JP3820216B2 - Operation method of medium temperature digester - Google Patents

Operation method of medium temperature digester Download PDF

Info

Publication number
JP3820216B2
JP3820216B2 JP2002370652A JP2002370652A JP3820216B2 JP 3820216 B2 JP3820216 B2 JP 3820216B2 JP 2002370652 A JP2002370652 A JP 2002370652A JP 2002370652 A JP2002370652 A JP 2002370652A JP 3820216 B2 JP3820216 B2 JP 3820216B2
Authority
JP
Japan
Prior art keywords
temperature
digester
medium
sludge
digestion tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002370652A
Other languages
Japanese (ja)
Other versions
JP2004195441A (en
Inventor
展行 鵜飼
友章 大村
良平 植田
洋 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002370652A priority Critical patent/JP3820216B2/en
Publication of JP2004195441A publication Critical patent/JP2004195441A/en
Application granted granted Critical
Publication of JP3820216B2 publication Critical patent/JP3820216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【0001】
【発明の属する技術分野】
本発明は、下水や下水汚泥等の有機物を含む廃棄物を中温で嫌気性消化する中温消化槽の運転方法に係わり、特に、汚泥等の分解効率が高い中温消化槽の運転方法に係わる。
【0002】
【従来の技術】
下水や下水汚泥、生ゴミ、家畜糞尿等の有機物を含む廃棄物を、メタンガスを生成する細菌の作用で醗酵・分解させ、廃棄物の量を減容させることが一般に行われている。これらの醗酵・分解作用には、37゜C程度の中温で行われる中温嫌気性分解と、55゜C程度の高温で行われる高温嫌気性分解等がある。従来、この中温嫌気性分解を行う中温消化槽を新しく立ち上げる場合には、他の中温消化槽で馴致させた中温消化汚泥を種汚泥として準備し、この種汚泥を新しい中温消化槽に投入して、種汚泥の温度を中温に維持する。次に、この中温消化槽で処理すべき有機物を含む廃棄物を1日当たり所定量ずつ中温消化槽に投入していく。一般的には、1日当たりに投入する有機物を含む廃棄物の量を少しずつ増加させ、最終的にその中温消化槽で1日当たりに処理することができる定格量の有機物を含む廃棄物を投入するようにする。
【0003】
一方、特許文献1には、固形物濃度(TS濃度)が低い汚泥を種汚泥として、それに繊維含有有機物を混合しながら高温で醗酵させることによって固形物濃度を上昇させる乾式メタン醗酵立ち上げ方法が記載されている。
【0004】
【特許文献1】
特開2002−45896号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来の中温条件における中温消化槽の運転方法においては、十分な有機物の分解速度が得られず、廃棄物の処理効率が悪いという問題がある。また、高温消化槽では、中温消化槽よりも効率良く有機物を分解することができるものの、高温消化槽は中温消化槽よりも運転コストが高くなるという問題がある。
【0006】
さらに、従来の中温条件及び高温条件における消化槽では、下水や固形物濃度が低い下水汚泥を処理することは可能であったが、固形物濃度が高い下水脱水汚泥や生ごみ、家畜糞尿等を無希釈で処理することが困難であるという問題がある。これは、下水脱水汚泥等を分解すると、その分解過程で発生するアンモニア(NH4−N)や揮発性脂肪酸(VFA)の濃度が高くなり、消化槽内の細菌が阻害を受け嫌気性消化反応の効率を低下させ、或いは停止させてしまうためと考えられている。これは中温条件に比べ高温条件で顕著である。
【0007】
従って、本発明は、運転コストの低い中温条件でありながら、有機物を含む廃棄物の分解効率が高い、中温消化槽の運転方法を提供することを目的としている。
また、本発明は、中温条件において、下水脱水汚泥等の高濃度の廃棄物を無希釈で処理することができる中温消化槽の運転方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上述した課題を解決するために、本発明の中温消化槽の運転方法は、中温条件で馴致させた中温消化汚泥を準備し、この中温消化汚泥を中温消化槽に投入し、この中温消化槽を中温条件に維持し、中温消化槽に、処理すべき有機物を含む廃棄物を投入して処理する中温消化槽の運転方法において、高温条件で馴致させた高温消化汚泥を中温消化槽に投入する段階を含むことを特徴としている。
【0009】
