JP2006255537A - Method and apparatus for treating garbage and paper refuse - Google Patents

Method and apparatus for treating garbage and paper refuse Download PDF

Info

Publication number
JP2006255537A
JP2006255537A JP2005074082A JP2005074082A JP2006255537A JP 2006255537 A JP2006255537 A JP 2006255537A JP 2005074082 A JP2005074082 A JP 2005074082A JP 2005074082 A JP2005074082 A JP 2005074082A JP 2006255537 A JP2006255537 A JP 2006255537A
Authority
JP
Japan
Prior art keywords
methane
hydrogen
fermentation
garbage
paper waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005074082A
Other languages
Japanese (ja)
Other versions
JP4844951B2 (en
Inventor
Shigeki Sawayama
茂樹 澤山
Kenichiro Tsukahara
建一郎 塚原
Naoaki Kataoka
直明 片岡
Yoshiyuki Ueno
嘉之 上野
Hisatomo Fukui
久智 福井
Nobuko Oshita
信子 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Kajima Corp
National Institute of Advanced Industrial Science and Technology AIST
Nishihara Environment Co Ltd
Original Assignee
Ebara Corp
Kajima Corp
National Institute of Advanced Industrial Science and Technology AIST
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Kajima Corp, National Institute of Advanced Industrial Science and Technology AIST, Nishihara Environmental Technology Co Ltd filed Critical Ebara Corp
Priority to JP2005074082A priority Critical patent/JP4844951B2/en
Publication of JP2006255537A publication Critical patent/JP2006255537A/en
Application granted granted Critical
Publication of JP4844951B2 publication Critical patent/JP4844951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of solubilizing a to-be-treated material comprising garbage and paper refuse by solubilizing hydrogen fermentation and methane fermentation, promoting generation of hydrogen and acid and production of methane efficiently and improving the digesting rate by raising the gasification efficiency of organic matter. <P>SOLUTION: The method is an anaerobic treating method based on anaerobic treatment of a to-be-treated material comprising garbage and paper refuse and is characterized by performing digestion through a combination of a solubilizing hydrogen fermentation treatment and a methane fermentation treatment by the use of a solubilizing hydrogen fermentation vessel and a methane fermentation vessel. The gas-phase product is used as a fuel, and the solid-phase product as an organic fertilizer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、家庭、レストラン、オフィス、食品工場等から排出される生ごみと紙ごみの両者を、可溶化水素発酵とメタン発酵を利用することにより、被処理物中の有機物を迅速に分解・消化処理する方法および装置に関する。   The present invention quickly decomposes organic matter in the object to be treated by utilizing solubilized hydrogen fermentation and methane fermentation for both garbage and paper waste discharged from homes, restaurants, offices, food factories, etc. The present invention relates to a digestion method and apparatus.

近年、生ごみや下水汚泥等有機性廃棄物の処理方法として、嫌気性消化法が再び注目されるようになっている。従来の嫌気性消化法では、有機物の分解速度や消化ガス生成速度は満足できる程に高くないという問題点があり、そのため、ある程度大きな消化槽を用意する必要があった。しかし、有機物の分解速度が速くなれば、消化槽をよりコンパクトにすることができ、経済性・エネルギー収支等の改善が実現できる。   In recent years, the anaerobic digestion method has attracted attention as a method for treating organic waste such as garbage and sewage sludge. In the conventional anaerobic digestion method, there is a problem that the decomposition rate of organic substances and the digestion gas generation rate are not sufficiently high, and therefore, it is necessary to prepare a digestion tank that is large to some extent. However, if the decomposition rate of organic matter is increased, the digester can be made more compact, and the economic efficiency and energy balance can be improved.

嫌気性消化には、UASB法(上向流式嫌気性スラッジブランケット法)といわれる微生物が自己凝集したグラニュールを用い、消化槽内の微生物濃度を高め、高速、高効率な方法が検討・実用化されているが(例えば、特許文献1参照)、この方法は固形分をあまり分解できないので、もっぱら懸濁固形分の少ない有機性廃水の処理に利用されており、固形分を多く含有する廃水やほとんどが固形分である有機性廃棄物の嫌気性処理には不向きである。
また、有機性廃棄物の水素発酵法が提案されているが、これは水素発酵を減圧微嫌気条件で行う方法であり(例えば、特許文献2参照)、発酵処理後の水素発酵液の浄化処理の問題は依然として残る。
For anaerobic digestion, granule with self-aggregated microorganisms called UASB method (upward flow type anaerobic sludge blanket method) is used. (For example, refer to Patent Document 1) However, since this method cannot decompose solids so much, it is used exclusively for the treatment of organic wastewater with low suspended solids, and wastewater containing a large amount of solids. It is also unsuitable for anaerobic treatment of organic waste that is mostly solid.
Moreover, although the hydrogen fermentation method of organic waste is proposed, this is a method of performing hydrogen fermentation under reduced pressure slight anaerobic conditions (for example, refer patent document 2), The purification process of the hydrogen fermentation liquid after fermentation processing The problem remains.

さらに、これよりもっと安定的な水素発酵法が提案されているが、これは水素発酵槽での滞留時間を制御して、水素発酵を安定に行う方法に関する発明であり(例えば、特許文献3参照)、やはり処理後の水素発酵液の処理の問題は解決されていない。
またさらに、水素発酵の促進方法が提案されているが、原料を加熱して水素発酵微生物の活動を促進しようとする技術であり(例えば、特許文献4参照)、加熱にコストがかかるうえ、水素発酵液の処理の問題は残る。
Further, a more stable hydrogen fermentation method has been proposed. This is an invention relating to a method for stably performing hydrogen fermentation by controlling the residence time in the hydrogen fermenter (see, for example, Patent Document 3). ) The problem of processing the hydrogen fermentation broth after the treatment is still not solved.
Furthermore, although a method for promoting hydrogen fermentation has been proposed, it is a technique for heating the raw material to promote the activity of the hydrogen-fermenting microorganisms (see, for example, Patent Document 4). The problem of processing the fermentation liquor remains.

リサイクル対象の古紙類や廃棄対象のシュレッダー紙、家庭ごみ等の紙ごみ類の処理については、分別・破砕等の物理的手段と脱インク処理などを含む化学的な処理手段により再生するのが一般的であり、また、焼却処分に付されるものも大量である。しかしながら、廃棄対象の紙ごみ類を対象とした紙ごみの安価な処理、有効利用法は見当たらず、生物学的な処理方法、特に嫌気性発酵を施す技術は十分な研究も進展していない。   Regarding the disposal of waste paper to be recycled, shredder paper to be disposed of, and paper waste such as household waste, it is generally regenerated by physical means such as separation and crushing and chemical treatment means including deinking treatment. In addition, a large amount is also subject to incineration. However, there has been no low-cost treatment and effective utilization method for paper waste targeted for disposal, and biological treatment methods, particularly techniques for anaerobic fermentation, have not been fully researched.

