JPS60137498A - Anaerobic digesting method of organic waste - Google Patents

Anaerobic digesting method of organic waste

Info

Publication number
JPS60137498A
JPS60137498A JP58242133A JP24213383A JPS60137498A JP S60137498 A JPS60137498 A JP S60137498A JP 58242133 A JP58242133 A JP 58242133A JP 24213383 A JP24213383 A JP 24213383A JP S60137498 A JPS60137498 A JP S60137498A
Authority
JP
Japan
Prior art keywords
fermentation
waste
liquefaction
slurry
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58242133A
Other languages
Japanese (ja)
Inventor
Masahiro Kon
昆 正浩
Naomichi Mori
直道 森
Tadashi Yamazaki
山崎 征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58242133A priority Critical patent/JPS60137498A/en
Publication of JPS60137498A publication Critical patent/JPS60137498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To generate stably and efficiently gaseous hydrogen by supplying organic waste consisting essentially of garbage to the first stage, and supplying the organic waste consisting essentially of a slurry from the first stage and a paper component to the second stage. CONSTITUTION:The waste consisting essentially of garbage and the waste consisting essentially of a paper component are respectively crushed, and slurryed in slurrying tanks 1 and 4. The slurry of garbage to be fermented is supplied into a liquefying fermenter 2, and brought into contact with a liquefying ferment fungus. The slurry of the paper component to be fermented is supplied into a gasifying fermenter 5, and brought into contact with a gasifying ferment fungus. The contents of the liquefying fermenter 2 are allowed to stand for 0.3-3.0 day while agitating under anaerobic conditions, and the organic substance is converted into low molecular substances. Gaseous hydrogen and carbon dioxide are simultaneously generated. The amt. of generated gaseous hydrogen can be increased as compared with the existing process wherein various kinds of wastes are not sorted.

Description

【発明の詳細な説明】 本発明は有機性廃棄物の処理方法に係り、特に嫌気性消
化により効率よく水素及びメタンガスを発生させる有機
性廃棄物の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic waste, and particularly to a method for treating organic waste that efficiently generates hydrogen and methane gas by anaerobic digestion.

家庭の一般塵厨芥及びこれに類する産業廃棄物等のいわ
ゆる都市ごみの処理は、埋め立て或いは焼却によって行
われている。しかし、これらの処理方式は埋め立て地の
不足、地下水の汚染、大気の汚染等の二次公害による環
境汚染の誘発因子を含んでいる。このため、近年、排出
される都市ごみを処分するだけでなく、有価物又はエネ
ルギー等を回収し、再資源化を図ろうとする機運が高ま
りつつある。
So-called municipal waste, such as general household garbage and similar industrial waste, is disposed of by landfilling or incineration. However, these treatment methods include factors that induce environmental pollution due to secondary pollution such as lack of landfill space, groundwater contamination, and air pollution. For this reason, in recent years, there has been a growing momentum to not only dispose of the municipal waste generated, but also to recover valuable materials, energy, etc., and to recycle it.

その−例として、従来、下水汚泥、し尿、家畜糞尿及び
紙パルプ工場から排出されるスラッジ等の処理に用いら
れている嫌気性消化法により都市ごみからメタンガスを
発生させてエネルギーの回収を図る方式が採られている
An example of this is a method that aims to recover energy by generating methane gas from municipal waste using anaerobic digestion, which is conventionally used to treat sewage sludge, human waste, livestock manure, and sludge discharged from pulp and paper factories. is taken.