このように構成された本発明においては、中温消化槽に中温消化汚泥を投入して中温条件で運転し、有機物を含む廃棄物を処理する中温消化槽の運転方法において、中温消化槽に高温条件で馴致させた高温消化汚泥が投入される。ここで、中温消化槽に高温消化汚泥を投入する時期は、中温消化槽に中温消化汚泥を投入した後、中温消化汚泥の投入と同時、又は、中温消化汚泥を投入する前の何れであっても良い。即ち、中温消化汚泥を種汚泥として中温消化槽を立ち上げ、その直後に高温消化汚泥を投入しても良いし、中温消化槽の立ち上げ後、有機物を含む廃棄物を分解処理した後に高温消化汚泥を投入しても良い。逆に、高温消化汚泥を種汚泥として中温消化槽を立ち上げ、その直後に中温消化汚泥を投入しても良いし、高温消化汚泥によって中温消化槽を立ち上げた後、有機物を含む廃棄物を分解処理し、その後、中温消化汚泥を投入しても良い。或いは、中温消化汚泥と高温消化汚泥を同時に投入することによって中温消化槽を立ち上げても良い。このように構成された本発明によれば、中温条件においても有機物の処理効率を向上させることができる。
【0010】
好ましくは、中温消化槽に投入される高温消化汚泥の量は、中温消化槽内の全汚泥容積の1/10以上とする。
中温消化汚泥と高温消化汚泥との割合をこのようにすることで、高温消化汚泥に含まれる細菌を中温消化槽内に維持することができ、中温消化槽の廃棄物処理効率を十分に向上させることができる。
【0011】
また、高温消化汚泥を投入後、少なくとも1日間の処理すべき廃棄物の投入量は、中温消化槽の定格処理量よりも低減するのが良い。
中温消化槽をこのように運転することによって、高温消化汚泥を中温消化槽内で十分に馴致させることができる。
【0012】
さらに、本発明の中温消化槽の運転方法は、高温条件で馴致させた高温消化汚泥を種汚泥として準備する段階と、この高温消化汚泥を中温消化槽に投入する段階と、この中温消化槽を中温条件で運転する段階と、中温消化槽に、処理すべき有機物を含む廃棄物を投入する段階と、を有することを特徴としている。
【0013】
このように構成された本発明においては、高温条件で馴致させた高温消化汚泥だけを種汚泥として使用して中温消化槽を立ち上げ、有機物を含む廃棄物を分解し、処理する。
このように構成された本発明によって、中温消化槽による有機物の処理効率を、中温消化汚泥のみによって立ち上げた中温消化槽よりも高くすることができる。
【0014】
また、中温消化槽に、1日当たりに投入される有機物を含む廃棄物は、中温消化槽1m3当たり1.0乃至20.0kgの有機物を含んでいるのが良い。
【0015】
さらに、中温消化槽において処理すべき有機物を含む廃棄物は、下水汚泥、し尿汚泥、家畜糞尿、生ごみ、食品廃棄物、又は、食品加工廃棄物であっても良い。
このように構成された本発明によって、従来、無希釈では分解処理することが難しかった下水脱水汚泥を中温消化槽によって処理することができる。
【0016】
【発明の実施の形態】
次に、添付図面を参照して本発明の実施形態による中温消化槽の運転方法を説明する。図1は、本発明の実施形態による中温消化槽の運転方法を実施するための装置のブロック図を示す。図2は、中温消化槽に投入した有機物(VS:Volatile Solid)の容積負荷と運転日数との関係を示すグラフであり、図3は、中温消化槽に投入した有機物1kg当たりのガス発生量と、運転日数との関係を示すグラフである。
【0017】
図1に示すように、本発明の実施形態による中温消化槽の運転方法では、まず、他の消化槽において中温条件で馴致させた中温消化汚泥を、種汚泥として中温消化槽Cに投入する。次いで、中温消化槽Cを、中温条件である約37゜Cに維持する。さらに、処理すべき有機物を含む廃棄物を、種汚泥を馴養している中温消化槽Cに所定量ずつ投入する。廃棄物中の有機物が分解されることによって発生したメタンガス等のガスは、中温消化槽Cから排出される。また、中温消化槽Cに所定期間滞留して有機物が分解された廃棄物は、中温消化槽Cから引き抜かれる。
【0018】
中温消化汚泥に含まれる、メタンガス等のガスを生成する代表的な細菌として、Methanosarcina barkeri、Methanosarcina mazei、Methanosarcina acetivorans、Methanosarcina vacuolata、Methanobacterium formicicum、Methanobacterium uliginosum、Methanobacterium alcaliphilum等を挙げることができる。
【0019】
中温消化槽Cを所定期間運転した後、他の消化槽において高温条件である約55゜Cで馴致させた高温消化汚泥を、中温消化槽Cに投入する。中温消化槽Cに投入される高温消化汚泥の量は、中温消化槽Cの中にある汚泥の容積の少なくとも1/10以上、望ましくは1/3以上とするのが良い。中温消化槽Cに高温消化汚泥を投入した後も、中温消化槽Cの温度条件は中温のままとする。また、高温消化汚泥を投入した後の少なくとも1日間、望ましくは7日間程度は、中温消化槽Cに投入する廃棄物の量を、高温消化汚泥を投入する前の投入量である定格処理量より低減し、望ましくは50乃至70%とする。この期間を経過した後は、定格処理量の廃棄物を中温消化槽Cに投入する。本実施形態による中温消化槽の運転方法によれば、例えば、下水汚泥、し尿汚泥、家畜糞尿、生ごみ、食品廃棄物、食品加工廃棄物等を処理することができる。
【0020】
高温消化汚泥に含まれる、メタンガス等のガスを生成する代表的な細菌として、Methanosarcina thermophila、Methanobacterium thermautotrophicum、Methanobacterium wolfei、Methanobacterium thermoformicicum、Methanobacterium thermalcaliphilum等を挙げることができる。
【0021】
図2は、中温消化槽Cに投入した廃棄物の量と消化槽の運転日数との関係を示すグラフである。グラフの縦軸は、1日当たりに中温消化槽Cの容積1m3当たりに投入する有機物(VS)の質量を表す。図2に示す通り、本実施形態では、中温消化槽Cの運転開始後、中温消化槽Cに投入する廃棄物の量を、約30日間少しずつ増加させ、この中温消化槽Cの定格処理量である2.4kgVS/m3/日に達した後、廃棄物の投入量を一定にした。