特開平11−319782号公報Japanese Patent Laid-Open No. 11-319782 特開平07−031998公報Japanese Patent Laid-Open No. 07-031998 特開2002−272491公報JP 2002-272491 A 特開2003−135089号公報JP 2003-135089 A

紙ごみの処理に当たって、紙ごみのみでは栄養基質のバランスが悪く、繊維質の微細化・均質化等の前処理も不十分であるために、発酵微生物群の増殖が進まず、嫌気性発酵処理が遂行できにくいこと、また、従来の生ごみ等の1槽式メタン発酵ではメタン生成微生物の増殖が遅くメタン生成反応が遅いため、滞留時間を長く取る必要があり、水素ガスが発生しないといった問題点があった。
そこで本発明の目的は、生ごみと紙ごみからなる被処理物を嫌気性微生物の存在下で分解する嫌気性消化処理法において、その有機物の可溶化と水素ガスを発生させる可溶化水素発酵処理と、メタンガスを発生させるメタン発酵処理により、生ごみや紙ごみの可溶化、水素・酸生成と、メタン生成を効率よく進行させ、有機物のガス化効率を高めて消化速度を向上させる。それにより、消化槽をより小型化し、また、難分解性のセルロース及びヘミセルロース分解率を向上させて処理廃液の浄化度合いを高くする。そして、得られる気体及び固体は有効利用できる方法および装置を提供することにある。
When processing paper waste, the balance of nutrient substrates is poor with paper waste alone, and pretreatment such as fiber refinement and homogenization is inadequate. In the conventional one-tank methane fermentation such as garbage, the growth of methane-producing microorganisms is slow and the methane production reaction is slow, so it is necessary to take a long residence time and hydrogen gas is not generated. There was a point.
Accordingly, an object of the present invention is to provide a solubilized hydrogen fermentation process in which an organic substance is solubilized and hydrogen gas is generated in an anaerobic digestion treatment method in which an object to be treated consisting of garbage and paper waste is decomposed in the presence of anaerobic microorganisms. And by methane fermentation treatment that generates methane gas, solubilization of raw garbage and paper waste, hydrogen / acid generation, and methane generation are efficiently advanced, and gasification efficiency of organic matter is increased to improve digestion rate. As a result, the digester is further miniaturized, and the degree of purification of the processing waste liquid is increased by improving the decomposition rate of the hardly-decomposable cellulose and hemicellulose. It is another object of the present invention to provide a method and apparatus in which the obtained gas and solid can be used effectively.

本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、紙ごみと生ごみを同時に処理すること、水素発酵処理とメタン発酵処理をそれぞれ別々の処理槽で行うことで、本発明を完成するに至った。
即ち、本発明は、
(1)生ごみと紙ごみからなる被処理物を嫌気性消化処理する方法であって、可溶化水素発酵槽とメタン発酵槽を具備し、可溶化水素発酵処理とメタン発酵処理の組合せで消化を行うことを特徴とする生ごみと紙ごみの処理方法、
(2)前記可溶化水素発酵処理および/または前記メタン発酵処理が、高温発酵処理であることを特徴とする(1)に記載の生ごみと紙ごみの処理方法、
(3)前記可溶化水素発酵槽に、メタン発酵後の消化液を返送することを特徴とする(1)に記載の生ごみと紙ごみの処理方法、
(4)前記メタン発酵処理が、固定化担体を備える固定化メタン発酵処理であることを特徴とする(1)または(2)に記載の生ごみと紙ごみの処理方法、
(5)生ごみと紙ごみからなる被処理物を嫌気性処理する方法であって、(I)加水分解微生物群及び水素発酵微生物群を含有する可溶化水素発酵槽において、可溶化と水素発酵を行う工程、(II)該工程で得られた発酵液をメタン発酵微生物の存在下、メタン発酵槽においてメタン生成を行う工程、(III)前記(II)の工程で得られた消化液を前記(I)の工程に返送する工程、を含むことを特徴とする生ごみと紙ごみの処理方法、
(6)前記(I)の工程で発生した水素ガスを含有する気相部と、前記(II)の工程で発生したメタンガスを含有する気相部を燃料とすることを特徴とする(5)に記載の生ごみと紙ごみの処理方法、および、
(7)生ごみと紙ごみの嫌気性消化装置であって、可溶化水素発酵槽とメタン発酵槽を別々に備えることを特徴とする(1)乃至(6)のいずれか一つに記載の生ごみと紙ごみの処理方法に用いられる嫌気性消化装置、
を提供するものである。
As a result of intensive research to solve the above-mentioned problems, the present inventor treated paper waste and garbage at the same time, and performed hydrogen fermentation treatment and methane fermentation treatment in separate treatment tanks, respectively. It came to be completed.
That is, the present invention
(1) A method for anaerobic digestion treatment of food waste and paper waste, comprising a solubilized hydrogen fermenter and a methane fermenter, and digesting with a combination of solubilized hydrogen fermenter and methane fermenter A method of treating garbage and paper waste, characterized by
(2) The method for treating garbage and paper waste according to (1), wherein the solubilized hydrogen fermentation treatment and / or the methane fermentation treatment is a high-temperature fermentation treatment,
(3) The method for treating garbage and paper waste according to (1), wherein the digested liquid after methane fermentation is returned to the solubilized hydrogen fermenter,
(4) The method for treating garbage and paper waste according to (1) or (2), wherein the methane fermentation treatment is an immobilized methane fermentation treatment comprising an immobilized carrier,
(5) A method for anaerobically treating an object to be treated consisting of raw garbage and paper waste, and (I) solubilization and hydrogen fermentation in a solubilized hydrogen fermenter containing hydrolyzing microorganisms and hydrogen-fermenting microorganisms (II) the step of producing methane in the methane fermentation tank in the presence of methane fermentation microorganisms, (III) the digestion solution obtained in the step (II) A method for treating garbage and paper waste, comprising the step of returning to the step (I),
(6) The gas phase part containing hydrogen gas generated in the step (I) and the gas phase part containing methane gas generated in the step (II) are used as fuels. A method of disposing of garbage and paper waste described in, and
(7) An anaerobic digester for garbage and paper waste, comprising a solubilized hydrogen fermenter and a methane fermenter separately, according to any one of (1) to (6) Anaerobic digester used for the treatment of garbage and paper waste,
Is to provide.

