JP2001129600A - Fermented sludge treatment method - Google Patents

Fermented sludge treatment method

Info

Publication number
JP2001129600A
JP2001129600A JP31173199A JP31173199A JP2001129600A JP 2001129600 A JP2001129600 A JP 2001129600A JP 31173199 A JP31173199 A JP 31173199A JP 31173199 A JP31173199 A JP 31173199A JP 2001129600 A JP2001129600 A JP 2001129600A
Authority
JP
Japan
Prior art keywords
methane fermentation
sludge
membrane
water treatment
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31173199A
Other languages
Japanese (ja)
Other versions
JP2001129600A5 (en
Inventor
Tetsuya Yamamoto
哲也 山本
Masashi Moro
正史 師
Toshiyuki Shibata
敏行 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP31173199A priority Critical patent/JP2001129600A/en
Publication of JP2001129600A publication Critical patent/JP2001129600A/en
Publication of JP2001129600A5 publication Critical patent/JP2001129600A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

PROBLEM TO BE SOLVED: To provide a fermented sludge treatment method recovering energy in methane fermentation, suppressing the use amount of a polymer at a time of dehydration and capable of ensuring heat necessary for primary fermentation in composting. SOLUTION: Easily decomposable organic waste 1 such as garbage or livestock excretion is subjected to methane fermentation treatment in a membrane type methane fermentation tank 3 and the methane gas generated in the membrane type methane fermentation tank 3 is recovered as fuel and the membrane separation liquid and excessive methane fermentation sludge taken out of the membrane type methane fermentation tank 3 are subjected to biological nitrifying and denitrifying treatment along with highly concentrated organic waste 6 such as excretion or septic tank sludge in a water treatment process 8 and the excessive sludge 11 taken out of the water treatment process 8 is dehydrated and a dehydrated cake 14 is composted 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生ごみ、畜産糞尿
等を原料とする発酵汚泥処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating fermented sludge using raw garbage, livestock manure and the like as raw materials.

【0002】[0002]

【従来の技術】従来、生ごみ、畜産糞尿等の処理方法と
してメタン発酵処理方法があり、メタン発酵処理によっ
て発生するメタン発酵汚泥は、脱水処理を行なった後に
コンポスト化したり、あるいは貯留して液肥として使用
することにより処理していた。
2. Description of the Related Art Conventionally, there is a methane fermentation treatment method as a method for treating garbage, livestock manure, and the like. Methane fermentation sludge generated by methane fermentation treatment is composted after dehydration treatment, or is stored and subjected to liquid fertilization. By using it as a treatment.

【0003】[0003]

【発明が解決しようとする課題】上記した構成におい
て、メタン発酵汚泥は、生物的に分解可能な有機物の大
部分が既に微生物分解によって消費されており、コンポ
スト化する際に、通常において見られる一次発酵(発熱
を伴う激しい反応)が起きず、常に外部より多量の熱を
加える必要があった。
In the above-described configuration, the methane fermentation sludge contains most of the biologically degradable organic substances already consumed by microbial degradation, and the primary methane fermented sludge that is usually seen when composting is used. Fermentation (a vigorous reaction with heat generation) did not occur, and it was necessary to constantly apply a large amount of heat from the outside.

【0004】メタン発酵汚泥の脱水ケーキの含水率は7
5〜85%であり、発酵槽へ投入する前に含水率70%
程度に水分調整する必要がある。しかし、メタン発酵汚
泥はアルカリ度が高いために、脱水時に凝集剤として多
量のポリマーを必要とする。本発明は上記した課題を解
決するものであり、メタン発酵においてエネルギーを回
収し、脱水時のポリマーの使用量を抑制し、コンポスト
化において一次発酵に必要な熱量を確保できる発酵汚泥
処理方法を提供することを目的とする。
[0004] The water content of the dewatered cake of methane fermented sludge is 7
5 to 85%, 70% water content before putting into fermenter
It is necessary to adjust the moisture to a certain degree. However, since methane fermentation sludge has high alkalinity, a large amount of polymer is required as a coagulant during dehydration. The present invention solves the above-described problems, and provides a fermentation sludge treatment method capable of recovering energy in methane fermentation, suppressing the amount of polymer used during dehydration, and securing the calorie required for primary fermentation in composting. The purpose is to do.

