JPS6034800A - Treatment of organic waste - Google Patents

Treatment of organic waste

Info

Publication number
JPS6034800A
JPS6034800A JP58143570A JP14357083A JPS6034800A JP S6034800 A JPS6034800 A JP S6034800A JP 58143570 A JP58143570 A JP 58143570A JP 14357083 A JP14357083 A JP 14357083A JP S6034800 A JPS6034800 A JP S6034800A
Authority
JP
Japan
Prior art keywords
butyric acid
liquefaction
fermentation
volatile fatty
fatty acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58143570A
Other languages
Japanese (ja)
Inventor
Masahiro Kon
昆 正浩
Ichiro Nakajima
一郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP58143570A priority Critical patent/JPS6034800A/en
Publication of JPS6034800A publication Critical patent/JPS6034800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

PURPOSE:To recover valuable materials or energy and to contrive reutilization of recovered materials or energy by performing addition and interruption of addition of n-butyric acid in the first stage and adjusting the proportion of n- butyric acid in the formed volatile fatty acid to >=30%. CONSTITUTION:Raw material slurry for fermentation is charged to a liquefaction fermentation tank 2 and org. materials are brought into contact with liquefying fermentation microorganism to decompose to volatile fatty acid such as acetic acid or butyric acid, etc. Gaseous H2, gaseous CO2, or gaseous methane are generated simultaneously with the decomposition of org. materials, and generated gas is stored in a gas holder 4. The compsn. of volatile fatty acid generated in the liquefaction fermentation tank 2 is analyzed, and an amt. of n-butyric acid specified depending on the concn. of the compsn. and concn. of the product is charged. n-butyric acid is charged to the liquefaction fertilization tank from an n-butyric acid tank 3 when the proportion of n-butyric acid is below 30% basing on the amt. of whole volatile fatty acids. By this method, generation of gaseous methane in the liquefaction fertilization tank 2 is retarded and generation of H2 is stabilized.

Description

【発明の詳細な説明】 本発明は有機性廃棄物の処理方法に関し、特に水素ガス
を安定して発生させる有機性廃棄物の処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic waste, and particularly to a method for treating organic waste that stably generates hydrogen gas.

家庭の一般塵厨芥及びこれに類する産業廃棄物等のいわ
ゆる都市ごみの処理は、埋め立て或いは焼却によって行
われている。しかし、これらの処理方式は、埋め立て地
の不足、地下水の汚染、大気の汚染等の二次公害による
環境汚染の誘発因子を含んでいる。
So-called municipal waste, such as general household garbage and similar industrial waste, is disposed of by landfilling or incineration. However, these treatment methods include factors that induce environmental pollution due to secondary pollution such as lack of landfill space, groundwater contamination, and air pollution.

このため、近年、排出される都市ごみを処理するのみで
なく、再資源化技術の開発により有価物又はエネルギー
等を回収し、再利用を図ろうとする動向が高まりつつあ
る。
Therefore, in recent years, there has been a growing trend to not only process the municipal waste that is generated, but also to recover and reuse valuable materials, energy, etc. through the development of recycling technology.

その−例として、従来、下水汚泥、し尿、家畜糞尿及び
紙バルプ工場からのスラッジ等の処理に用いられている
嫌気性消化法により都市ごみがらメタンガスを発生させ
てエネルギーの回収を図る方法がとられている。
For example, energy can be recovered by generating methane gas from municipal waste using anaerobic digestion, which has traditionally been used to treat sewage sludge, human waste, livestock manure, and sludge from pulp and paper factories. It is being

嫌気性消化法において有機物が発酵菌により分解されて
メタンガスに変わる反応は2つの段階に分かれている。
In anaerobic digestion, the reaction in which organic matter is decomposed by fermentation bacteria and converted into methane gas is divided into two stages.