本発明によれば、紙ごみを低コストで生ごみと一緒に処理でき、そして、紙ごみ中に在る難生物分解性物質が微生物の担体としても機能する。生ごみと紙ごみは、可溶化水素発酵処理とメタン発酵処理を別槽で順番に受けるので、分解消化に関わる微生物がそれぞれの槽で温度やpH等最適な条件に維持されるので、有機物の分解速度が速く、水素ガスとメタンガスがより迅速に発生する。したがって、処理量に対する処理槽の大きさをよりコンパクトにすることができる。そして、得られる水素ガス、メタンガスは燃料、動力源ガス等として有効利用でき、発酵残渣は塩分濃度の低い良質の有機肥料となる。また、処理廃液は従来の発酵処理液より浄化度合いが進んだものである。   According to the present invention, paper waste can be treated with raw garbage at a low cost, and the hardly biodegradable substance present in the paper waste also functions as a microorganism carrier. Since garbage and paper waste are subjected to solubilized hydrogen fermentation treatment and methane fermentation treatment in separate tanks in order, microorganisms involved in digestion and digestion are maintained in optimal conditions such as temperature and pH in each tank, The decomposition rate is fast and hydrogen gas and methane gas are generated more quickly. Therefore, the size of the treatment tank with respect to the treatment amount can be made more compact. The obtained hydrogen gas and methane gas can be effectively used as fuel, power source gas, etc., and the fermentation residue becomes a high-quality organic fertilizer with a low salinity. Further, the treatment waste liquid has a higher degree of purification than the conventional fermentation treatment liquid.

本発明の生ごみと紙ごみの処理方法の好ましい実施の形態について、詳細に説明する。
本発明は、可溶化水素発酵槽とメタン発酵槽の2つの発酵槽を具備して、それぞれ可溶化水素発酵処理とメタン発酵処理をするものである。それは、可溶化水素発酵に係わる微生物は増殖速度が速く反応速度も速いにもかかわらず、従来の1槽式メタン発酵ではメタン生成微生物の増殖が遅くメタン生成反応が遅いため、滞留時間を長く取る必要があり、また、水素ガスが発生しないといった問題点があった。これを克服するために、本発明では滞留時間の短い可溶化水素発酵槽を別に設け、可溶化水素発酵を効率よく行わせ、有機物の可溶化を進めると同時に水素ガスを含むバイオガスを取り出せるものである。
A preferred embodiment of the method for treating garbage and paper waste according to the present invention will be described in detail.
The present invention comprises two fermenters, a solubilized hydrogen fermenter and a methane fermenter, and performs a solubilized hydrogen fermenter and a methane fermenter, respectively. Although the microorganisms involved in solubilized hydrogen fermentation have a high growth rate and a high reaction rate, the conventional one-tank methane fermentation takes a long residence time because the growth of the methanogenic microorganism is slow and the methane formation reaction is slow. There is a problem that hydrogen gas is not generated. In order to overcome this, in the present invention, a solubilized hydrogen fermenter with a short residence time is provided separately, so that the solubilized hydrogen fermentation can be performed efficiently, so that organic matter can be promoted so that biogas containing hydrogen gas can be taken out. It is.

本発明でいう可溶化水素発酵とは、酸素のない嫌気的な条件で嫌気性微生物の働きにより、有機物から水素ガスと有機酸と二酸化炭素を生成する反応で、20〜70℃、好ましくは30〜65℃で行う発酵法であり、このうち高温発酵とは45℃以上、好ましくは50℃以上65℃のものをいう。また、本発明でいうメタン発酵とは、酸素のない嫌気的な条件で嫌気性微生物の働きにより、有機物からメタンガスと二酸化炭素を生成させる方法で、20〜70℃、好ましくは30〜65℃で行う発酵法であり、このうち高温発酵とは45℃以上、好ましくは50℃以上65℃のものをいう。
これらの発酵の温度範囲の限定は、温度が低すぎると微生物の増殖活性が低く、また、高すぎると微生物が失活するためである。なかでも、高温発酵が好ましいのは、有機物分解速度が高いからである。
The solubilized hydrogen fermentation referred to in the present invention is a reaction in which hydrogen gas, an organic acid, and carbon dioxide are generated from an organic substance by the action of an anaerobic microorganism under anaerobic conditions without oxygen, and 20 to 70 ° C., preferably 30 It is a fermentation method carried out at ˜65 ° C. Among them, high-temperature fermentation means one having a temperature of 45 ° C. or higher, preferably 50 ° C. or higher and 65 ° C. Moreover, methane fermentation as used in the field of this invention is the method of producing | generating methane gas and a carbon dioxide from organic substance by the function of an anaerobic microorganism on anaerobic conditions without oxygen, 20-70 degreeC, Preferably it is 30-65 degreeC. Of these fermentation methods, high-temperature fermentation is 45 ° C or higher, preferably 50 ° C or higher and 65 ° C.
The limitation on the temperature range of these fermentations is that if the temperature is too low, the growth activity of the microorganism is low, and if it is too high, the microorganism is inactivated. Among them, the high temperature fermentation is preferable because the organic matter decomposition rate is high.

また、本明細書でいう可溶化水素発酵微生物とは、嫌気性消化において水素ガスと有機酸と二酸化炭素等を生成する微生物を意味し、クロストリジウム属(Clostridium sp.)等が挙げられ、加水分解微生物とは、有機物を低分子化する微生物を意味し、バチルス属(Bacillus sp.)ラクトバチルス属(Lactobacillus
sp.)バクトロイデス属(Bacteroides sp.)ビフィドバクテリウム属(Bifidobacterium sp.)ユーバクテリウム属(Eubacterium sp.)等が挙げられる。メタン発酵微生物とは、嫌気性消化においてメタンガスと二酸化炭素を生成する微生物を意味し、メタノバクテリウム属(Methanobacterium sp.)メタノサーモバクタ属(Methanothermobacter sp.)メタノサルシナ属(Methanosarcina sp.)メタノサエタ属(Methanosaeta sp.)等が挙げられる。これらはともに従来よく知られているものである。本発明においては、水素発酵槽ではこの他に特定されない多様な水素発酵微生物が生育し、メタン発酵槽でも上記の他に特定されない多様なメタン発酵微生物が成育する。このように、多様な微生物が存在することにより、原料である生ごみや紙ごみを含む被処理物を殺菌しなくても原料に対応した最適な微生物群が増殖し、安定した分解処理を行うことができる。
In addition, the solubilized hydrogen-fermenting microorganism referred to in the present specification means a microorganism that generates hydrogen gas, organic acid, carbon dioxide and the like in anaerobic digestion, and includes Clostridium sp. Microorganisms mean microorganisms that reduce the molecular weight of organic substances, such as Bacillus sp. And Lactobacillus.
sp.) , Bacteroides sp. , Bifidobacterium sp. , Eubacterium sp., and the like. Methane-fermenting microorganisms mean microorganisms that produce methane gas and carbon dioxide in anaerobic digestion . Methanobacterium sp. , Methanothermobacter sp. , Methanosarcina sp. Examples include Methanosaeta sp . Both of these are well known in the art. In the present invention, various hydrogen-fermenting microorganisms that are not specifically identified grow in the hydrogen fermenter, and various methane-fermenting microorganisms that are not otherwise identified grow in the methane fermenter. In this way, due to the presence of various microorganisms, the optimal group of microorganisms corresponding to the raw material can be grown and stably decomposed without sterilizing the object to be processed including raw garbage and paper waste as raw materials. be able to.