【0005】[0005]

【課題解決するための手段】上記した課題を解決するた
めに、本発明の発酵汚泥処理方法は、メタン発酵処理系
において、生ごみ、畜産糞尿等の易分解性の有機性廃棄
物を膜型メタン発酵槽でメタン発酵処理し、膜型メタン
発酵槽で発生するメタンガスを燃料として回収し、膜型
メタン発酵槽から取り出した膜分離液および余剰メタン
発酵汚泥を水処理系に供給し、水処理系において、膜分
離液、余剰メタン発酵汚泥を、し尿、浄化槽汚泥等の高
濃度有機性廃棄物と共に水処理プロセスで生物学的硝化
脱窒処理し、水処理プロセスから取り出した余剰汚泥を
脱水し、脱水ケーキをコンポスト化するものである。
In order to solve the above-mentioned problems, a method for treating fermented sludge according to the present invention uses a methane fermentation treatment system to convert easily decomposable organic wastes such as garbage and livestock manure into a membrane type. Methane fermentation treatment in the methane fermentation tank, recovers methane gas generated in the membrane methane fermentation tank as fuel, and supplies the membrane separation liquid and excess methane fermentation sludge taken out from the membrane methane fermentation tank to the water treatment system, and water treatment In the system, the membrane separation liquid, excess methane fermentation sludge is subjected to biological nitrification and denitrification in a water treatment process together with high-concentration organic waste such as human waste and septic tank sludge, and the excess sludge taken out of the water treatment process is dewatered. And to compost the dehydrated cake.

【0006】上記した構成において、膜型メタン発酵槽
では、生ごみ、畜産糞尿等の易分解性の有機性廃棄物だ
けをメタン発酵処理するので、発酵期間が短くなってメ
タン発酵槽を大幅に小型化することができるとともに、
燃料として回収するメタンガス量が増加し、エネルギー
の回収効率が高くなる。膜型メタン発酵槽でのメタン発
酵は、中温菌、高温菌の何れによって行なっても良く、
使用する膜は浸漬型平膜、回転平膜、チューブラー膜な
どである。
In the above-mentioned configuration, in the membrane type methane fermenter, only the easily decomposable organic waste such as garbage and livestock manure is subjected to the methane fermentation treatment, so that the fermentation period is shortened and the methane fermenter is greatly enlarged. It can be downsized,
The amount of methane gas recovered as fuel increases, and the efficiency of energy recovery increases. Methane fermentation in a membrane-type methane fermentation tank may be performed by any of mesophilic bacteria and thermophilic bacteria,
The membrane used is an immersion flat membrane, a rotating flat membrane, a tubular membrane, or the like.

【0007】一方、し尿、浄化槽汚泥等のメタン発酵の
効率が悪い高濃度有機性廃棄物は水処理系において処理
する。この水処理プロセスで、メタン発酵槽から取り出
した膜分離液、余剰メタン発酵汚泥を、し尿、浄化槽汚
泥と共に生物学的硝化脱窒処理することにより、硝化反
応過程においてメタン発酵汚泥のアルカリ度を消費し、
硝化反応過程におけるアルカリ度不足を防止することが
でき、消化汚泥(メタン発酵汚泥)の投入によって脱窒
過程において嫌気性を維持し易く、脱窒処理を円滑に行
なえ得る。
On the other hand, high-concentration organic wastes, such as night soil and septic tank sludge, having low methane fermentation efficiency are treated in a water treatment system. In this water treatment process, the alkalinity of the methane fermentation sludge is consumed in the nitrification reaction process by subjecting the membrane separation liquid and excess methane fermentation sludge taken out of the methane fermentation tank to biological nitrification denitrification together with human waste and septic tank sludge. And
Insufficiency in alkalinity in the nitrification reaction process can be prevented, and anaerobicity can be easily maintained in the denitrification process by feeding digested sludge (methane fermentation sludge), so that denitrification can be performed smoothly.