第1段階は、有機物を有機酸に分解する反応であり、液
化発酵と呼ばれ、第2段階は前段階で生じた有機酸を分
解してメタンガスを発生させる反応であり、ガス化発酵
と呼ばれている。これらの2つの反応は異なる発酵菌に
よって行われ、反応条件も異なる。液化発酵は、酸性条
く 件下で行われ、菌体の増殖が遠目、ガス化発酵はアルカ
リ条件下で行われ、菌体の増殖は液化発酵菌より遅く、
嫌気性消化の律速になっている。
The first stage is a reaction that decomposes organic substances into organic acids, which is called liquefaction fermentation, and the second stage is a reaction that decomposes the organic acids produced in the previous stage to generate methane gas, which is called gasification fermentation. It is. These two reactions are carried out by different fermentation bacteria and have different reaction conditions. Liquefaction fermentation is carried out under acidic conditions, and the bacterial cells multiply at a distance, while gasification fermentation is carried out under alkaline conditions, and the bacterial growth is slower than that of liquefied fermenting bacteria.
It is rate-limiting for anaerobic digestion.

しかし、下水汚泥やし尿等の処理法として普及している
嫌気性消化法では、この2つの反応を1つの消化槽で行
うため、それぞれの反応条件をWkAに保つことば困難
であり、それ故、菌体の増殖を効率よく行えず、菌体の
基礎代謝能力を最大限に利用できないので、反応効率が
悪(、長い消化日数を必要とする。
However, in the anaerobic digestion method, which is popular as a method for treating sewage sludge and human waste, these two reactions are carried out in one digestion tank, so it is difficult to maintain the reaction conditions at WkA. The bacterial cells cannot grow efficiently and the basal metabolic capacity of the bacterial cells cannot be utilized to the fullest, resulting in poor reaction efficiency (requires a long digestion period).

そこで、液化及びガス化の2つの反応を分離し、それぞ
れの菌体の最適条件を得ることにより、反応効率の向上
、消化日数の短縮を図った二相式嫌気性消化法が開発さ
れている。この方式における液化発酵工程では、スラリ
ー化したごみを酸性条件下で液化発酵菌の働きにより、
酢酸、プロピオン酸及び酪酸等の有機酸に分解する。次
のガス化発酵では、有機酸を生成した液化スラリーをア
ルカリ性条件下でガス化発酵菌の働きによりメタンガス
にする。
Therefore, a two-phase anaerobic digestion method has been developed that aims to improve reaction efficiency and shorten the digestion time by separating the two reactions of liquefaction and gasification and obtaining the optimal conditions for each bacterial cell. . In the liquefaction fermentation process of this method, slurry waste is processed under acidic conditions by the action of liquefaction fermentation bacteria.
Decomposes into organic acids such as acetic acid, propionic acid and butyric acid. In the next step, gasification and fermentation, the liquefied slurry that has produced organic acids is converted into methane gas by the action of gasification fermentation bacteria under alkaline conditions.

厨芥分に含まれる易分解性成分は、液化発酵工程で揮発
性脂肪酸の生成と並行して水素ガスと炭酸ガスに転換さ
れる。発生ずる水素ガスは衛生的で、かつ無公害であり
、高い発熱量を有するためエネルギー源として活用でき
る。しかしながら、発酵原料である都市ごみは四季変化
に伴う生活環境及び収集個所により質的に変化し、特に
高分解成分を含み、水素ガス発生の要因となる厨芥分が
変動するため、それに伴って水素ガスの発生に増減があ
り、水素ガスを安定して供給できないという欠点を有す
る。
Easily degradable components contained in kitchen waste are converted into hydrogen gas and carbon dioxide gas in parallel with the production of volatile fatty acids during the liquefaction fermentation process. The generated hydrogen gas is hygienic and non-polluting, and has a high calorific value, so it can be used as an energy source. However, the quality of municipal waste, which is a raw material for fermentation, changes depending on the living environment and collection location due to seasonal changes.In particular, the amount of kitchen waste that contains highly decomposed components and is a factor in the generation of hydrogen gas fluctuates. The disadvantage is that the gas generation fluctuates, and hydrogen gas cannot be stably supplied.

本発明の目的は、前記従来技術の欠点を解消し、二相式
嫌気性消化法により水素ガスを効率よく行いうる有機性
廃棄物の嫌気性消化法を提供することにある。この目的
は、本発明によれば、液化発酵槽におけるn−酪酸の濃
度を関節することによって達成される。
An object of the present invention is to provide a method for anaerobic digestion of organic waste, which eliminates the drawbacks of the prior art and can efficiently produce hydrogen gas by a two-phase anaerobic digestion method. This objective is achieved according to the invention by regulating the concentration of n-butyric acid in the liquefaction fermenter.