嫌気性消化法により有機物が発酵菌で分解されてメタン
ガスに変わる反応は、二つの段階に分かれている。第一
段階は、有機物を揮発性脂肪酸に分解する反応であり、
液化発酵と呼ばれ、第二段階は、前段階で生じた脂肪酸
を分解してメタンガスを発生させる反応であり、ガス化
発酵と呼ばれている。これらの二つの反応は異なる発酵
菌によって行われるので、最適な反応条件も異なる。液
化発酵は酸性条件下で行われ、菌体の増殖が速く、ガス
化発酵はアルカリ条件下で行われ、菌体の増殖は液化発
酵菌より遅く、嫌気性消化の律速になっている。しかし
、下水汚泥やし尿等の処理法として普及している嫌気性
消化法ではこの二つの反応を一つの消化槽で行うため、
それぞれの反応条件を最適に保つことは困難であり、そ
れ故、菌体の増殖を効率よく行えず、菌体の基礎代謝能
力を最大限に利用できないので、反応効率が悪く、長い
消化日数を必要とする。
The reaction in which organic matter is broken down by fermentation bacteria and converted into methane gas in anaerobic digestion is divided into two stages. The first stage is a reaction that decomposes organic matter into volatile fatty acids.
This is called liquefaction fermentation, and the second step is a reaction in which the fatty acids produced in the previous step are decomposed to generate methane gas, and is called gasification fermentation. Since these two reactions are carried out by different fermentation bacteria, the optimal reaction conditions are also different. Liquefaction fermentation is carried out under acidic conditions and the bacterial cells multiply rapidly, while gasification fermentation is carried out under alkaline conditions and the bacterial growth is slower than that of liquefaction fermenting bacteria, which is rate-limiting for anaerobic digestion. However, in the anaerobic digestion method, which is popular as a method for treating sewage sludge and human waste, these two reactions are carried out in one digestion tank.
It is difficult to maintain optimal reaction conditions for each reaction, and as a result, bacterial cells cannot grow efficiently and the basic metabolic capacity of bacteria cannot be utilized to the fullest, resulting in poor reaction efficiency and long digestion times. I need.

そこで、液化発酵及びガス化発酵の二つの反応を分離し
、それぞれの菌体の最適条件を得ることにより反応効率
の向上及び消化日数の短縮を図った二相式嫌気性消化法
が開発されている。この方式における液化発酵工程では
スラリー化したごみ中の有機物を酸性条件下で液化発酵
菌の働きにより、酢酸、プロピオン酸及び酪酸等の脂肪
酸に分解する。次のガス化発酵工程では脂肪酸を生成し
た液化発酵スラリーをアルカリ性条件下でガス化発酵菌
の働きによりメタンガスにする。
Therefore, a two-phase anaerobic digestion method has been developed that aims to improve reaction efficiency and shorten the digestion time by separating the two reactions of liquefaction fermentation and gasification fermentation and obtaining optimal conditions for each bacterial cell. There is. In the liquefaction fermentation process in this method, organic matter in slurry waste is decomposed into fatty acids such as acetic acid, propionic acid, and butyric acid by the action of liquefaction fermentation bacteria under acidic conditions. In the next gasification fermentation step, the liquefaction fermentation slurry that has produced fatty acids is converted into methane gas by the action of gasification fermentation bacteria under alkaline conditions.

厨芥毎に含まれる易分解性成分は、液化発酵工程で揮発
性脂肪酸の生成と並行して水素ガスと炭酸ガスに転換さ
れる。発生する水素ガスは衛生的かつ無公害であり、高
い発熱量を有するためエネルギー源として活用できる。
Easily degradable components contained in kitchen waste are converted into hydrogen gas and carbon dioxide gas in parallel with the production of volatile fatty acids during the liquefaction fermentation process. The hydrogen gas generated is hygienic and non-polluting, and has a high calorific value, so it can be used as an energy source.

しかしながら、発酵原料である都市ごみは、四季変化に
伴う生活環境及び収集個所により質的に変化し、特に易
分解性成分を含み、水素ガス発生の要因となる厨芥骨が
変動するため、それに伴って液化発酵工程で発生するガ
ス中の水素ガスの濃度を安定して維持できないという欠
点を有する。
However, the quality of municipal waste, which is a raw material for fermentation, changes depending on the living environment and collection location due to seasonal changes.In particular, it contains easily decomposable components and the kitchen waste, which is a factor in the generation of hydrogen gas, fluctuates. However, the disadvantage is that the concentration of hydrogen gas in the gas generated in the liquefaction fermentation process cannot be stably maintained.