本発明の処理対象となる生ごみは、家庭、レストラン、食品工場等から排出される食品残滓や排水等であり、紙ごみは、オフィス、印刷工場、家庭等から排出される廃棄紙類、シュレッダーにかけられた紙ごみ等である。
これらからなる被処理物は、質量で表して、生ごみ100部(含水率約80%)に対し紙ごみ30部以下、好ましくは20部以下であり、少なくとも1部以上混合したものでる。紙ごみが多すぎると発酵原料が固形状となり消化処理があまり進まず、少なすぎては低負荷処理であり、また紙ごみの処理とはいえなくなる。
本発明で生ごみと紙ごみを同時に処理するのは、紙ごみは、繊維を多く含む有機物であり、セルロース等の生物分解性の炭素源とヘミセルロース、リグニン、灰分等の難分解性物質も含むものであるからである。紙ごみを混合することにより、生ごみと紙ごみが有する生物分解性物質が微生物の基質となり、また、紙ごみの難分解性物質が微生物の担体としても機能することで微生物濃度が高くなり、可溶化水素発酵処理およびメタン発酵処理がより良好に進むものである。
The garbage to be treated in the present invention is food residues and wastewater discharged from households, restaurants, food factories, etc., and the paper waste is waste paper, shredders discharged from offices, printing factories, households, etc. Paper waste that has been put on.
The material to be treated is 30 parts or less, preferably 20 parts or less, and a mixture of at least 1 part or more with respect to 100 parts of garbage (water content of about 80%). If there is too much paper waste, the fermentation raw material will be in a solid state and digestion will not progress much. If it is too little, it will be a low-load treatment, and it will not be a paper waste treatment.
In the present invention, food waste and paper waste are treated at the same time. Paper waste is an organic substance containing a large amount of fibers, and also contains biodegradable carbon sources such as cellulose and persistent materials such as hemicellulose, lignin and ash. Because it is a waste. By mixing paper waste, the biodegradable material of garbage and paper waste becomes a substrate for microorganisms, and the persistent biodegradable material of paper waste also functions as a carrier for microorganisms, increasing the microorganism concentration. Solubilized hydrogen fermentation treatment and methane fermentation treatment proceed better.

次に、本発明の実施方法を述べる。まず原料の生ごみと紙ごみを粉砕し、これを可溶化水素発酵槽内で可溶化水素発酵微生物群と混合し、含水率75〜99.9%、好ましくは85〜98%に調整し、20℃以上、好ましくは30〜70℃、さらに好ましくは35〜65℃で、湿式可溶化水素発酵処理させる。高温発酵の場合は、50℃〜65℃が好ましい。その他のには、pH5〜6.5、滞留時間8時間〜10日、酸化還元電位−300〜−600mVの範囲が好ましい。
続いて、可溶化水素発酵後の発酵物を原料として、メタン発酵槽内でメタン発酵微生物群と混合し、20℃以上、好ましくは30〜70℃、さらに好ましくは35〜65℃で湿式メタン発酵処理させる。高温発酵の場合は、50℃〜65℃が好ましい。その他には、pH6.5〜8.5、滞留時間6〜30日、酸化還元電位−300〜−700mVの範囲が好ましい。
Next, an implementation method of the present invention will be described. First, raw garbage and paper waste are pulverized, mixed with a solubilized hydrogen-fermenting microorganism group in a solubilized hydrogen fermenter, and adjusted to a moisture content of 75 to 99.9%, preferably 85 to 98%. The wet solubilized hydrogen fermentation treatment is performed at 20 ° C. or higher, preferably 30 to 70 ° C., more preferably 35 to 65 ° C. In the case of high temperature fermentation, 50 ° C to 65 ° C is preferable. In addition, pH 5 to 6.5, residence time 8 hours to 10 days, and oxidation-reduction potential −300 to −600 mV are preferable.
Subsequently, using the fermented material after solubilized hydrogen fermentation as a raw material, it is mixed with a methane fermentation microorganism group in a methane fermentation tank, and wet methane fermentation at 20 ° C. or higher, preferably 30 to 70 ° C., more preferably 35 to 65 ° C. Let it be processed. In the case of high temperature fermentation, 50 ° C to 65 ° C is preferable. In addition, pH 6.5 to 8.5, residence time 6 to 30 days, and oxidation-reduction potential −300 to −700 mV are preferable.

この場合、本発明においては可溶化水素発酵槽にメタン発酵後の処理液の一部を返送することにより、可溶化水素発酵槽のアルカリ度を補給し、pH5〜6.5、アルカリ度500〜5000mg/lに調整し、より安定した水素発酵が持続するようにできる。
また、本発明においては、メタン発酵槽内に増殖の遅いメタン発酵微生物のすみかとなる固定化担体を具備し、槽内の微生物濃度を高くして、メタン生成の効率を向上させることができる。
In this case, in the present invention, the alkalinity of the solubilized hydrogen fermenter is replenished by returning a part of the treatment liquid after methane fermentation to the solubilized hydrogen fermenter, and the pH is 5 to 6.5 and the alkalinity is 500 to 500. It can be adjusted to 5000 mg / l so that more stable hydrogen fermentation can be sustained.
Moreover, in this invention, the immobilization support | carrier used as a corner of the slow growth methane fermentation microorganisms is comprised in a methane fermentation tank, the microorganisms density | concentration in a tank can be made high, and the efficiency of methane production | generation can be improved.

