat exchanger further includes a heat exchanger, a part of the heat exchanger forms a part of the air conditioning passage, and another part of the heat exchanger forms a part of the regeneration passage. An air conditioner according to range 1.
3 . 前記再生通路の前記調湿器の上流側に加熱源を配置した、 請 求の範囲 1 または 2に記載の空調装置。 3. The air conditioner according to claim 1, wherein a heating source is arranged upstream of the humidity controller in the regeneration passage.
4 . 太陽エネルギによる発電部及び集熱部とからなるハイプリ ッ ドソーラパネルと、 空調通路内に吸着式調湿器と電気式調温器と を配置してなるハイブリ ツ ド空調機とを含み、 前記集熱部を前記 吸着式調湿器の再生通路部と前記電気式調温器の再生通路部とに 集熱通路を介して接続し、 前記発電部を電気式調温器の受電部に 接続した空調システム。 4. Includes a hybrid solar panel including a power generation unit and a heat collection unit using solar energy, and a hybrid air conditioner in which an adsorption-type humidity controller and an electric temperature controller are arranged in an air-conditioning passage. A heat collector is connected to a regeneration passage of the adsorption type humidity controller and a regeneration passage of the electric temperature controller via a heat collection passage, and the power generator is connected to a power receiver of the electric temperature controller. Air conditioning system.
5 . 前記発電部の温度を測定する温度測定部と、 該温度測定部に て測定された温度に応じて前記集熱部の外気吸引フ ァ ンの運転を 制御する制御部とを備えた、 請求の範囲 4 に記載の空調システム。 5. A temperature measurement unit for measuring the temperature of the power generation unit, and a control unit for controlling the operation of the outside air suction fan of the heat collection unit according to the temperature measured by the temperature measurement unit, An air conditioning system according to claim 4.
. 前記電気式調温器に熱電素子を用いた、 請求の範囲 4 または に記載の空調システム。 The air conditioning system according to claim 4, wherein a thermoelectric element is used for the electric temperature controller.
PCT/JP1995/001675 1994-08-24 1995-08-23 Air conditioning device and air conditioning system including the same WO1996006311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970701163A KR970705729A (en) 1994-08-24 1995-08-23 An air conditioning apparatus and an air conditioning system incorporating the same include an air conditioner and an air conditioner.
EP95929217A EP0777087A1 (en) 1994-08-24 1995-08-23 Air conditioning device and air conditioning system including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6199585A JPH0861705A (en) 1994-08-24 1994-08-24 Air conditioning equipment
JP6/199585 1994-08-24
JP25217594A JP3262462B2 (en) 1994-10-18 1994-10-18 Hybrid air conditioner
JP6/252175 1994-10-18

Publications (1)

Publication Number Publication Date
WO1996006311A1 true WO1996006311A1 (en) 1996-02-29

Family

ID=26511621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001675 WO1996006311A1 (en) 1994-08-24 1995-08-23 Air conditioning device and air conditioning system including the same

Country Status (3)

Country Link
EP (1) EP0777087A1 (en)
KR (1) KR970705729A (en)
WO (1) WO1996006311A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806514A (en) * 2010-03-10 2010-08-18 中国科学技术大学 Composite solar photovoltaic hot-water cold supply and heating system for building
CN102535766A (en) * 2010-12-27 2012-07-04 北京印刷学院 Solar refrigerating-heating wall air-conditioning brick with automatic temperature control function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569285A (en) * 2010-12-27 2012-07-11 北京印刷学院 Solar refrigeration and heating automatic temperature control vacuum glass
CN105091142B (en) * 2014-05-06 2018-03-09 创升科技股份有限公司 Humidity adjusting apparatus
CN109539437B (en) * 2018-11-08 2020-05-08 上海交通大学 Open type solar direct-drive air conditioning system with independent temperature and humidity control function and working method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817094Y1 (en) * 1970-08-31 1973-05-16
JPS641374A (en) 1987-06-23 1989-01-05 Canon Inc Shading correction device
JPH02121117A (en) 1988-10-28 1990-05-09 Nec Corp Magnetic stripe card
JPH0450386A (en) 1990-06-11 1992-02-19 Kao Corp Production of fluffed fabric having deep color
JPH0510543A (en) 1991-07-01 1993-01-19 Shunichi Kikuchi Indoor air-conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817094Y1 (en) * 1970-08-31 1973-05-16
JPS641374A (en) 1987-06-23 1989-01-05 Canon Inc Shading correction device
JPH02121117A (en) 1988-10-28 1990-05-09 Nec Corp Magnetic stripe card
JPH0450386A (en) 1990-06-11 1992-02-19 Kao Corp Production of fluffed fabric having deep color
JPH0510543A (en) 1991-07-01 1993-01-19 Shunichi Kikuchi Indoor air-conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806514A (en) * 2010-03-10 2010-08-18 中国科学技术大学 Composite solar photovoltaic hot-water cold supply and heating system for building
CN101806514B (en) * 2010-03-10 2011-08-03 中国科学技术大学 Composite solar photovoltaic hot-water cold supply and heating system for building
CN102535766A (en) * 2010-12-27 2012-07-04 北京印刷学院 Solar refrigerating-heating wall air-conditioning brick with automatic temperature control function

Also Published As

Publication number Publication date
KR970705729A (en) 1997-10-09
EP0777087A1 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP3835413B2 (en) Dehumidifying air conditioner
EP2264375B1 (en) Ventilation device and controlling method of the same
JP4207166B2 (en) Dehumidifying air conditioner
AU2006253462B2 (en) Air conditioning system
WO1998046959A1 (en) Air-conditioning system and method of operating the same
AU2004280429A1 (en) Air conditioning apparatus
JP2000111096A (en) Desiccant air conditioning system
JP5862266B2 (en) Ventilation system
WO2006028167A1 (en) Humidity controller
JP4639485B2 (en) Air conditioner
JP4340756B2 (en) Dehumidifying air conditioner
KR20200092221A (en) An air conditioning system
JP2001263764A (en) Humidity regulating system
JP3821031B2 (en) Desiccant air conditioning system
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
JP3408024B2 (en) Desiccant air conditioner
WO1996006311A1 (en) Air conditioning device and air conditioning system including the same
JP2004353908A (en) Dehumidifying air conditioner
JP3435531B2 (en) Air conditioner using dehumidifying cooler
JP3262462B2 (en) Hybrid air conditioner
JP3830576B2 (en) Heat exchange ventilator
JP7312894B1 (en) Air conditioners and air conditioning systems
JP4538931B2 (en) Air conditioning system
CN217785385U (en) Air treatment device
KR102522682B1 (en) Air conditioning system with air conditioner attached to heat recovery ventilator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 793085

Date of ref document: 19970214

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1995929217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970701163

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995929217

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701163

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970701163

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1995929217

Country of ref document: EP