本発明の目的は、前記の従来技術の欠点を解消し、二相
式嫌気性消化法により水素ガスを安定して効率良く発生
しうる嫌気性消化法を提供することにあり、この目的は
本発明によれば液化発酵工程に供給する発酵原料中の厨
芥骨を多くすることにより達成される。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above and to provide an anaerobic digestion method that can stably and efficiently generate hydrogen gas by a two-phase anaerobic digestion method. According to the invention, this is achieved by increasing the amount of fermented bones in the fermentation raw material supplied to the liquefaction fermentation process.

即ち、本発明による有機性廃棄物の嫌気性消化方法は、
有機性廃棄物を厨芥骨を主成分とする廃棄物と紙分を主
成分とする廃棄物とに分別し、第一工程に厨芥骨を主成
分とする有機性廃棄物を供給し、第二工程には第一工程
から得られたスラリーと紙分を主成分とする有機性廃棄
物を供給することによって嫌気性消化することを特徴と
する。
That is, the method for anaerobic digestion of organic waste according to the present invention is as follows:
The organic waste is separated into waste mainly composed of kitchen bones and waste mainly composed of paper, and the organic waste mainly composed of kitchen bones is supplied to the first process, and the second process The process is characterized by anaerobic digestion by supplying the organic waste mainly composed of the slurry and paper obtained from the first process.

二相式嫌気性消化法では、前記のように有機物は液化発
酵工程で発酵菌の働きにより低分子化され、揮発性脂肪
酸及びガスを生成する。発酵原料の相違による発生ガス
組成の変動を検討するため、厨芥骨及び紙分をそれぞれ
主成分とする二つの発酵原料を滞留日数2日で高温液化
発酵し、各原料から生成するガスの組成を測定したとこ
ろ、下記の第1表に示す結果を得た。
In the two-phase anaerobic digestion method, as described above, organic matter is reduced in molecular weight by the action of fermentation bacteria in the liquefaction fermentation process, producing volatile fatty acids and gas. In order to examine changes in the gas composition caused by differences in fermentation raw materials, two fermentation raw materials whose main components were kitchen stubble and paper were subjected to high-temperature liquefaction fermentation for a residence time of 2 days, and the composition of the gas generated from each raw material was investigated. As a result of the measurement, the results shown in Table 1 below were obtained.

第1表 このように、厨芥骨を主成分とする発酵原料からは水素
ガス及び炭酸ガスが発生し、紙分を主成分とする発酵原
料からはメタンガス及び炭酸ガスが発生することが判っ
た。
Table 1 As shown above, it was found that hydrogen gas and carbon dioxide gas were generated from the fermented raw material whose main component was snail bones, and methane gas and carbon dioxide gas were generated from the fermented raw material whose main component was paper.

更に、前記の2種の発酵原料のスラリーの液化発酵及び
ガス化発酵の至適pHを、液化発酵については揮発性脂
肪酸の生成量、ガス化発酵についてはガス発生量でめた
。その結果を厨芥骨を原料とした場合については第1図
、紙分を原料とした場合については第2図に示す。これ
らの結果から厨芥骨を主成分とした発酵原料を二相式嫌
気性消化した場合の至適piは、液化発酵においては酸
性域にあり、脂肪酸の生成と並行して水素ガスがこのp
H域で多量に発生し、ガス化発酵においてはアルカリ性
域に至適pHがある。これに対して紙分を主成分とした
発酵原料の場合、至適pHは液化発酵、ガス化発酵とも
にアルカリ性域にあることが判った。
Furthermore, the optimum pH for liquefaction fermentation and gasification fermentation of the slurry of the two types of fermentation raw materials was determined based on the amount of volatile fatty acids produced for liquefaction fermentation and the amount of gas generated for gasification fermentation. The results are shown in FIG. 1 for the case where snail bones were used as the raw material, and in FIG. 2 for the case when paper was used as the raw material. Based on these results, the optimum pi for two-phase anaerobic digestion of fermented raw materials mainly composed of chub bones is in the acidic range in liquefaction fermentation, and hydrogen gas is absorbed into this p in parallel with the production of fatty acids.
It is generated in large quantities in the H range, and the optimum pH for gasification fermentation is in the alkaline range. On the other hand, in the case of fermentation raw materials mainly composed of paper, it was found that the optimum pH was in the alkaline range for both liquefaction fermentation and gasification fermentation.