【0022】
さらに、中温消化槽Cの運転開始後37日後に、高温消化汚泥を中温消化槽Cに投入した。その後7日間、中温消化槽Cに投入する廃棄物の量を定格処理量の1/2にした。従って、この期間は、1日当たり約1.2kgVS/m3の有機物を含む廃棄物が投入された。運転開始後43日後からは、再び1日当たり約2.4kgVS/m3の有機物を含む廃棄物を投入した。なお、本実施形態の中温消化槽においては、中温消化槽1m3当たり1.0乃至20.0kgの有機物を含む廃棄物を処理することが可能である。
【0023】
図3は、中温消化槽C内で発生したガスの量と消化槽の運転日数との関係を表すグラフである。グラフの縦軸は、1日当たり、投入した有機物1kgにつき発生したガスの量をm3で表したものである。図3に示すように、ガスの発生量は、運転開始後約40日間は約0.35m3/kgVS/日、即ち、有機物1kg当たり1日0.35m3程度のメタンガスが発生するが、高温消化汚泥投入後は、約0.6m3/kgVS/日で推移している。このことは、一日当たり中温消化槽C内で細菌によって分解される有機物の量が増加したこと、即ち、有機物の処理効率が上昇したことを示している。これは、中温消化槽Cに高温消化汚泥を添加すると、消化槽の運転立ち上げ時に種汚泥とした中温消化汚泥に含まれていた細菌に加え、高温消化汚泥に含まれている細菌も中温消化槽C内で繁殖し、これにより有機物をメタンガスに分解する分解経路が増加したためと考えられる。
【0024】
また、本発明の実施形態による中温消化槽の運転方法において、高温消化汚泥を投入した後の中温消化槽Cには、処理すべき廃棄物として下水脱水汚泥を無希釈で投入することもできる。従来、中温消化槽で効率的に処理できなかった下水脱水汚泥が、本実施形態における中温消化槽Cで処理できるのは、高温消化汚泥に含まれる細菌が、中温消化汚泥に含まれる細菌に比べて、有機物をガス化する速度が速いためと考えられる。また、一般に、高温条件においては、アンモニアの解離平衡の関係から遊離アンモニア(NH3)の濃度が中温条件よりも高いため、高温消化汚泥に含まれる細菌は、中温消化汚泥に含まれる細菌よりもアンモニア耐性が高いことも原因として考えられる。
【0025】
本発明の実施形態の中温消化槽の運転方法によれば、高温消化汚泥を1回投入するだけで、投入後、廃棄物中に含まれる有機物の処理効率を高めることができる。また、本実施形態の中温消化槽の運転方法によれば、従来の中温消化槽では効率的な処理が困難であった下水脱水汚泥を、無希釈で処理することができる。また、従来の中温消化槽の運転方法においては、処理すべき廃棄物に含まれる固形物の濃度が高くなると、ガスの発生量が低下する傾向が見られた。これに対して、本実施形態による中温消化槽の運転方法では、固形物の濃度が高い場合にもガスの発生量はあまり変化せず、有機物の分解効率が低下しにくいという傾向がある。
【0026】
また、上述した実施形態においては発明の効果を説明するために、中温消化槽Cに中温消化汚泥を種汚泥として投入し、その後中温消化槽Cを40日間運転した後、高温消化汚泥を投入しているが、種汚泥の中温消化汚泥を投入した直後に高温消化汚泥を投入しても良い。或いは、変形例として、中温消化汚泥と高温消化汚泥を同時に中温消化槽Cに投入しても良いし、先に高温消化汚泥を投入し、その後中温消化汚泥を中温消化槽Cに投入しても良い。また、高温消化汚泥の投入は複数回行っても良い。
【0027】
次に、本発明の中温消化槽の運転方法の他の実施形態を説明する。この実施形態では、高温消化汚泥だけを種汚泥として使用する。この場合には、中温消化槽Cに種汚泥として高温消化汚泥を投入し、中温消化槽Cを中温条件で運転する。この中温消化槽Cに、処理すべき有機物を含んだ廃棄物を投入し、廃棄物を高温消化汚泥に含まれる細菌によって分解する。
【0028】
本実施形態の中温消化槽の運転方法によれば、中温消化汚泥のみを種汚泥として中温消化槽を立ち上げた場合よりも、有機物の分解効率を高めることができる。また、本実施形態においては、容積負荷を高くした場合でも、ガスの発生量を維持できるとの結果も得られている。
以上、本発明の実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。
【0029】
【発明の効果】
本発明の中温消化槽の運転方法によれば、中温条件における中温消化槽の有機物を含む廃棄物の分解効率を高めることができる。
【0030】
本発明の中温消化槽の運転方法によれば、中温条件において、下水脱水汚泥等の高濃度の廃棄物を無希釈で処理することができる。
【図面の簡単な説明】
【図1】本発明の実施形態による中温消化槽の運転方法を実施するための装置のブロック図である。
【図2】中温消化槽に投入した有機物の容積負荷と運転日数との関係を示すグラフである。
【図3】中温消化槽に投入した有機物1kg当たりのガス発生量と、運転日数との関係を示すグラフである。
【符号の説明】
C 中温消化槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation method of an intermediate temperature digestion tank that anaerobically digests waste containing organic matter such as sewage and sewage sludge, and more particularly to an operation method of an intermediate temperature digestion tank having high decomposition efficiency of sludge and the like.