【0008】アルカリ度の消費により、余剰汚泥の脱水
時におけるポリマーの消費量を減少させることができ
る。水処理プロセスにおける槽容量は、窒素負荷量によ
って決定するので、膜分離液、余剰メタン発酵汚泥の投
入によってBOD負荷が増加しても大きくする必要がな
い。メタン発酵汚泥、し尿、浄化槽汚泥を同時に生物学
的硝化脱窒処理する水処理プロセスから取り出す余剰汚
泥は、メタン発酵汚泥に比べて低位発熱量が高いので、
コンポスト化において一次発酵が起き易く、外部からの
加熱が少なくて済む。このコンポスト化には機械攪拌式
の高速堆肥化装置などを用いる。余剰汚泥の一部は膜型
メタン発酵槽へ投入する。
[0008] By consuming alkalinity, it is possible to reduce the amount of polymer consumed when dewatering excess sludge. Since the tank capacity in the water treatment process is determined by the nitrogen load, it is not necessary to increase the BOD load even if the membrane separation liquid and the excess methane fermentation sludge increase the BOD load. Surplus sludge extracted from the water treatment process of biological nitrification and denitrification of methane fermentation sludge, night soil, and septic tank sludge simultaneously has a lower calorific value than methane fermentation sludge.
Primary fermentation easily occurs in composting, and less external heating is required. For this composting, a mechanical stirring type high-speed composting device or the like is used. Part of the surplus sludge is fed into the membrane methane fermentation tank.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1において、メタン発酵処理系
においては、生ごみ、畜産糞尿等の易分解性の有機性廃
棄物1を、前処理工程2で処理した後に、膜型メタン発
酵槽3でメタン発酵処理する。膜型メタン発酵槽3は膜
分離装置(図示省略)を有しており、使用する膜は浸漬
型平膜、回転平膜、チューブラー膜などである。膜型メ
タン発酵槽3でのメタン発酵は、中温菌、高温菌の何れ
によって行なっても良い。膜型メタン発酵槽3で発生す
るメタンガス4を燃料としてエネルギー回収5する。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, in the methane fermentation treatment system, easily decomposable organic waste 1 such as garbage and livestock manure is treated in the pretreatment step 2 and then methane fermentation treatment is performed in the membrane methane fermentation tank 3. The membrane type methane fermentation tank 3 has a membrane separation device (not shown), and the membrane to be used is an immersion type flat membrane, a rotary flat membrane, a tubular membrane, or the like. The methane fermentation in the membrane type methane fermentation tank 3 may be performed by any of mesophilic bacteria and thermophilic bacteria. Energy recovery 5 is performed using methane gas 4 generated in the membrane methane fermenter 3 as fuel.

【0010】このように、膜型メタン発酵槽3では、生
ごみ、畜産糞尿等の易分解性の有機性廃棄物だけをメタ
ン発酵処理するので、発酵期間が短くなって膜型メタン
発酵槽3を大幅に小型化することができるとともに、燃
料として回収するメタンガス量が増加し、エネルギーの
回収効率が高くなる。膜型メタン発酵槽3から取り出し
た膜分離液および余剰メタン発酵汚泥は、し尿、浄化槽
汚泥等の高濃度有機性廃棄物を処理する水処理系に供給
する。
[0010] As described above, in the membrane type methane fermentation tank 3, only the easily decomposable organic waste such as garbage and livestock manure is subjected to methane fermentation, so that the fermentation period is shortened and the membrane type methane fermentation tank 3 is reduced. Can be significantly reduced in size, the amount of methane gas recovered as fuel increases, and the efficiency of energy recovery increases. The membrane separation liquid and excess methane fermentation sludge taken out from the membrane type methane fermentation tank 3 are supplied to a water treatment system for treating high-concentration organic waste such as human waste and septic tank sludge.