このように、紙分を主成分とする発酵原料を二相式嫌気
性消化する場合には、液化発酵では水素ガスが発生せず
、液化及びガス化発酵の至適p++がアルカリであるの
で、紙分を主成分とする発酵原料は液化発酵工程を経ず
、直接ガス化発酵工程に供給するのが合理的である。従
って、本発明方法により厨芥分を主成分とする廃棄物と
細分を主成分とする廃棄物を分別し、液化発酵工程には
厨芥分を主成分とする廃棄物だけを供給し、ガス化発酵
工程には液化発酵スラリーと紙分を主成分とする廃棄物
を供給すれば、液化発酵工程で水素ガスを、ガス化発酵
工程ではメタンガスをそれぞれ効率良く安定発生させる
ことができ、かつ液化発酵槽の容積を小さくすることが
できる。
In this way, when carrying out two-phase anaerobic digestion of fermentation raw materials whose main component is paper, hydrogen gas is not generated in liquefaction fermentation, and the optimum p++ for liquefaction and gasification fermentation is alkali. It is rational that the fermentation raw material whose main component is paper is directly supplied to the gasification fermentation process without going through the liquefaction fermentation process. Therefore, by the method of the present invention, waste mainly composed of kitchen waste and waste mainly composed of subdivisions are separated, and only the waste mainly composed of kitchen waste is supplied to the liquefaction fermentation process, and the waste is By supplying waste mainly composed of liquefaction fermentation slurry and paper to the process, hydrogen gas can be efficiently and stably generated in the liquefaction fermentation process and methane gas can be generated in the gasification fermentation process, and the liquefaction fermentation tank The volume of can be reduced.

次に、図面に基づいて本発明を0゛f:述する。Next, the present invention will be described based on the drawings.

第3図は本発明方法の一実施例を示すフローシートであ
る。発酵原料である家庭の一般M厨芥及びこれに類する
産業廃棄物を各々の芥の素状別に分類選別する。厨芥分
を主成分とする廃棄物及び紙分を主成分とする廃棄物を
それぞれ破砕した後に、それぞれスラリー化槽1及び4
内でスラリー化し、得られた厨芥分発酵原料スラリーは
液化発酵槽2に供給し、液化発酵菌と接触させ、また、
紙分発酵原料スラリーはガス化発酵槽5に供給し、ガス
化発酵菌と接触させる。各スラリーの供給前に、発酵成
分の抽出、加水分解等のための前処理を富法で行っても
よい。
FIG. 3 is a flow sheet showing one embodiment of the method of the present invention. Household general kitchen waste and similar industrial waste, which are raw materials for fermentation, are sorted and sorted according to the basic condition of each waste. After crushing the waste mainly composed of kitchen waste and the waste mainly composed of paper, slurry tanks 1 and 4 are respectively processed.
The fermented raw material slurry obtained from kitchen waste is supplied to the liquefaction fermentation tank 2 and brought into contact with liquefaction fermentation bacteria, and
The paper fermentation raw material slurry is supplied to the gasification fermentation tank 5 and brought into contact with gasification fermentation bacteria. Before supplying each slurry, pretreatment for extraction, hydrolysis, etc. of fermentation components may be performed using a rich method.

液化発酵槽2内を嫌気性条件下で攪拌しながら0.3〜
3.01間保持する。液化発酵槽2内の温度は50〜6
5°C,pHは5.0〜6゜0であるのが最適である。
0.3~ while stirring the inside of the liquefaction fermenter 2 under anaerobic conditions.
3. Hold for 01 minutes. The temperature inside the liquefaction fermenter 2 is 50-6
Optimally, the temperature is 5°C and the pH is 5.0-6°0.