即ち、本発明方法は、二相式嫌気性消化法による液化工
程においてn−酪酸の添加及び添加中止を行って、生成
する揮発性脂肪酸中のn−酪酸の占める割合を30%以
上に調節することを特徴とする。
That is, in the method of the present invention, n-butyric acid is added and stopped during the liquefaction process using a two-phase anaerobic digestion method, and the proportion of n-butyric acid in the volatile fatty acids produced is adjusted to 30% or more. It is characterized by

二相式嫌気性消化法では、前記のように有機物は液化発
酵工程で発酵菌の働きにより低分子化され、揮発性低級
脂肪酸に分解されるが、この揮発性脂肪酸の各組成と水
素ガスの発生との関係を毎日収集した都市ごみを発酵原
料として滞留日数2日で高温液化発酵した結果、第1図
に示すようになった。揮発性脂肪酸のうちでは、酢酸と
n−酪酸が大部分を占め、他にプロピオン酸とイソ−吉
草酸が生成する。次に脂肪酸組成と発生ガス組成とを対
比してみると、n−酪酸が30%より少ないと、メタン
ガスと炭酸ガスが発生し、n−酪酸が30%以上になる
と、水素ガスと炭酸ガスが発生する。このことから、発
生するガスの組成と生成する脂肪酸組成に相関性がある
ことが判った。
In the two-phase anaerobic digestion method, as mentioned above, organic matter is reduced to lower molecular weight by the action of fermentation bacteria in the liquefaction fermentation process and decomposed into volatile lower fatty acids. Figure 1 shows the result of high-temperature liquefaction fermentation using daily collected municipal waste as fermentation raw material for two days of residence. Among the volatile fatty acids, acetic acid and n-butyric acid account for the majority, and propionic acid and iso-valeric acid are also produced. Next, comparing the fatty acid composition and the generated gas composition, when n-butyric acid is less than 30%, methane gas and carbon dioxide gas are generated, and when n-butyric acid is over 30%, hydrogen gas and carbon dioxide gas are generated. Occur. From this, it was found that there is a correlation between the composition of gas generated and the composition of fatty acids produced.

従って、液化発酵工程で生成するn−酪酸が全脂肪酸の
30%より少ない場合に、n−酪酸を液化発酵槽内に注
入して脂肪酸組成を調節すると、水素ガスを安定して発
生させることができる。
Therefore, when n-butyric acid produced in the liquefaction fermentation process is less than 30% of the total fatty acids, if n-butyric acid is injected into the liquefaction fermentation tank to adjust the fatty acid composition, hydrogen gas can be stably generated. can.

次に、図面に基づいて本発明を詳jホする。Next, the present invention will be explained in detail based on the drawings.

第2図は本発明方法の一実施例を示すフローシートであ
る。発酵原料である家庭の一般塵厨芥及びこれに頻する
産業廃棄物を各々の芥の素状別に分類選別し、厨芥及び
紙類を主成分として有機性廃棄物を破砕した後、スラリ
ー化槽1でスラリー化する。得られた発酵原料スラリー
は液化発酵槽2に投入され、液化発酵菌と接触する。投
入前に発酵成分の抽出、加水分解等のため前処理を行っ
てもよい。そして、スラリーを嫌気性条件下で攪拌しな
がら0.5〜3日保持する。液化発酵槽2内の温度は5
0〜65℃、pHは5.0〜6.0であるのが最適であ
る。液化発酵槽2内では、液化発酵菌の作用により有機
物が酢酸や酪酸等の揮発性脂肪酸に分解される。また、
有機物の分解と並行して水素ガス、炭酸ガス又はメタン
ガスが発生する。
FIG. 2 is a flow sheet showing an embodiment of the method of the present invention. The raw materials for fermentation, such as general household garbage and industrial waste, are sorted and sorted according to the nature of each type of waste, and after crushing the organic waste, which mainly consists of kitchen waste and paper, the slurry is made into slurry tank 1. to slurry. The obtained fermentation raw material slurry is put into the liquefaction fermentation tank 2 and comes into contact with the liquefaction fermentation bacteria. Pretreatment for extraction, hydrolysis, etc. of fermentation components may be performed before charging. The slurry is then held under anaerobic conditions with stirring for 0.5 to 3 days. The temperature inside the liquefaction fermenter 2 is 5
It is optimal that the temperature is 0 to 65°C and the pH is 5.0 to 6.0. In the liquefaction fermentation tank 2, organic matter is decomposed into volatile fatty acids such as acetic acid and butyric acid by the action of liquefaction fermentation bacteria. Also,
Hydrogen gas, carbon dioxide gas, or methane gas is generated in parallel with the decomposition of organic matter.