【0011】一方、水処理系では、メタン発酵の効率が
悪いし尿、浄化槽汚泥等の高濃度有機性廃棄物6を、前
処理工程7で前処理した後に、膜分離液、余剰メタン発
酵汚泥と共に水処理プロセス8で生物学的硝化脱窒処理
する。このように、膜型メタン発酵槽3から取り出した
膜分離液、余剰メタン発酵汚泥を、し尿、浄化槽汚泥と
共に生物学的硝化脱窒処理することにより、硝化反応過
程においてメタン発酵汚泥のアルカリ度を消費し、硝化
反応過程におけるアルカリ度不足を防止することができ
る。また、消化汚泥(メタン発酵汚泥)の投入によって
脱窒過程において嫌気性を維持し易く、脱窒処理を円滑
に行なえ得る。この水処理プロセス8における槽容量
は、窒素負荷量によって決定するので、膜分離液、余剰
メタン発酵汚泥の投入によってBOD負荷が増加しても
大きくする必要がない。
On the other hand, in the water treatment system, high-concentration organic wastes 6 such as human waste and septic tank sludge, which have poor methane fermentation efficiency, are pretreated in a pretreatment step 7 together with a membrane separation liquid and excess methane fermentation sludge. In the water treatment process 8, biological nitrification and denitrification treatment is performed. In this way, by subjecting the membrane separation liquid and excess methane fermentation sludge taken out from the membrane type methane fermentation tank 3 to biological nitrification denitrification treatment together with human waste and septic tank sludge, the alkalinity of the methane fermentation sludge is reduced in the nitrification reaction process. It can be consumed and prevent alkalinity shortage in the nitrification reaction process. In addition, by introducing digested sludge (methane fermented sludge), anaerobic can be easily maintained in the denitrification process, and the denitrification treatment can be performed smoothly. Since the tank capacity in this water treatment process 8 is determined by the nitrogen load, it is not necessary to increase the BOD load even if the membrane separation liquid and the excess methane fermentation sludge increase the BOD load.

【0012】水処理プロセス8から取り出した二次処理
水9は高度処理10した後に、放流し、又は膜型メタン
発酵の阻害物質の希釈に使用する。水処理プロセス8か
ら取り出した余剰汚泥11は、一部を膜型メタン発酵槽
3へ投入し、残りを脱水工程12において脱水する。脱
水ろ液13は別途処理し、脱水ケーキ14を機械攪拌式
の高速堆肥化装置などでコンポスト化15する。
The secondary treatment water 9 taken out of the water treatment process 8 is subjected to an advanced treatment 10 and then discharged or used for diluting an inhibitor of membrane methane fermentation. A part of the surplus sludge 11 taken out from the water treatment process 8 is put into the membrane type methane fermentation tank 3, and the rest is dewatered in a dewatering step 12. The dewatered filtrate 13 is separately treated, and the dewatered cake 14 is composted 15 by a mechanical stirring type high-speed composting device or the like.

【0013】このメタン発酵汚泥、し尿、浄化槽汚泥を
同時に生物学的硝化脱窒処理する水処理プロセス8から
取り出す余剰汚泥11は、メタン発酵汚泥に比べて低位
発熱量が高いので、コンポスト化15において一次発酵
が起き易くなり、外部からの加熱が少なくて済む。
The excess sludge 11 extracted from the water treatment process 8 for simultaneously biologically nitrifying and denitrifying the methane fermented sludge, night soil and septic tank sludge has a lower heating value than the methane fermented sludge. Primary fermentation is more likely to occur and less external heating is required.

【0014】[0014]