[0002]
[Prior art]
In general, waste containing organic matter such as sewage, sewage sludge, raw garbage, and livestock manure is fermented and decomposed by the action of bacteria that produce methane gas to reduce the amount of waste. These fermentation / decomposition actions include medium temperature anaerobic decomposition performed at a medium temperature of about 37 ° C. and high temperature anaerobic decomposition performed at a high temperature of about 55 ° C. Conventionally, when a new intermediate-temperature digester that performs this intermediate-temperature anaerobic digestion is started up, the intermediate-temperature digested sludge that has been acclimatized in another intermediate-temperature digester is prepared as seed sludge, and this seed sludge is put into a new intermediate-temperature digester. To maintain the temperature of the seed sludge at a medium temperature. Next, a predetermined amount of waste containing organic matter to be treated in this intermediate temperature digester is put into the intermediate temperature digester per day. In general, gradually increase the amount of waste containing organic matter input per day, and finally input waste containing the rated amount of organic matter that can be processed per day in the intermediate temperature digester. Like that.
[0003]
On the other hand, Patent Document 1 discloses a dry methane fermentation start-up method in which a sludge having a low solids concentration (TS concentration) is used as seed sludge, and the solids concentration is increased by fermenting at a high temperature while mixing fiber-containing organic matter thereto. Are listed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-45896
[Problems to be solved by the invention]
However, the conventional method for operating the intermediate temperature digester under the intermediate temperature condition has a problem that a sufficient organic substance decomposition rate cannot be obtained and the waste processing efficiency is poor. Moreover, although a high-temperature digester can decompose organic substances more efficiently than a medium-temperature digester, the high-temperature digester has a problem of higher operating costs than a medium-temperature digester.
[0006]
Furthermore, in conventional digestion tanks at medium and high temperature conditions, it was possible to treat sewage sludge with low sewage and solids concentration, but sewage dewatered sludge with high solids concentration, garbage, livestock manure, etc. There is a problem that it is difficult to process without dilution. When sewage dewatered sludge is decomposed, the concentration of ammonia (NH4-N) and volatile fatty acid (VFA) generated in the decomposition process becomes high, and bacteria in the digestion tank are inhibited and anaerobic digestion reaction occurs. This is considered to reduce the efficiency or to stop it. This is more noticeable at high temperature conditions than at medium temperature conditions.
[0007]
Accordingly, an object of the present invention is to provide a method for operating an intermediate temperature digester that has high decomposition efficiency of waste containing organic matter while being in an intermediate temperature condition with low operating costs.
Another object of the present invention is to provide a method for operating an intermediate temperature digester that can treat high-concentration waste such as sewage dewatered sludge without dilution under intermediate temperature conditions.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the operation method of the intermediate temperature digester according to the present invention is to prepare intermediate temperature digested sludge that has been acclimatized under the intermediate temperature condition, and to put this intermediate temperature digested sludge into the intermediate temperature digester, In the operation method of the medium-temperature digestion tank that maintains the medium-temperature conditions and puts the waste containing the organic matter to be treated into the medium-temperature digestion tank, the stage of throwing the high-temperature digested sludge accustomed to the high-temperature conditions into the medium-temperature digestion tank It is characterized by including.