前記のようにして、生ごみや紙ごみを可溶化水素発酵処理・メタン発酵処理すると、有機物が分解されてガス化し、嫌気性消化処理物が得られる。その時発生する嫌気性消化処理物は、窒素やリン等の肥料成分を多く含み、発酵が進んでいるのでそのまま液肥として、または固液分離後固形分を有機性肥料として利用することが可能である。
最近実施されている好気的なコンポスト法によって生ごみ等から生産された有機性肥料では、その中に含まれる塩分が問題となる場合があるが、本発明方法によるものは、固液分離後は塩分は液相部中に多く含まれるため、固相である発酵残滓は有機性肥料となり、本法により得られる有機性肥料はコンポスト法による有機性肥料に比べ塩分濃度が低いという利点を有する。
As described above, when raw garbage or paper waste is solubilized hydrogen fermentation treatment / methane fermentation treatment, the organic matter is decomposed and gasified to obtain an anaerobic digestion treatment product. The anaerobic digestion product generated at that time contains a lot of fertilizer components such as nitrogen and phosphorus, and since fermentation is progressing, it can be used as it is as liquid fertilizer, or after solid-liquid separation, the solid content can be used as organic fertilizer .
In organic fertilizers produced from food waste etc. by the aerobic composting method currently being implemented, the salt content contained therein may be a problem. Since a large amount of salt is contained in the liquid phase part, the fermentation residue, which is a solid phase, becomes an organic fertilizer, and the organic fertilizer obtained by this method has the advantage that the salt concentration is lower than the organic fertilizer by the compost method .

また、それぞれの発酵処理による消化時に発生する水素ガスやメタンガスは、ボイラー燃料、消化ガス発電、マイクロガスタービンに利用できるのは勿論、直接又は水素への改質後燃料電池の燃料として利用することができる。   In addition, hydrogen gas and methane gas generated during digestion by each fermentation process can be used for boiler fuel, digestion gas power generation, and micro gas turbine, as well as for fuel of fuel cells directly or after reforming to hydrogen. Can do.

次に、本発明の実施態様を添付の図面に基づいて説明する。
図1は本発明を実施する場合の処理工程を示す説明図である。
生ごみと紙ごみを貯留する原料貯留タンク1より原料配管2を通って、可溶化水素発酵を生じさせる微生物群を含有する可溶化水素発酵槽3に供給する。可溶化水素発酵槽3は嫌気的な条件に保つ。
可溶化水素発酵を生じさせる微生物群としては、下水処理場の下水汚泥の嫌気性消化汚泥やコンポスト(堆肥)等を使用すればよい。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an explanatory diagram showing processing steps when the present invention is implemented.
A raw material storage tank 1 for storing raw garbage and paper waste is supplied through a raw material pipe 2 to a solubilized hydrogen fermentation tank 3 containing a microorganism group that causes solubilized hydrogen fermentation. The solubilized hydrogen fermenter 3 is kept under anaerobic conditions.
As a group of microorganisms that cause solubilized hydrogen fermentation, anaerobic digested sludge, compost (compost), or the like of sewage sludge from a sewage treatment plant may be used.

この可溶化水素発酵槽3において、生ごみと紙ごみは可溶化水素発酵微生物の分解作用を受け、水素ガスと二酸化炭素と有機酸に分解される。この可溶化処理により、原料中の有機物は迅速に安定的に分解される。
本発明に係る可溶化水素発酵槽は、槽内の原料と微生物群を撹拌して混合するが、発酵反応を促進させるために、槽内に撹拌装置4を具備させることが望ましい。また、槽内の発酵液を一部抜き再度投入する発酵液の循環により撹拌を実現してもよい。
さらに、可溶化水素発酵槽3内で発生した水素ガスを含むバイオガスは水素ガス配管5を通って水素ガス貯留タンク6に貯留される。この場合の水素含有ガスは、通常H:40〜80モル%、CO:20〜60モル%を含有する。
In the solubilized hydrogen fermenter 3, raw garbage and paper waste are decomposed by solubilized hydrogen-fermenting microorganisms and decomposed into hydrogen gas, carbon dioxide, and organic acid. By this solubilization treatment, organic substances in the raw material are rapidly and stably decomposed.
The solubilized hydrogen fermenter according to the present invention stirs and mixes the raw material and the microorganism group in the tank, but it is desirable to provide the stirring device 4 in the tank in order to promote the fermentation reaction. Moreover, you may implement | achieve stirring by circulation of the fermented liquor which removes some fermented liquor in a tank and throws in again.
Furthermore, biogas containing hydrogen gas generated in the solubilized hydrogen fermenter 3 is stored in the hydrogen gas storage tank 6 through the hydrogen gas pipe 5. In this case, the hydrogen-containing gas usually contains H 2 : 40 to 80 mol% and CO 2 : 20 to 60 mol%.

一方、可溶化水素発酵槽3で得られた発酵物は発酵物配管7を通ってメタン発酵槽8に導入される。メタン発酵槽8は嫌気的な条件に保つ。
メタン発酵を生じさせる微生物群としては、下水処理場の嫌気性消化汚泥等を使用すればよい。
このメタン発酵槽8において、有機酸を主体とする発酵物はメタン発酵微生物の作用を受け、メタンガスと二酸化炭素に分解される。このメタン生成処理により、発酵物中の有機酸は迅速に安定的に分解される。
On the other hand, the fermented product obtained in the solubilized hydrogen fermenter 3 is introduced into the methane fermenter 8 through the fermented product pipe 7. The methane fermenter 8 is kept under anaerobic conditions.
As a group of microorganisms that cause methane fermentation, anaerobic digested sludge or the like of a sewage treatment plant may be used.
In the methane fermentation tank 8, the fermented product mainly composed of organic acid is subjected to the action of methane fermentation microorganisms and decomposed into methane gas and carbon dioxide. By this methane production treatment, the organic acid in the fermented product is rapidly and stably decomposed.

本発明に係るメタン発酵槽は、槽内の発酵物と微生物群を撹拌して混合し、発酵反応を促進させるために、撹拌装置9を具備させることが望ましい。また、槽内の発酵液を抜き再度投入する発酵液の循環利用により槽内の撹拌を実現してもよい。
メタン発酵微生物の濃度を高く維持するために、メタン発酵微生物住処となる固定化担体10をメタン発酵槽内に具備させることが望ましい。
また、メタン発酵槽8内で発生したメタンを含むガスはメタンガス配管11を通ってメタンガス貯留タンク12に貯留される。この場合のメタン含有ガスは、通常CH4:40〜90モル%、CO:10〜60モル%を含有する。
The methane fermenter according to the present invention is preferably provided with a stirring device 9 in order to stir and mix the fermented material and the microorganism group in the tank and promote the fermentation reaction. Moreover, you may implement | achieve stirring in a tank by circulating utilization of the fermented liquid which extracts the fermentation liquid in a tank and throws in again.
In order to maintain a high concentration of methane fermentation microorganisms, it is desirable to provide the methane fermentation tank with an immobilized carrier 10 serving as a methane fermentation microorganism residence.
Further, the gas containing methane generated in the methane fermentation tank 8 is stored in the methane gas storage tank 12 through the methane gas pipe 11. The methane-containing gas in this case usually contains CH 4 : 40 to 90 mol% and CO 2 : 10 to 60 mol%.