【発明の効果】以上述べたように、本発明によれば、メ
タン発酵槽から取り出した膜分離液、余剰メタン発酵汚
泥を、水処理プロセスでし尿、浄化槽汚泥と共に生物学
的硝化脱窒処理することにより、硝化反応過程でメタン
発酵汚泥のアルカリ度を消費するとともに、硝化反応過
程におけるアルカリ度不足を防止でき、消化汚泥(メタ
ン発酵汚泥)の投入で脱窒過程の嫌気性を容易にして脱
窒処理を円滑に行なうことができ、アルカリ度の消費に
より、脱水時のポリマー消費量を減少させることができ
る。水処理プロセスから取り出す余剰汚泥は、メタン発
酵汚泥に比べて低位発熱量が高いので、コンポスト化に
おいて一次発酵が起き易く、外部からの加熱が少なくて
済む。
As described above, according to the present invention, the membrane separation liquid and excess methane fermentation sludge taken out of the methane fermentation tank are subjected to biological nitrification and denitrification together with human waste and septic tank sludge in a water treatment process. As a result, the alkalinity of the methane fermentation sludge can be consumed in the nitrification reaction process, the lack of alkalinity in the nitrification reaction process can be prevented, and the digestion sludge (methane fermentation sludge) can be introduced to facilitate the anaerobicity of the denitrification process. Nitrogen treatment can be performed smoothly, and consumption of polymer during dehydration can be reduced due to consumption of alkalinity. Excess sludge removed from the water treatment process has a lower calorific value than methane fermentation sludge, so that primary fermentation is likely to occur in composting and less external heating is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における発酵汚泥処理方法
を示すフローシートである。
FIG. 1 is a flow sheet showing a fermentation sludge treatment method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 易分解性の有機性廃棄物 3 膜型メタン発酵槽 6 高濃度有機性廃棄物 8 水処理プロセス 11 余剰汚泥 12 脱水工程 15 コンポスト化 Reference Signs List 1 easily decomposable organic waste 3 membrane methane fermenter 6 high concentration organic waste 8 water treatment process 11 excess sludge 12 dehydration step 15 composting

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C05F 7/00 C05F 9/00 9/00 17/00 17/00 B09B 3/00 C D (72)発明者 柴田 敏行 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 Fターム(参考) 4D004 AA02 AA03 BA03 BA04 CA18 CA19 CB44 4D040 BB22 BB52 4D059 AA01 AA02 AA05 AA07 BA01 BA12 BA21 BA48 BE00 BE42 BE49 CA22 CA28 CC01 4H061 AA02 CC36 CC39 CC51 CC55 GG35 GG50 GG55 GG70 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C05F 7/00 C05F 9/00 9/00 17/00 17/00 B09B 3/00 CD (72) Inventor Toshiyuki Shibata 4F004 AA02 AA03 BA03 BA04 CA18 CA19 CB44 4D040 BB22 BB52 4D059 AA01 AA02 AA05 AA07 BA01 BA12 BA21 BA48 BE00 BE42 BE49 CA22 CA28 CC01 4H061 AA02 CC36 CC39 CC51 CC55 GG35 GG50 GG55 GG70

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メタン発酵処理系において、生ごみ、畜
産糞尿等の易分解性の有機性廃棄物を膜型メタン発酵槽
でメタン発酵処理し、膜型メタン発酵槽で発生するメタ
ンガスを燃料として回収し、膜型メタン発酵槽から取り
出した膜分離液および余剰メタン発酵汚泥を水処理系に
供給し、水処理系において、膜分離液、余剰メタン発酵
汚泥を、し尿、浄化槽汚泥等の高濃度有機性廃棄物と共
に水処理プロセスで生物学的硝化脱窒処理し、水処理プ
ロセスから取り出した余剰汚泥を脱水し、脱水ケーキを
コンポスト化することを特徴とする発酵汚泥処理方法。
In a methane fermentation treatment system, easily decomposable organic wastes such as garbage and livestock manure are subjected to methane fermentation in a membrane methane fermentation tank, and methane gas generated in the membrane methane fermentation tank is used as fuel. The collected and separated methane fermentation sludge and excess methane fermentation sludge taken out from the membrane methane fermentation tank are supplied to a water treatment system.In the water treatment system, the membrane separation liquid and excess methane fermentation sludge are converted to high concentration of human waste, septic tank sludge, etc. A method for treating fermented sludge, comprising biologically nitrifying and denitrifying in a water treatment process together with organic waste, dehydrating excess sludge taken out from the water treatment process, and composting a dewatered cake.
JP31173199A 1999-11-02 1999-11-02 Fermented sludge treatment method Pending JP2001129600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31173199A JP2001129600A (en) 1999-11-02 1999-11-02 Fermented sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31173199A JP2001129600A (en) 1999-11-02 1999-11-02 Fermented sludge treatment method

Publications (2)

Publication Number Publication Date
JP2001129600A true JP2001129600A (en) 2001-05-15
JP2001129600A5 JP2001129600A5 (en) 2005-10-13