発生したガスはガスホルダー4に貯留される。液化発酵
槽2内で生成した揮発性脂肪酸の組成を分析し、その濃
度に応じてn−酪酸を注入する。n−酪酸が占める割合
が揮発性脂肪酸全体の30%より低くなったら、n−酪
酸槽3からn−酪酸を液化発酵槽2に注入する。n−酪
酸の割合の上限は、決定的なものではないが、50%を
越えて添加しても、それだけ水素ガスの発生が増加する
わけではないので、添加薬品量の節約の意味からも50
%を越える必要はない。即ち、n−酪酸の占める割合が
揮発性脂肪酸全体の30〜50%であるのが好ましい。
The generated gas is stored in the gas holder 4. The composition of volatile fatty acids produced in the liquefaction fermentation tank 2 is analyzed, and n-butyric acid is injected according to its concentration. When the proportion occupied by n-butyric acid becomes lower than 30% of the total volatile fatty acids, n-butyric acid is injected from the n-butyric acid tank 3 into the liquefaction fermentation tank 2. The upper limit of the proportion of n-butyric acid is not definitive, but even if it is added in excess of 50%, the generation of hydrogen gas will not increase accordingly, so from the point of view of saving the amount of added chemicals, it should be set at 50%.
There is no need to exceed %. That is, it is preferable that n-butyric acid accounts for 30 to 50% of the total volatile fatty acids.

このように液化発酵槽において、揮発性脂肪酸中のn−
酪酸の割合を言周節する、即ちn−酪酸と他の脂肪酸、
特に酢酸とのバランスを保持することにより、発酵原料
が変化しても、発酵原料を調整スルことなく、液化発酵
槽におけるメタンガスの発生を抑制し、水素ガスの発生
を安定させることができる。
In this way, in the liquefaction fermenter, n-
Expressing the proportion of butyric acid, i.e. n-butyric acid and other fatty acids,
In particular, by maintaining the balance with acetic acid, even if the fermentation raw material changes, the generation of methane gas in the liquefaction fermenter can be suppressed and the generation of hydrogen gas can be stabilized without having to adjust the fermentation raw material.

液化発酵されたスラリーはガス化発酵槽5に投入され、
ガス化発酵菌と接触する。ガス化発酵槽5内は、スラリ
ーを嫌気性条件下で攪拌しながら50〜65℃の温度で
pl+7.0〜8.0に保持し、5〜8日間滞留させる
。この条件下で液化発酵スラリーをガス化発酵菌と接触
させると、液化発酵スラリー中の脂肪酸はメタンガスと
炭酸ガスに分解される。発生したガスはガスホルダー6
に貯留される。
The liquefied and fermented slurry is put into the gasification fermenter 5,
Contact with gasifying fermentation bacteria. Inside the gasification fermentation tank 5, the slurry is maintained at a temperature of 50 to 65° C. and pl+7.0 to 8.0 while stirring under anaerobic conditions, and is retained therein for 5 to 8 days. When the liquefied fermentation slurry is brought into contact with gasifying fermentation bacteria under these conditions, the fatty acids in the liquefied fermented slurry are decomposed into methane gas and carbon dioxide gas. The generated gas is stored in gas holder 6.
is stored in