一方、メタン発酵槽8で得られた処理物は処理物配管13を通って処理物貯留タンク14に貯留される。また、先にも記載したように、このメタン発酵槽8で得られた処理物は一部可溶化水素発酵槽へ返送することにより、可溶化水素発酵槽のアルカリ度を調整することができる。
処理物貯留タンク14中の処理物は、通常溶存有機物や溶存無機物の濃度の低いものであるので、固液分離し、液相は必要に応じ排水処理後放流される。
固相は、有機性肥料や土壌改良材、骨材として、再利用できる。
On the other hand, the processed product obtained in the methane fermentation tank 8 is stored in the processed product storage tank 14 through the processed product piping 13. Moreover, as described above, the alkalinity of the solubilized hydrogen fermenter can be adjusted by partially returning the processed product obtained in the methane fermenter 8 to the solubilized hydrogen fermenter.
Since the processed product in the processed product storage tank 14 is usually one having a low concentration of dissolved organic matter or dissolved inorganic matter, it is separated into solid and liquid, and the liquid phase is discharged after wastewater treatment as necessary.
The solid phase can be reused as organic fertilizer, soil conditioner, and aggregate.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
[実施例1]
実施例に用いた発酵装置は、図2に示すように可溶化水素発酵装置とメタン発酵装置とを直列に接続した二段発酵装置である。可溶化水素発酵装置は有効容積300Lの完全混合型、メタン発酵装置は有効容積340L、合成樹脂製担体を充填した固定床型であり、両装置共にジャッケト式で55℃に温度制御した。発酵槽の加温には温水ボイラーを用いた。可溶化水素発酵槽およびメタン発酵槽の発酵汚泥は、予め実験原料で1ヶ月以上馴養運転して可溶化微生物、水素発酵微生物、メタン発酵微生物を発酵槽内に十分に増殖させた。
実施例に用いた原料は、A事業所内から排出される食堂残飯とシュレッダー紙ごみを定期的に収集したものである。食堂残飯は、ビニール袋、貝殻、卵の殻、鳥骨、金属片、プラスチック片など残飯中に混在する発酵不適物を取り除いた後、コンパクトチョッパー[MKBC−42型(商品名)、増幸産業(株)]で粗破砕し、モーノポンプで原料タンクに移送した。原料タンクでは、食堂残飯:雑用水1:1(重量比)濃度調製してスラリー状とし、そこにシュレッダー紙ごみを1%(重量比)投入してカッターポンプ[KD80MS型(商品名)、三菱電機(株)]で1日あたり計2時間運転しながら微破砕した。原水の性状を表1に示す。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
[Example 1]
The fermentation apparatus used in the examples is a two-stage fermentation apparatus in which a solubilized hydrogen fermentation apparatus and a methane fermentation apparatus are connected in series as shown in FIG. The solubilized hydrogen fermentation apparatus was a complete mixing type with an effective volume of 300 L, the methane fermentation apparatus was an effective volume of 340 L, and a fixed bed type filled with a synthetic resin carrier. A warm water boiler was used to heat the fermenter. The fermented sludge of the solubilized hydrogen fermenter and methane fermenter was acclimatized and operated for 1 month or more in advance with experimental raw materials, and solubilized microorganisms, hydrogen fermenting microorganisms, and methane fermenting microorganisms were sufficiently grown in the fermenter.
The raw materials used in the examples are those obtained by regularly collecting leftovers from the A office and shredder paper waste. After removing unsuitable fermented foods such as plastic bags, shells, egg shells, bird bones, metal pieces, plastic pieces, etc., the cafeteria leftovers are compact choppers [MKBC-42 type (trade name), Masuyuki Sangyo ( Co., Ltd.] and transferred to a raw material tank with a MONO pump. In the raw material tank, a concentration of 1: 1 (weight ratio) can be obtained for the remaining food in the cafeteria and made into a slurry. It was finely crushed while operating for a total of 2 hours per day. Properties of raw water are shown in Table 1.

Figure 2006255537
Figure 2006255537

原水投入はモーノポンプを使って電磁流量計で計測しながら40L/日を可溶化水素発酵槽に間欠投入した(10L/回の原水投入を4回/日)。可溶化水素発酵槽から流出した可溶化水素発酵液は、発酵液調整タンクに一旦貯留し、後段のメタン発酵槽に連続投入した。
この実験では、(1)実験A:メタン発酵液を汚泥返送タンクに貯留し、その一部を可溶化水素発酵槽に30L/日を返送しながら二段発酵した場合、(2)実験B:汚泥返送せずに二段発酵した場合、(3)実験C(比較例):高温メタン発酵槽1槽で処理した場合の3通りの運転方法を行なった。
各実験の条件及び得られた結果を表2に示す。
The raw water was charged intermittently at 40 L / day into the solubilized hydrogen fermenter while measuring with an electromagnetic flow meter using a MONO pump (10 L / times of raw water was charged 4 times / day). The solubilized hydrogen fermented liquid that flowed out of the solubilized hydrogen fermenter was temporarily stored in the fermented liquid adjustment tank and continuously charged into the subsequent methane fermenter.
In this experiment, (1) Experiment A: When the methane fermentation liquor is stored in the sludge return tank, and a part thereof is subjected to two-stage fermentation while returning 30 L / day to the solubilized hydrogen fermenter, (2) Experiment B: When two-stage fermentation was performed without returning the sludge, (3) Experiment C (comparative example): Three operating methods were used when treated in one high-temperature methane fermentation tank.
Table 2 shows the conditions for each experiment and the results obtained.