[0009]
In the present invention configured as described above, in the operation method of the intermediate temperature digestion tank in which the intermediate temperature digestion sludge is thrown into the intermediate temperature digestion tank and operated at the intermediate temperature condition, and the waste containing organic matter is treated, The high-temperature digested sludge that was accustomed to is introduced. Here, the time when the high-temperature digested sludge is introduced into the intermediate-temperature digester is either after the intermediate-temperature digested sludge is introduced into the intermediate-temperature digester, at the same time as the introduction of the intermediate-temperature digested sludge, or before the intermediate-temperature digested sludge is introduced. Also good. In other words, the intermediate temperature digestion sludge may be used as seed sludge to start up the intermediate temperature digestion tank, and immediately after that, the high temperature digestion sludge may be introduced. After the start of the intermediate temperature digestion tank, the waste containing organic matter is decomposed and then digested at high temperature. Sludge may be added. Conversely, a medium-temperature digestion tank may be started using high-temperature digested sludge as seed sludge, and the medium-temperature digestion sludge may be added immediately after that. After decomposing, medium-temperature digested sludge may be added. Or you may start an intermediate temperature digestion tank by throwing in an intermediate temperature digestion sludge and a high temperature digestion sludge simultaneously. According to the present invention configured in this way, it is possible to improve the processing efficiency of organic matter even under intermediate temperature conditions.
[0010]
Preferably, the amount of the high-temperature digested sludge charged into the intermediate temperature digester is 1/10 or more of the total sludge volume in the intermediate temperature digester.
By setting the ratio of medium-temperature digested sludge to high-temperature digested sludge in this way, bacteria contained in the high-temperature digested sludge can be maintained in the medium-temperature digestive tank, and the waste treatment efficiency of the medium-temperature digested tank can be sufficiently improved. be able to.
[0011]
In addition, the amount of waste to be treated for at least one day after the introduction of the high temperature digested sludge is preferably reduced from the rated treatment amount of the intermediate temperature digester.
By operating the intermediate temperature digester in this manner, the high temperature digested sludge can be sufficiently adapted in the intermediate temperature digester.
[0012]
Further, the operation method of the intermediate temperature digester according to the present invention includes a step of preparing a high temperature digested sludge acclimatized under a high temperature condition as a seed sludge, a step of introducing the high temperature digested sludge into the intermediate temperature digester, and the intermediate temperature digester. It is characterized by having a step of operating under an intermediate temperature condition and a step of introducing a waste containing organic matter to be treated into an intermediate temperature digester.
[0013]
In this invention comprised in this way, only the high temperature digested sludge acclimatized on high temperature conditions is used as a seed sludge, a middle temperature digester is started, and the waste containing an organic substance is decomposed | disassembled and processed.
By this invention comprised in this way, the processing efficiency of the organic substance by an intermediate temperature digestion tank can be made higher than the intermediate temperature digestion tank started only by intermediate temperature digestion sludge.
[0014]
Moreover, the waste containing the organic substance thrown into the intermediate temperature digestion tank per day may contain 1.0 to 20.0 kg of organic substance per 1 m 3 of the intermediate temperature digestion tank.
[0015]
Further, the waste containing organic matter to be treated in the intermediate temperature digester may be sewage sludge, human waste sludge, livestock manure, food waste, food waste, or food processing waste.
According to the present invention configured as described above, sewage dewatered sludge that has been conventionally difficult to be decomposed without dilution can be treated with an intermediate temperature digester.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, a method for operating the intermediate temperature digester according to the embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a block diagram of an apparatus for carrying out an operation method of a mesophilic digester according to an embodiment of the present invention. FIG. 2 is a graph showing the relationship between the volume load of organic matter (VS: Volatile Solid) charged into the intermediate temperature digester and the number of operating days, and FIG. 3 shows the amount of gas generated per kg of organic matter charged into the intermediate temperature digester. It is a graph which shows the relationship with the driving days.
[0017]
As shown in FIG. 1, in the operation method of the intermediate-temperature digester according to the embodiment of the present invention, first, the intermediate-temperature digested sludge that has been acclimatized under the intermediate temperature condition in another digester is introduced into the intermediate-temperature digester C as seed sludge. Next, the intermediate temperature digester C is maintained at about 37 ° C., which is an intermediate temperature condition. Further, a predetermined amount of waste containing the organic matter to be treated is put into the intermediate temperature digester C that is acclimatizing the seed sludge. Gases such as methane gas generated by decomposing organic substances in the waste are discharged from the intermediate temperature digester C. In addition, the waste in which the organic matter is decomposed by staying in the intermediate temperature digestion tank C for a predetermined period is extracted from the intermediate temperature digestion tank C.
[0018]
Examples of typical bacteria that produce gas such as methane gas contained in the medium-temperature digested sludge include Methanosarcina barkeri, Methanosarcina mazei, Methanosarcina acetivorans, Methanosarcina vacuolata, Methanobacterium formicicum, Methanobacterium uliginosum, Methanobacterium alcaliphilum, and the like.