液化発酵槽2内では液化発酵菌の作用により有機物が低
分子化され、酢酸や酪酸等の揮発性脂肪酸に分解される
。また、有機物の分解と並行して水素ガス及び炭酸ガス
が発生ずる。本発明方法によれば、液化発酵槽2には厨
芥分を主成分とする廃棄物を供給するので、種々の廃棄
物を選別せずに供給する従来法に比べて発酵原料中の厨
芥分が多くなるため、水素ガスの発生量も多くなる。
In the liquefaction fermentation tank 2, organic substances are reduced in molecular weight by the action of liquefaction fermentation bacteria and decomposed into volatile fatty acids such as acetic acid and butyric acid. Additionally, hydrogen gas and carbon dioxide gas are generated in parallel with the decomposition of organic matter. According to the method of the present invention, the waste mainly composed of kitchen waste is supplied to the liquefaction fermentation tank 2, so the kitchen waste in the fermentation raw material is reduced compared to the conventional method in which various wastes are fed without being sorted. As the amount increases, the amount of hydrogen gas generated also increases.

発生したガスはガスボルダ−3に貯留される。The generated gas is stored in the gas boulder 3.

液化発酵槽2内で液化されたスラリーは、紙分を主成分
とする発酵原料と一緒にガス化発酵槽5に供給される。
The slurry liquefied in the liquefaction fermentation tank 2 is supplied to the gasification fermentation tank 5 together with the fermentation raw material whose main component is paper.

ガス化発酵槽5内を嫌気性条件下で攪拌しながら、温度
50〜60”cで、pH7,0〜8.0に保持し、5〜
8日間滞留させる。この条件下で液化スラリー中の脂肪
酸はメタンガスと炭酸ガスとに分解され、紙分発酵原料
中の有機物は低分子化され、メタンガスと炭酸ガスを発
生する。
While stirring the inside of the gasification fermentation tank 5 under anaerobic conditions, the temperature is maintained at 50 to 60"C and the pH is maintained at 7.0 to 8.0.
Leave to stay for 8 days. Under these conditions, the fatty acids in the liquefied slurry are decomposed into methane gas and carbon dioxide gas, and the organic matter in the paper fermentation material is reduced in molecular weight, generating methane gas and carbon dioxide gas.

発生したガスはガスホルダー6に貯留される。ガス化発
酵を終了したスラリーは別途処理される。
The generated gas is stored in the gas holder 6. The slurry that has undergone gasification and fermentation is processed separately.

このようにして本発明によれば、水素ガス及びメタンガ
スを安定して効率良く発生させることができ、更に液化
発酵槽の容積を小さくするごとができる。
In this manner, according to the present invention, hydrogen gas and methane gas can be generated stably and efficiently, and the volume of the liquefaction fermenter can be further reduced.

次に、実施例に基づいて本発明を詳述するが、本発明は
これに限定されるものではない。
Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例1 101規模の実験装置を用いて、第3図に示したフロー
シートにより都市ごみを処理した。厨芥分を主成分とす
る都市ごみをスラリー化槽1で固形物濃度7〜9%にし
、60 ’Cの温度に加温した後、液化発酵槽2へ供給
した。液化発酵槽2内ではpl+ 5.5〜6.0、温
度60’Cで2日間保持し、液化発酵させた。液化発酵
により発生ずるガスの組成を適宜分析し、結果を第2表
に示す。
Example 1 Using a 101-scale experimental apparatus, municipal waste was treated according to the flow sheet shown in FIG. Municipal waste mainly composed of kitchen waste was made into a slurry tank 1 to have a solid concentration of 7 to 9%, heated to a temperature of 60'C, and then supplied to a liquefaction fermentation tank 2. The liquefaction fermentation tank 2 was maintained at a pl+ of 5.5 to 6.0 and a temperature of 60'C for 2 days to carry out liquefaction fermentation. The composition of the gas generated by liquefaction fermentation was analyzed as appropriate, and the results are shown in Table 2.