次に、実施例に基づいて本発明を詳述するが、本発明は
これに限定されるものではない。
Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例 10IV、規模の実験装置を用いて、第2図に示したフ
ローシートにより都市ごみを処理した。厨芥や紙類を主
成分とした都市ごみをスラリー化槽1で固形物濃度7〜
9%にし、60 ℃に加温した後、液化発酵槽2へ投入
した。スラリーを液化発酵槽2内でpH5,2〜5.6
、温度60′cで2日間保持し、液化発酵させた。液化
発酵槽2内で生成された揮発性脂肪酸の組成を適宜分析
し、揮発性脂肪酸を構成する各脂肪酸の割合を把握した
。そして、n−酪酸の占める割合が揮発性脂肪酸全体の
30%より低くなったら、n−酪酸槽3からn−酪酸を
液化発酵槽2に注入し、50%を越えたら、注入を停止
した。また、脂肪酸生成と並行して発生ずるガスの組成
を分析した。
Example 10 Using an experimental apparatus on the scale of IV, municipal waste was treated according to the flow sheet shown in FIG. Municipal waste mainly composed of kitchen waste and paper is slurried in tank 1 to a solids concentration of 7~
After adjusting the concentration to 9% and heating it to 60°C, it was put into the liquefaction fermenter 2. The slurry is liquefied in the fermenter 2 at pH 5.2 to 5.6.
The mixture was maintained at a temperature of 60'C for 2 days for liquefaction and fermentation. The composition of the volatile fatty acids produced in the liquefaction fermentation tank 2 was analyzed as appropriate, and the proportion of each fatty acid constituting the volatile fatty acids was determined. Then, when the proportion of n-butyric acid became lower than 30% of the total volatile fatty acids, n-butyric acid was injected from the n-butyric acid tank 3 into the liquefaction fermentation tank 2, and when it exceeded 50%, the injection was stopped. We also analyzed the composition of gases generated in parallel with fatty acid production.

液化発酵槽2内のn−酪酸の濃度を調節したときの脂肪
酸組成の割合の変化と、発生するガス組成の変化を第3
図に示す。なお、この実験に使用した発酵原料の都市ご
みは、第1図の結果を得たのと同じ試料であり、第1図
はn−酪酸の濃度を調節しない場合、第3図はn−酪酸
の濃度を調節した場合である。
The change in the proportion of fatty acid composition and the change in the gas composition generated when the concentration of n-butyric acid in the liquefaction fermenter 2 is adjusted are shown in the third table.
As shown in the figure. The municipal waste used as the fermentation raw material used in this experiment was the same sample used to obtain the results shown in Figure 1. This is the case when the concentration of

第3図から明らかなように、n−酪酸の占める割合を揮
発性脂肪酸全体の30〜50%に調節することにより、
液化発酵槽2から発生ずるガスを水素ガスと炭酸ガスに
することができ、水素ガス発生の安定化が図られた。
As is clear from Figure 3, by adjusting the proportion of n-butyric acid to 30 to 50% of the total volatile fatty acids,
The gas generated from the liquefaction fermenter 2 could be converted into hydrogen gas and carbon dioxide gas, and hydrogen gas generation could be stabilized.