Figure 2006255537
Figure 2006255537

表1、表2に示す各性状は、次の分析方法で行なったものである。
・TS(Total Solids、全蒸発残留物);105℃乾燥重量法(JIS K 0102)
・VS (Volatile Solids、強熱減量);600℃強熱減量法(JIS K 0102)
・SS(Suspended Solids、懸濁物質);105℃乾燥重量法(JIS K 0102)
・VSS(Volatile Suspended Solids、懸濁物質の強熱減量);600℃強熱減量法
(JIS K 0102)
・CODCr(化学的酸素消費量);重クロム酸カリウム法(JIS K 0102)
・BOD(生物化学的酸素消費量);20℃、5日間の要求酸素量(JIS K0102)
・たんぱく質;(ケルダール窒素−アンモンニア性窒素)×6.25
・T−P(全リン);過塩素酸分解法(JIS K 0102)
・全還元糖類;フェノール−硫酸法(吸光度488nm)
・セルロース;エタノール−ベンゼン抽出法
・有機酸(VFA);高速液体クロマトグラフ(エルマ光学 ERC-8710、示差屈折率検出器 ERC-7510、カラム Shodex RSpack KC-811、カラム温度 60℃、移動相 0.1%リン酸)
・水素ガス・メタンガス・二酸化炭素;ガスクロマトグラフ(Shimadzu GC-14B、検出器 TCD、Molecular Sieve 2m、カラム温度 160℃、キャリアガス He)
・溶解性画分;GF/B(1μm)でのろ液
・pH;ガラス電極法(JIS K 0102)
Each property shown in Table 1 and Table 2 was obtained by the following analysis method.
TS (Total Solids, total evaporation residue); 105 ° C. dry weight method (JIS K 0102)
・ VS (Volatile Solids, loss on ignition); 600 ° C loss on ignition method (JIS K 0102)
SS (Suspended Solids): 105 ° C dry weight method (JIS K 0102)
・ VSS (Volatile Suspended Solids, ignition loss of suspended solids); 600 ° C ignition loss method (JIS K 0102)
COD Cr (chemical oxygen consumption); potassium dichromate method (JIS K 0102)
・ BOD (Biochemical Oxygen Consumption); Required oxygen amount for 5 days at 20 ° C. (JIS K0102)
・ Protein; (Kjeldahl nitrogen-Ammonian nitrogen) x 6.25
・ TP (total phosphorus); perchloric acid decomposition method (JIS K 0102)
・ Total reducing sugars; phenol-sulfuric acid method (absorbance 488 nm)
・ Cellulose; Ethanol-benzene extraction method ・ Organic acid (VFA); High-performance liquid chromatograph (Elmer Optics ERC-8710, differential refractive index detector ERC-7510, column Shodex RSpack KC-811, column temperature 60 ° C., mobile phase 0.1 %phosphoric acid)
・ Hydrogen gas ・ Methane gas ・ Carbon dioxide; Gas chromatograph (Shimadzu GC-14B, Detector TCD, Molecular Sieve 2m, Column temperature 160 ℃, Carrier gas He)
-Soluble fraction; Filtrate in GF / B (1 µm)-pH; Glass electrode method (JIS K 0102)

表2に示す実験結果から、本発明の可溶化水素発酵・メタン発酵をこの順序で組合せる発酵法により、従来技術と比較して、生ごみと紙ごみが効率よく水素ガスとメタンガスと二酸化炭素に分解し、生ごみや紙ごみの分解速度やガス化速度が向上することがわかった。   From the experimental results shown in Table 2, by the fermentation method that combines the solubilized hydrogen fermentation and methane fermentation of the present invention in this order, raw garbage and paper waste are more efficiently hydrogen gas, methane gas, and carbon dioxide than in the prior art. It was found that the decomposition rate and gasification rate of garbage and paper waste are improved.

本発明の生ごみと紙ごみの嫌気性消化処理工程の説明図である。It is explanatory drawing of the anaerobic digestion process of garbage and paper waste of this invention. 実施例の工程説明図である。It is process explanatory drawing of an Example.

符号の説明Explanation of symbols

1.原料貯留タンク
2.原料配管
3.可溶化水素発酵槽
4.撹拌装置
5.水素ガス配管
6.水素ガス貯留タンク
7.発酵物配管
8.メタン発酵槽
9.撹拌装置
10.固定化担体
11.メタンガス配管
12.メタンガス貯留タンク
13.処理物配管
14.処理物貯留タンク
1. 1. Raw material storage tank 2. Raw material piping 3. Solubilized hydrogen fermenter 4. Stirring device Hydrogen gas piping 6. 6. Hydrogen gas storage tank 7. Fermented product piping 8. Methane fermentation tank Stirrer 10. Immobilization support 11. Methane gas piping12. Methane gas storage tank 13. Process pipe 14. Processed storage tank

Claims (7)

生ごみと紙ごみからなる被処理物を嫌気性消化処理する方法であって、可溶化水素発酵槽とメタン発酵槽を具備し、可溶化水素発酵処理とメタン発酵処理の組合せで消化を行うことを特徴とする生ごみと紙ごみの処理方法。   A method for anaerobic digestion of food waste and paper waste, comprising a solubilized hydrogen fermenter and a methane fermenter, and digesting with a combination of solubilized hydrogen fermenter and methane fermenter Of garbage and paper waste. 前記可溶化水素発酵処理および/または前記メタン発酵処理が、高温発酵処理であることを特徴とする請求項1に記載の生ごみと紙ごみの処理方法。   The method for treating garbage and paper waste according to claim 1, wherein the solubilized hydrogen fermentation treatment and / or the methane fermentation treatment is a high-temperature fermentation treatment. 前記可溶化水素発酵槽に、メタン発酵後の消化液を返送することを特徴とする請求項1に記載の生ごみと紙ごみの処理方法。   The digested liquid after methane fermentation is returned to the solubilized hydrogen fermenter. The method for treating garbage and paper waste according to claim 1. 前記メタン発酵処理が、固定化担体を備える固定化メタン発酵処理であることを特徴とする請求項1または2に記載の生ごみと紙ごみの処理方法。   The method for treating garbage and paper waste according to claim 1 or 2, wherein the methane fermentation treatment is an immobilized methane fermentation treatment comprising an immobilization carrier. 生ごみと紙ごみからなる被処理物を嫌気性処理する方法であって、(I)加水分解微生物群及び水素発酵微生物群を含有する可溶化水素発酵槽において、可溶化と水素発酵を行う工程、(II)該工程で得られた発酵液をメタン発酵微生物の存在下、メタン発酵槽においてメタン生成を行う工程、(III)前記(II)の工程で得られた消化液を前記(I)の工程に返送する工程、を含むことを特徴とする生ごみと紙ごみの処理方法。   A method for anaerobically treating an object to be treated consisting of raw garbage and paper waste, wherein (I) a step of solubilization and hydrogen fermentation in a solubilized hydrogen fermenter containing hydrolyzing microorganisms and hydrogen-fermenting microorganisms (II) The step of producing methane in the methane fermentation tank in the presence of methane-fermenting microorganisms in the presence of the methane fermentation microorganisms, (III) The digestion solution obtained in the step (II) above (I) A method for treating garbage and paper waste, comprising the step of returning to the step of 前記(I)の工程で発生した水素ガスを含有する気相部と、前記(II)の工程で発生したメタンガスを含有する気相部を燃料とすることを特徴とする請求項5に記載の生ごみと紙ごみの処理方法。   6. The gas phase portion containing hydrogen gas generated in the step (I) and the gas phase portion containing methane gas generated in the step (II) are used as fuels. Disposal method of garbage and paper waste. 生ごみと紙ごみの嫌気性消化装置であって、可溶化水素発酵槽とメタン発酵槽を別々に備えることを特徴とする請求項1乃至請求項6のいずれか1項に記載の生ごみと紙ごみの処理方法に用いられる嫌気性消化装置。
An anaerobic digester for garbage and paper waste, comprising a solubilized hydrogen fermentation tank and a methane fermentation tank separately, and the garbage according to any one of claims 1 to 6 Anaerobic digester used in paper waste disposal methods.
JP2005074082A 2005-03-15 2005-03-15 Processing method and apparatus for garbage and paper waste Active JP4844951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074082A JP4844951B2 (en) 2005-03-15 2005-03-15 Processing method and apparatus for garbage and paper waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074082A JP4844951B2 (en) 2005-03-15 2005-03-15 Processing method and apparatus for garbage and paper waste