一方、紙分を主成分とする都市ごみはスラリー化槽4で
固形物濃度7〜9%にし、60°Cに加温した後、ガス
化発酵槽5内に液化発酵スラリーと一緒に供給し、ガス
化発酵した。
On the other hand, municipal waste whose main component is paper is brought to a solid concentration of 7 to 9% in a slurry tank 4, heated to 60°C, and then fed into a gasification fermentation tank 5 together with the liquefaction fermentation slurry. , gasification and fermentation.

比較のため、厨芥分及び紙分を主成分とする発酵原料を
前記の液化発酵工程と同じ条件(60’Cの温度で滞留
日数2日)で液化発酵させ、発生したガスの組成を分析
し、結果を第2表に示す。
For comparison, fermentation raw materials mainly composed of kitchen waste and paper were liquefied and fermented under the same conditions as in the liquefaction fermentation process described above (2 days of residence at a temperature of 60'C), and the composition of the gas generated was analyzed. , the results are shown in Table 2.

第2表 第2表に示した結果から明らかなとおり、厨芥分を主成
分とした発酵原料を使用した場合には、厨芥分及び紙分
を主成分とした発酵原料を液化発酵した場合より著しく
高い濃度で水素ガスを得ることができる。
Table 2 As is clear from the results shown in Table 2, when using fermented raw materials whose main components are kitchen waste, the results are significantly more pronounced than when the fermented raw materials whose main components are kitchen waste and paper are liquefied and fermented. Hydrogen gas can be obtained at high concentrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は厨芥分を主成分とする有機性廃棄物の液化発酵
及びガス化発酵におけるpllと脂肪酸生成量及びガス
発生量との関係を示すグラフ、第2図は紙分を主成分と
する有機性廃棄物の液化発酵及びガス化発酵におけるp
llと脂肪酸生成量及びガス発生量との関係を示すグラ
フ、第3図は本発明方法を実施する装置のフローシート
である。 1.4・・・スラリー化槽、2・・・液化発酵槽、5・
・・ガス化発酵槽、3,6・・・ガスホルダー。 特許出願人 工業技術院長 )i田裕部 第1図 ? 第2図 pH(−3 第3図 国丑。
Figure 1 is a graph showing the relationship between pll, fatty acid production, and gas generation in liquefaction fermentation and gasification fermentation of organic waste whose main component is kitchen waste, and Figure 2 is a graph showing the relationship between PLL and the amount of fatty acid production and gas generation for organic waste whose main component is paper waste. p in liquefaction fermentation and gasification fermentation of organic waste
FIG. 3 is a graph showing the relationship between ll and the amount of fatty acid produced and the amount of gas produced, and FIG. 3 is a flow sheet of an apparatus for carrying out the method of the present invention. 1.4... Slurry tank, 2... Liquefaction fermentation tank, 5.
...Gasification fermenter, 3,6...gas holder. Patent applicant Director of Institute of Industrial Science and Technology) Hirobe Ida Figure 1? Figure 2 pH (-3 Figure 3 Kokuox.

Claims (1)

【特許請求の範囲】[Claims] 家庭の一般塵厨芥及びこれに類する産業廃棄1シを液化
発酵菌の作用により有機物を低分子化するとともに、揮
発性脂肪酸に変換させる第一工程とガス発酵菌の作用に
より更にメタンガス及び炭酸ガスに転換する第二工程と
によって嫌気性消化する方法において、有機性廃棄物を
厨芥分を主成分とする廃棄物と紙分を主成分とする廃棄
物とに分別し、第一工程に厨芥分を主成分とする有機性
廃棄物を供給し、第二工程には第一工程から得られたス
ラリーと紙分を主成分とする有機性廃棄物を供給するこ
とによって嫌気性消化することを特徴とする有機性廃棄
物の嫌気性消化方法。
General household garbage and similar industrial waste are converted into low-molecular organic substances through the action of liquefaction fermentation bacteria, and are further converted into methane gas and carbon dioxide through the first step of converting them into volatile fatty acids and the action of gas fermentation bacteria. In the method of anaerobic digestion with a second step of conversion, organic waste is separated into waste mainly composed of kitchen waste and waste mainly composed of paper, and the kitchen waste is added to the first step. The method is characterized in that anaerobic digestion is carried out by supplying organic waste mainly consisting of organic waste obtained from the first step and supplying organic waste mainly consisting of the slurry and paper obtained from the first step to the second step. A method for anaerobic digestion of organic waste.
JP58242133A 1983-12-23 1983-12-23 Anaerobic digesting method of organic waste Pending JPS60137498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242133A JPS60137498A (en) 1983-12-23 1983-12-23 Anaerobic digesting method of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242133A JPS60137498A (en) 1983-12-23 1983-12-23 Anaerobic digesting method of organic waste