液化スラリーを次にガス化槽5へ投入し、嫌気性条件下
でガス化したところ、液化発酵スラリー中の脂肪酸は、
良好にメタンガスと炭酸ガスに分解された。
When the liquefied slurry was then put into the gasification tank 5 and gasified under anaerobic conditions, the fatty acids in the liquefied fermentation slurry were
It was successfully decomposed into methane gas and carbon dioxide gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はn−酪酸の濃度を調節しない場合の液化発酵工
程における揮発性脂肪酸の組成及び発生ずるガスの組成
の経口変化図、第2図は本発明方法の一実施態様を示す
フローシート、第3図はね一酪酸の濃度を調節した本発
明の実施例における液化発酵工程における揮発性脂肪酸
の組成及び発生するガスの組成の経日変化図である。 1・・・スラリー化槽、2・・・液化発酵槽、3・・・
n−酪酸槽、5・・・ガス化発酵槽。 特許出願人 日立プラント建設株式会社
FIG. 1 is a diagram of oral changes in the composition of volatile fatty acids and the composition of gas generated in the liquefaction fermentation process when the concentration of n-butyric acid is not adjusted, and FIG. 2 is a flow sheet showing one embodiment of the method of the present invention. FIG. 3 is a diagram showing the changes over time in the composition of volatile fatty acids and the composition of gas generated in the liquefaction fermentation process in an example of the present invention in which the concentration of monobutyric acid was adjusted. 1... Slurry tank, 2... Liquefaction fermentation tank, 3...
n-butyric acid tank, 5... gasification fermentation tank. Patent applicant Hitachi Plant Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)家庭の一般塵厨芥及びこれに類する産業廃棄物を
素状別に分類選別して厨芥及び紙類を主成分とした有機
性廃棄物をスラリー化した後、液化発酵菌の作用により
有機物を低分子化するとともに、揮発性脂肪酸に変換さ
せる第一工程と、その第一工程から得られるスラリー中
の揮発性脂肪酸をガス発酵菌の作用により更にメタンガ
ス及び炭酸ガスに転換する第二工程から成る嫌気性消化
法により有機性廃棄物を処理する場合、第一工程におい
てn−酪酸の添加及び添加中止を行って、生成する揮発
性脂肪酸中のn−酪酸の占める割合を30%以上に調節
することを特徴とする有機性廃棄物の処理方法。
(1) After sorting and sorting household general kitchen waste and similar industrial waste according to their basic condition and turning the organic waste mainly composed of kitchen waste and paper into a slurry, the organic matter is removed by the action of liquefaction fermentation bacteria. It consists of a first step in which it is reduced in molecular weight and converted into volatile fatty acids, and a second step in which the volatile fatty acids in the slurry obtained from the first step are further converted into methane gas and carbon dioxide gas by the action of gas-fermenting bacteria. When treating organic waste by anaerobic digestion, the proportion of n-butyric acid in the volatile fatty acids produced is adjusted to 30% or more by adding and stopping the addition of n-butyric acid in the first step. A method for treating organic waste characterized by the following.
(2)脂肪酸中のn−酪酸の占める割合を30〜50%
に調節することを特徴とする特許請求の範囲第1項記載
の処理方法。
(2) The proportion of n-butyric acid in fatty acids is 30-50%
The processing method according to claim 1, characterized in that the treatment method is adjusted to:
JP58143570A 1983-08-05 1983-08-05 Treatment of organic waste Pending JPS6034800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143570A JPS6034800A (en) 1983-08-05 1983-08-05 Treatment of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143570A JPS6034800A (en) 1983-08-05 1983-08-05 Treatment of organic waste

Publications (1)

Publication Number Publication Date
JPS6034800A true JPS6034800A (en) 1985-02-22

Family

ID=15341818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143570A Pending JPS6034800A (en) 1983-08-05 1983-08-05 Treatment of organic waste

Country Status (1)

Country Link
JP (1) JPS6034800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255537A (en) * 2005-03-15 2006-09-28 National Institute Of Advanced Industrial & Technology Method and apparatus for treating garbage and paper refuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255537A (en) * 2005-03-15 2006-09-28 National Institute Of Advanced Industrial & Technology Method and apparatus for treating garbage and paper refuse

Similar Documents

Publication Publication Date Title
CN111333179B (en) Method for producing wastewater denitrification carbon source by lactic acid fermentation of kitchen waste
US5464539A (en) Process for the production of hydrogen by microorganisms
US4491522A (en) Anaerobic digestion process for organic wastes
EP2032709B1 (en) System for the production of methane from co2
JPS5864200A (en) Anaerobic digestion of cellulose-containing waste matter
CN109161476A (en) A kind of apparatus and method of electricity fermentation methane phase
JP2006280362A (en) System for treating biomass
CN114378105A (en) Kitchen waste and cellulose biomass synergistic multi-stage treatment system and method
JP4011439B2 (en) Method and apparatus for methane fermentation of organic waste
Viotti et al. Numerical analysis of the anaerobic co-digestion of the organic fraction from municipal solid waste and wastewater: prediction of the possible performances at Olmeto plant in Perugia (Italy)
JP4543504B2 (en) Dry methane fermentation method for organic waste
CN106282245B (en) Novel organic garbage recycling method and system
JP2006255538A (en) Method and apparatus for treatment of food waste
JP2006281035A (en) Apparatus and method for treating organic waste
GB2033366A (en) Process for Producing Energy from Low Grade Fuels
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
JP2005066420A (en) Hydrogen and methane two-stage fermentation treatment method for waste bread
JPS6034800A (en) Treatment of organic waste
KR20150048991A (en) Method and appratus for treating organic waste
JP2003053309A (en) Method of treating organic solid waste
JPS60137498A (en) Anaerobic digesting method of organic waste
JP2018008203A (en) Wet type methane fermentation system
JP4183540B2 (en) Organic matter treatment method and organic matter treatment system using the same
JPS5850799B2 (en) How to dispose of organic waste
JP2003250519A (en) Method for producing hydrogen and apparatus for producing hydrogen