[0019]
After the intermediate temperature digester C is operated for a predetermined period, the high temperature digested sludge that has been acclimatized at about 55 ° C., which is a high temperature condition in another digester, is put into the intermediate temperature digester C. The amount of the high-temperature digested sludge charged into the intermediate-temperature digestion tank C is at least 1/10 or more, preferably 1/3 or more of the volume of the sludge in the intermediate-temperature digestion tank C. Even after the high-temperature digested sludge is charged into the intermediate-temperature digestion tank C, the temperature condition of the intermediate-temperature digestion tank C remains at the intermediate temperature. Also, for at least one day after the high-temperature digested sludge is charged, preferably about seven days, the amount of waste to be charged into the medium-temperature digestible tank C is determined from the rated treatment amount that is the input before the high-temperature digested sludge is charged. Reduce, preferably 50-70%. After this period has elapsed, the waste of the rated treatment amount is put into the intermediate temperature digester C. According to the operation method of the intermediate temperature digester according to the present embodiment, for example, sewage sludge, human waste sludge, livestock manure, garbage, food waste, food processing waste, and the like can be processed.
[0020]
Typical bacteria that produce gas such as methane gas contained in high-temperature digested sludge include Methanosarcina thermophila, Methanobacterium thermautotrophicum, Methanobacterium wolfei, Methanobacterium thermoformicicum, Methanobacterium thermalcaliphilum, and the like.
[0021]
FIG. 2 is a graph showing the relationship between the amount of waste charged into the intermediate temperature digester C and the number of days of operation of the digester. The vertical axis of the graph represents the mass of organic matter (VS) introduced per 1 m 3 of the medium temperature digester C per day. As shown in FIG. 2, in this embodiment, after the operation of the intermediate temperature digester C is started, the amount of waste put into the intermediate temperature digester C is gradually increased for about 30 days. After reaching 2.4 kgVS / m 3 / day, the amount of waste input was kept constant.
[0022]
Further, 37 days after the start of operation of the intermediate temperature digester C, the high temperature digested sludge was charged into the intermediate temperature digester C. After that, for 7 days, the amount of waste put into the intermediate temperature digester C was reduced to ½ of the rated treatment amount. Therefore, during this period, waste containing about 1.2 kg VS / m 3 of organic matter per day was input. From 43 days after the start of operation, waste containing about 2.4 kg VS / m 3 of organic matter was again charged per day. In addition, in the intermediate temperature digestion tank of this embodiment, it is possible to treat the waste containing 1.0 to 20.0 kg of organic matter per 1 m 3 of the intermediate temperature digestion tank.
[0023]
FIG. 3 is a graph showing the relationship between the amount of gas generated in the intermediate temperature digester C and the number of days of operation of the digester. The vertical axis of the graph represents the amount of gas generated per kg of the organic substance introduced per day in m 3 . As shown in FIG. 3, the amount of gas generated is about 0.35 m 3 / kg VS / day for about 40 days after the start of operation, that is, about 0.35 m 3 of methane gas is generated per 1 kg of organic matter per day. After the digested sludge is charged, the rate has been about 0.6m 3 / kgVS / day. This indicates that the amount of organic matter decomposed by bacteria in the intermediate temperature digester C per day has increased, that is, the processing efficiency of organic matter has increased. This is because when high-temperature digested sludge is added to the medium-temperature digestion tank C, bacteria contained in the high-temperature digested sludge are added to the medium-temperature digested sludge in addition to the bacteria contained in the medium-temperature digested sludge used as seed sludge at the start-up of the digester. This is considered to be due to an increase in the number of decomposition routes for breeding in the tank C and decomposing the organic matter into methane gas.
[0024]
Moreover, in the operation method of the intermediate temperature digester according to the embodiment of the present invention, the sewage dewatered sludge can also be input undiluted as the waste to be treated into the intermediate temperature digester C after the high temperature digested sludge is input. Conventionally, the sewage dewatered sludge that could not be treated efficiently in the medium temperature digestion tank can be treated in the medium temperature digestion tank C in the present embodiment because the bacteria contained in the high temperature digested sludge are compared with the bacteria contained in the medium temperature digested sludge. This is thought to be due to the high rate of gasification of organic substances. In general, since the concentration of free ammonia (NH3) is higher in the high temperature condition than in the intermediate temperature condition due to the dissociation equilibrium of ammonia, the bacteria contained in the high temperature digested sludge are more ammonia than the bacteria contained in the intermediate temperature digested sludge. The high tolerance is also considered as a cause.
[0025]
According to the operation method of the intermediate temperature digester according to the embodiment of the present invention, the processing efficiency of the organic matter contained in the waste can be increased after the high temperature digested sludge is charged once. Moreover, according to the operation method of the intermediate-temperature digestion tank of this embodiment, the sewage dewatering sludge which was difficult to process efficiently in the conventional intermediate-temperature digestion tank can be processed without dilution. Moreover, in the conventional operation method of the intermediate temperature digester, when the concentration of the solid contained in the waste to be treated increases, the gas generation amount tends to decrease. On the other hand, in the operation method of the intermediate temperature digester according to the present embodiment, even when the concentration of solid matter is high, the amount of gas generated does not change so much and the decomposition efficiency of organic matter tends not to decrease.