Publications (2)

Publication Number Publication Date
JP2006255537A true JP2006255537A (en) 2006-09-28
JP4844951B2 JP4844951B2 (en) 2011-12-28

Family

ID=37095328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074082A Active JP4844951B2 (en) 2005-03-15 2005-03-15 Processing method and apparatus for garbage and paper waste

Country Status (1)

Country Link
JP (1) JP4844951B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227871A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Method for solubilizing waste paper
CN102172602A (en) * 2011-01-11 2011-09-07 薛松晓 Novel biological treatment method for kitchen garbage
JP2011223985A (en) * 2010-03-31 2011-11-10 Central Res Inst Of Electric Power Ind Method for hydrogen fermentation treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119576A1 (en) 2017-08-25 2019-02-28 Klomfass Gierlings & Partner GbR (vertretungsberechtigter Gesellschafter Michael Gierlings, 40723 Hilden) Device for laminating a substrate with a thermoplastic coating material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115689A (en) * 1980-02-20 1981-09-10 Mitsubishi Heavy Ind Ltd Methane fermenting device
JPS5765392A (en) * 1980-10-06 1982-04-20 Agency Of Ind Science & Technol Anearobic digestion of paper-contg. kitchen stuff
JPS6034800A (en) * 1983-08-05 1985-02-22 Hitachi Plant Eng & Constr Co Ltd Treatment of organic waste
JP2001300486A (en) * 2000-04-26 2001-10-30 Babcock Hitachi Kk Apparatus and method for methane fermentation treatment of organic waste
JP2001340899A (en) * 2000-05-31 2001-12-11 Nkk Corp Method and apparatus for anaerobically digesting organic substance
JP2003285031A (en) * 2002-03-27 2003-10-07 Kurimoto Ltd Apparatus for methane fermentation of organic waste
JP2004223470A (en) * 2003-01-27 2004-08-12 Fuji Electric Holdings Co Ltd Method and apparatus for methane fermentation of organic waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115689A (en) * 1980-02-20 1981-09-10 Mitsubishi Heavy Ind Ltd Methane fermenting device
JPS5765392A (en) * 1980-10-06 1982-04-20 Agency Of Ind Science & Technol Anearobic digestion of paper-contg. kitchen stuff
JPS6034800A (en) * 1983-08-05 1985-02-22 Hitachi Plant Eng & Constr Co Ltd Treatment of organic waste
JP2001300486A (en) * 2000-04-26 2001-10-30 Babcock Hitachi Kk Apparatus and method for methane fermentation treatment of organic waste
JP2001340899A (en) * 2000-05-31 2001-12-11 Nkk Corp Method and apparatus for anaerobically digesting organic substance
JP2003285031A (en) * 2002-03-27 2003-10-07 Kurimoto Ltd Apparatus for methane fermentation of organic waste
JP2004223470A (en) * 2003-01-27 2004-08-12 Fuji Electric Holdings Co Ltd Method and apparatus for methane fermentation of organic waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227871A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Method for solubilizing waste paper
JP2011223985A (en) * 2010-03-31 2011-11-10 Central Res Inst Of Electric Power Ind Method for hydrogen fermentation treatment
CN102172602A (en) * 2011-01-11 2011-09-07 薛松晓 Novel biological treatment method for kitchen garbage

Also Published As

Publication number Publication date
JP4844951B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Náthia-Neves et al. Anaerobic digestion process: technological aspects and recent developments
Battista et al. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added‐value bioproducts
CN101337838B (en) Combined anaerobic fermentation process for organic solid wastes
Nishio et al. Recent development of anaerobic digestion processes for energy recovery from wastes
US6342378B1 (en) Biogasification of solid waste with an anaerobic-phased solids-digester system
Gómez et al. Bio-hydrogen production from waste fermentation: Mixing and static conditions
JP5711192B2 (en) Method and apparatus for anaerobic treatment of organic waste
Kang et al. Enhanced anaerobic digestion of organic waste
Zhang et al. Recovering short-chain fatty acids from waste sludge via biocarriers and microfiltration enhanced anaerobic fermentation
CN102557373A (en) Treatment method of excess sludge
Ilgi et al. Biohydrogen production from acid hydrolyzed wastewater treatment sludge by dark fermentation
CN102367455B (en) Method for producing hydrogen by improving anaerobic digestion of kitchen waste through controlling ammonia nitrogen concentration
JP5121111B2 (en) Method and apparatus for anaerobic treatment of organic waste
Giwa et al. The resource recovery potential of blackwater and foodwaste: anaerobic co-digestion in serial semi-continuous stirred tank reactors
WO2018047200A1 (en) A process for generation of biogas from organic matter via its liquefaction to liquid biocrude
JP2006255538A (en) Method and apparatus for treatment of food waste
JP4864339B2 (en) Organic waste processing apparatus and processing method
Kumar et al. Landfill leachate valorization: A potential alternative to burden off resources and support energy systems
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
Hussien et al. Tuning dark fermentation operational conditions for improved biohydrogen yield during co-digestion of swine manure and food waste
Sahil et al. Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review
JP3873114B2 (en) Processing method of organic solid waste
CN102618436B (en) Anaerobic fermentation treatment system and method of solid and liquid waste
Kalia Microbial treatment of domestic and industrial wastes for bioenergy production
Raizada et al. Waste management and production of future fuels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111007

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250