Family

ID=18020804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31173199A Pending JP2001129600A (en) 1999-11-02 1999-11-02 Fermented sludge treatment method

Country Status (1)

Country Link
JP (1) JP2001129600A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044661A (en) * 2005-08-12 2007-02-22 Fuji Electric Holdings Co Ltd Methane fermentation method
JP2008303122A (en) * 2007-06-08 2008-12-18 Murata Kensetsu:Kk Soil, plant growth conditioning material
CN102247972A (en) * 2011-05-05 2011-11-23 北京水气蓝德环保科技有限公司 Dry fermentation treatment process for organic garbage
CN102898233A (en) * 2012-10-12 2013-01-30 常州大学 Method for preparing granular organic compound fertilizer by using biogas slurry sludge in pig farm
CN103694010A (en) * 2012-12-26 2014-04-02 大地绿源环保科技(北京)有限公司 Ultrahigh-temperature aerobic fermentation method for sludge and application thereof
CN103739330A (en) * 2014-01-22 2014-04-23 无锡希洁环保技术有限公司 Method for producing organic fertilizer through wool washing wastewater
JP2015013264A (en) * 2013-07-05 2015-01-22 三菱重工環境・化学エンジニアリング株式会社 Organic waste disposal system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044661A (en) * 2005-08-12 2007-02-22 Fuji Electric Holdings Co Ltd Methane fermentation method
JP2008303122A (en) * 2007-06-08 2008-12-18 Murata Kensetsu:Kk Soil, plant growth conditioning material
CN102247972A (en) * 2011-05-05 2011-11-23 北京水气蓝德环保科技有限公司 Dry fermentation treatment process for organic garbage
CN102898233A (en) * 2012-10-12 2013-01-30 常州大学 Method for preparing granular organic compound fertilizer by using biogas slurry sludge in pig farm
CN103694010A (en) * 2012-12-26 2014-04-02 大地绿源环保科技(北京)有限公司 Ultrahigh-temperature aerobic fermentation method for sludge and application thereof
JP2015013264A (en) * 2013-07-05 2015-01-22 三菱重工環境・化学エンジニアリング株式会社 Organic waste disposal system and method
CN103739330A (en) * 2014-01-22 2014-04-23 无锡希洁环保技术有限公司 Method for producing organic fertilizer through wool washing wastewater

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
Harikishan et al. Cattle waste treatment and Class A biosolid production using temperature-phased anaerobic digester
Demirer et al. Anaerobic biogasification of undiluted dairy manure in leaching bed reactors
Borowski et al. Experiences with the dual digestion of municipal sewage sludge
WO2007139264A1 (en) Apparatus and method for treatment of food waste
Ozturk Evaluation of biogas production yields of different waste materials
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP2001129600A (en) Fermented sludge treatment method
Poggi-Varaldo et al. A side-by-side comparison of two systems of sequencing coupled reactors for anaerobic digestion of the organic fraction of municipal solid waste
JP2006110540A (en) Efficient biogas recovery system using microorganism
JP4543504B2 (en) Dry methane fermentation method for organic waste
JP3676952B2 (en) Resource recovery from organic waste
Rico et al. Anaerobic digestion of the liquid fraction of dairy manure separated by screw pressing and centrifugation in a upflow anaerobic sludge blanket reactor at 25 C
KR101628322B1 (en) System for making resources using organic waste
JP3959843B2 (en) Biological treatment method for organic drainage
JP2002320949A (en) Dry methane fermentation process of organic waste
JP3970163B2 (en) Organic waste treatment method and apparatus
JP5061404B2 (en) Treatment method of dry methane fermentation sludge
JP2004041953A (en) Method and equipment for treating organic waste water
JP3409728B2 (en) Organic waste treatment method
JP2006255537A (en) Method and apparatus for treating garbage and paper refuse
JP4168552B2 (en) Organic waste treatment methods
JP2005238185A (en) High-efficiency general organic drainage and waste treatment system and device of the same
JP5353664B2 (en) Hydrogen / methane fermentation method and system
JP2001070915A (en) Device and method for organic waste disposal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105