[0026]
In the embodiment described above, in order to explain the effect of the invention, the intermediate temperature digestion sludge is introduced into the intermediate temperature digestion tank C as seed sludge, and then the intermediate temperature digestion tank C is operated for 40 days, and then the high temperature digestion sludge is input. However, the high temperature digested sludge may be added immediately after the medium temperature digested sludge is added. Alternatively, as a modification, the medium-temperature digested sludge and the high-temperature digested sludge may be simultaneously introduced into the medium-temperature digestion tank C, or the high-temperature digested sludge is first introduced and then the medium-temperature digested sludge is introduced into the medium-temperature digester tank C. good. Moreover, you may perform the injection | throwing-in of high temperature digested sludge in multiple times.
[0027]
Next, another embodiment of the operation method of the intermediate temperature digester according to the present invention will be described. In this embodiment, only high-temperature digested sludge is used as seed sludge. In this case, high temperature digested sludge is thrown into the intermediate temperature digester C as seed sludge, and the intermediate temperature digester C is operated under intermediate temperature conditions. Waste containing organic matter to be treated is put into the intermediate temperature digestion tank C, and the waste is decomposed by bacteria contained in the high temperature digested sludge.
[0028]
According to the operation method of the intermediate temperature digester according to the present embodiment, the decomposition efficiency of organic matter can be increased as compared with the case where the intermediate temperature digester is started using only the intermediate temperature digested sludge as the seed sludge. Moreover, in this embodiment, the result that the amount of gas generation can be maintained even when the volume load is increased is obtained.
As mentioned above, although embodiment of this invention was described, a various change can be added to embodiment mentioned above.
[0029]
【The invention's effect】
According to the operation method of the intermediate temperature digester of the present invention, it is possible to increase the decomposition efficiency of the waste containing the organic matter in the intermediate temperature digester under the intermediate temperature condition.
[0030]
According to the operation method of the intermediate temperature digester of the present invention, wastes with high concentration such as sewage dewatered sludge can be treated without dilution under intermediate temperature conditions.
[Brief description of the drawings]
FIG. 1 is a block diagram of an apparatus for carrying out an operation method of an intermediate temperature digester according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the volumetric load of organic substances put into the intermediate temperature digester and the number of operating days.
FIG. 3 is a graph showing the relationship between the amount of gas generated per kg of organic matter charged into the intermediate-temperature digestion tank and the number of operating days.
[Explanation of symbols]
C Medium temperature digester

Claims (6)

中温条件で馴致させた中温消化汚泥を準備し、この中温消化汚泥を中温消化槽に投入し、この中温消化槽を中温条件に維持し、前記中温消化槽に、処理すべき有機物を含む廃棄物を投入して処理する中温消化槽の運転方法において、
高温条件で馴致させた高温消化汚泥を前記中温消化槽に投入する段階を含むことを特徴とする中温消化槽の運転方法。
Prepare medium-temperature digested sludge acclimatized under medium-temperature conditions, put this medium-temperature digested sludge into the medium-temperature digestion tank, maintain this medium-temperature digestion tank at medium-temperature conditions, and waste containing organic matter to be processed in the medium-temperature digestion tank In the operation method of the medium-temperature digester where
A method for operating a medium-temperature digestion tank, comprising a step of introducing a high-temperature digestion sludge acclimatized under a high-temperature condition into the medium-temperature digestion tank.
前記中温消化槽に投入される前記高温消化汚泥の量が、前記中温消化槽内の全汚泥容積の1/10以上であることを特徴とする請求項1記載の中温消化槽の運転方法。The method for operating the intermediate temperature digester according to claim 1, wherein the amount of the high temperature digested sludge charged into the intermediate temperature digester is 1/10 or more of the total sludge volume in the intermediate temperature digester. 前記高温消化汚泥を投入後、少なくとも1日間の処理すべき廃棄物の投入量を、前記中温消化槽の定格処理量よりも低減することを特徴とする請求項1又は請求項2に記載の中温消化槽の運転方法。The intermediate temperature according to claim 1 or 2, wherein the input amount of waste to be treated for at least one day after adding the high temperature digested sludge is reduced from the rated treatment amount of the intermediate temperature digester. How to operate the digester. 高温条件で馴致させた高温消化汚泥を種汚泥として準備する段階と、
この高温消化汚泥を中温消化槽に投入する段階と、
この中温消化槽を中温条件で運転する段階と、
前記中温消化槽に、処理すべき有機物を含む廃棄物を投入する段階と、を有することを特徴とする中温消化槽の運転方法。
Preparing high temperature digested sludge acclimatized under high temperature conditions as seed sludge;
The stage of introducing this high-temperature digested sludge into a medium-temperature digestion tank,
Operating this medium temperature digester under medium temperature conditions;
A method for operating the intermediate temperature digester, comprising: putting a waste containing organic matter to be treated into the intermediate temperature digester.