Publications (1)

Publication Number Publication Date
JPS60137498A true JPS60137498A (en) 1985-07-22

Family

ID=17084793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242133A Pending JPS60137498A (en) 1983-12-23 1983-12-23 Anaerobic digesting method of organic waste

Country Status (1)

Country Link
JP (1) JPS60137498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311986B1 (en) * 1998-10-01 2002-02-19 장기훈 Method for treating garbage and sludge simultaneously
KR100311987B1 (en) * 1998-10-22 2002-02-28 장기훈 Combined treatment method for treating garbage and sludge in sewage
JP2009248041A (en) * 2008-04-09 2009-10-29 Mhi Environment Engineering Co Ltd Method and system for methane fermentation treatment of wood waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563799A (en) * 1979-06-25 1981-01-16 Nippon Telegraph & Telephone Cobble crusher for shield excavator
JPS5864200A (en) * 1981-10-14 1983-04-16 Agency Of Ind Science & Technol Anaerobic digestion of cellulose-containing waste matter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563799A (en) * 1979-06-25 1981-01-16 Nippon Telegraph & Telephone Cobble crusher for shield excavator
JPS5864200A (en) * 1981-10-14 1983-04-16 Agency Of Ind Science & Technol Anaerobic digestion of cellulose-containing waste matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311986B1 (en) * 1998-10-01 2002-02-19 장기훈 Method for treating garbage and sludge simultaneously
KR100311987B1 (en) * 1998-10-22 2002-02-28 장기훈 Combined treatment method for treating garbage and sludge in sewage
JP2009248041A (en) * 2008-04-09 2009-10-29 Mhi Environment Engineering Co Ltd Method and system for methane fermentation treatment of wood waste

Similar Documents

Publication Publication Date Title
CN111333179B (en) Method for producing wastewater denitrification carbon source by lactic acid fermentation of kitchen waste
US5464539A (en) Process for the production of hydrogen by microorganisms
JPS5864200A (en) Anaerobic digestion of cellulose-containing waste matter
CN102039304B (en) Electricity generating method of kitchen garbage by means of anaerobic fermentation
CN112626139A (en) Method and device for producing carbon source by using kitchen garbage
CN114378105B (en) Multistage treatment system and method for kitchen waste and cellulosic biomass in cooperation
CN111196999A (en) Biomass garbage batch type microbial fermentation treatment system and treatment method
JP4011439B2 (en) Method and apparatus for methane fermentation of organic waste
JP2018008203A (en) Wet type methane fermentation system
CN103341483B (en) One way of life high temperature garbage high steam dewatering system and method
CN106282245B (en) Novel organic garbage recycling method and system
Forster-Carneiro et al. Optimization of SEBAC start up phase of municipal solid waste anaerobic digestion
JP2006255538A (en) Method and apparatus for treatment of food waste
KR101605523B1 (en) Method and appratus for treating organic waste
JP5230243B2 (en) Method and system for methane fermentation treatment of organic waste
JP2006082075A (en) System for treating biomass
JPS60137498A (en) Anaerobic digesting method of organic waste
JP2005066420A (en) Hydrogen and methane two-stage fermentation treatment method for waste bread
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
JP3745978B2 (en) Method and apparatus for mixing and recycling food waste and wood waste
JP4183540B2 (en) Organic matter treatment method and organic matter treatment system using the same
JPS6034800A (en) Treatment of organic waste
JP2006082074A (en) System for treating biomass
JPS59196800A (en) Treatment of organic waste matter
ZAKARYA Large-scale food waste disposal has had a negative impact on the