前記中温消化槽に、1日当たりに投入される有機物を含む廃棄物が、中温消化槽1m3当たり1.0乃至20.0kgの有機物を含むことを特徴とする請求項1乃至請求項4の何れか1項に記載の中温消化槽の運転方法。The waste containing organic matter put into the intermediate-temperature digestion tank per day contains 1.0 to 20.0 kg of organic matter per 1 m 3 of the intermediate-temperature digestion tank. The operation method of the intermediate temperature digester according to claim 1. 前記処理すべき有機物を含む廃棄物が、下水汚泥、し尿汚泥、家畜糞尿、生ごみ、食品廃棄物、又は、食品加工廃棄物であることを特徴とする請求項1乃至請求項5の何れか1項に記載の中温消化槽の運転方法。The waste containing organic matter to be treated is sewage sludge, human waste sludge, livestock manure, food waste, food waste, or food processing waste. The operation method of the intermediate temperature digester as described in item 1.
JP2002370652A 2002-12-20 2002-12-20 Operation method of medium temperature digester Expired - Fee Related JP3820216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370652A JP3820216B2 (en) 2002-12-20 2002-12-20 Operation method of medium temperature digester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370652A JP3820216B2 (en) 2002-12-20 2002-12-20 Operation method of medium temperature digester

Publications (2)

Publication Number Publication Date
JP2004195441A JP2004195441A (en) 2004-07-15
JP3820216B2 true JP3820216B2 (en) 2006-09-13

Family

ID=32766515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370652A Expired - Fee Related JP3820216B2 (en) 2002-12-20 2002-12-20 Operation method of medium temperature digester

Country Status (1)

Country Link
JP (1) JP3820216B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819757B2 (en) * 2007-07-09 2011-11-24 株式会社タクマ How to set up an anaerobic digestion system
JP6803685B2 (en) 2016-05-27 2020-12-23 日本電産コパル株式会社 Vibration actuator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748396A (en) * 1980-09-04 1982-03-19 Ebara Infilco Co Ltd Anaerobic digestion of organic waste matter
JPS6154290A (en) * 1984-08-24 1986-03-18 Hitachi Zosen Corp Single-phase fermenting method by immobilized microbe
JPH0738994B2 (en) * 1987-04-08 1995-05-01 株式会社明電舎 Initial operation method of low temperature methane fermentation
JPH06246288A (en) * 1993-02-25 1994-09-06 Mitsubishi Kakoki Kaisha Ltd Operation method for high temperature upward stream type anaerobic sludge bed device
JPH08155496A (en) * 1994-12-06 1996-06-18 Shinko Pantec Co Ltd Method and apparatus for digestion treatment of sludge
JPH08192194A (en) * 1995-01-11 1996-07-30 Shinko Pantec Co Ltd Device for digestion of sludge
JP3856275B2 (en) * 1999-07-07 2006-12-13 株式会社荏原製作所 Method and apparatus for anaerobic treatment of oil-containing wastewater

Also Published As

Publication number Publication date
JP2004195441A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
Monfet et al. Nutrient removal and recovery from digestate: a review of the technology
Harikishan et al. Cattle waste treatment and Class A biosolid production using temperature-phased anaerobic digester
Gelegenis et al. Optimization of biogas production by co-digesting whey with diluted poultry manure
CN104152495B (en) A kind of method using jerusalem artichoke stalk as raw material anaerobic methane production gas
CA2754100A1 (en) Method for producing non-putrescible sludge and energy and corresponding plant
JP6649769B2 (en) Organic matter processing system and organic matter processing method
KR101234286B1 (en) Circulation system of resources and energization method of organic waste like livestock manure
WO2011140482A2 (en) Methods for treatment of waste activated sludge
EP2457878B1 (en) Anaerobic sludge treatment processes
JP3820216B2 (en) Operation method of medium temperature digester
JP3276139B2 (en) Organic waste treatment method
KR101628322B1 (en) System for making resources using organic waste
CN112979075B (en) Zero-carbon-source-added biogas slurry denitrification method and application thereof
JP3970163B2 (en) Organic waste treatment method and apparatus
JP2001129600A (en) Fermented sludge treatment method
JP2004000837A (en) Anaerobic treatment method for organic waste and treatment system using the same
JP2002186996A (en) Treatment method of organic waste
JP2000246224A (en) Method for treating organic waste
JP2000263018A (en) Treatment apparatus for organic waste
JP2005270862A (en) Anaerobic treatment apparatus
JP2002045896A (en) Method for starting up dry process methane fermentation
JP3434433B2 (en) Composting method of anaerobic digested sludge
US11420890B2 (en) Method of treatment of partially hydrolyzed biosolids
JP4207314B2 (en) Method for solubilizing organic waste
JP3593501B2 (en) Organic waste treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees