JP3813020B2 - Sound absorbing plate having sandwich structure and manufacturing method thereof - Google Patents

Sound absorbing plate having sandwich structure and manufacturing method thereof Download PDF

Info

Publication number
JP3813020B2
JP3813020B2 JP13354798A JP13354798A JP3813020B2 JP 3813020 B2 JP3813020 B2 JP 3813020B2 JP 13354798 A JP13354798 A JP 13354798A JP 13354798 A JP13354798 A JP 13354798A JP 3813020 B2 JP3813020 B2 JP 3813020B2
Authority
JP
Japan
Prior art keywords
binder
absorbing plate
sound
weight
sound absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13354798A
Other languages
Japanese (ja)
Other versions
JPH11327564A (en
Inventor
敏之 鈴木
康典 福島
英雄 竹中
Original Assignee
新日本熱学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本熱学株式会社 filed Critical 新日本熱学株式会社
Priority to JP13354798A priority Critical patent/JP3813020B2/en
Publication of JPH11327564A publication Critical patent/JPH11327564A/en
Application granted granted Critical
Publication of JP3813020B2 publication Critical patent/JP3813020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サンドイッチ構造を有する吸音板及びその製造方法に関し、さらに詳しくは住宅、音楽室、ホール、劇場、屋内プール、各種ビル、各種工場、機械廻り、鉄道、あるいは道路、トンネルなどに設置され、調音や騒音の低減を目的とする耐水性、耐候性に優れ、軽量かつ比強度の高い大判の吸音板及びその製造方法に関するものである。
【0002】
【従来の技術】
従来から知られている吸音板としては、繊維系、セラミック焼結体系、金属焼結体系などがある。繊維系吸音板は、グラスウール、ロックウール等の無機繊維をフェノール樹脂等の熱硬化性樹脂バインダーで結合したものであるが、手で押すと簡単に凹んだり、耐水性、耐久性や耐気流性に劣る。また、セラミック焼結体系、金属焼結体系吸音板は、連続空隙を有するセラミック粒子や金属粒子を500〜1000℃以上の高温で焼結固着して板状に形成したものであり、静圧強度は高いが衝撃にはもろく、製造工程の制約から大判を製造しにくい。そして、原材料費及び製造費が高価であるうえに焼結時のエネルギー消費が大きく、環境負担の大きい製品である。
【0003】
また、軽量吸音板については、一般的なものとして軽量骨材をバインダーで固めた軽量板や、高密度不定形粒子と軽量骨材を均一に混合してバインダーで結合した軽量吸音板(特公平9−30674号公報)が提案されているが、いずれも強度が低く、実用的ではなかった。
【0004】
さらに、従来のバインダーによる粒子系吸音板は、単一層のもので機械的強度を確保するためには板厚を厚くしたり、あるいは特開平5−273984号公報には後工程で補強層を接着したものが提案されている。しかしながら、板厚を厚くするとコストアップと重量増を招き、補強材の後接着は板の反り暴れや工程の煩雑化などの問題が生じる。
【0005】
【発明が解決しようとする課題】
したがって、本発明の目的は、一つの吸音板において軽量化及び切削性向上のため、軽量骨材からなる内層の両面を重量骨材からなる高強度高硬度の外層でサンドイッチした構造を有し、高い吸音性能を有すると共に軽量大判で高強度の吸音板及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
すなわち、本発明は、かさ密度が0.1〜1/cm の無機質軽量骨材粒子の表面にバインダーを被覆し粒子同士を点状に結着してなる空隙率が5〜50体積%の内層と、該内層の両面に位置し、かさ密度が1〜2g/cm の無機質重量骨材粒子の表面にバインダーを被覆し粒子同士を点状に結着してなる空隙率が5〜50体積%の外層を積層一体化してなるサンドイッチ構造を有する吸音板である。この吸音板において、内層の厚さ100に対し外層の厚さが10〜100であることがよく、また軽量骨材の粒子径が0.3〜3mmのものが80重量%以上、重量骨材の粒子径が0.3〜3mmのものが80重量%以上であることがよい。
【0007】
また、本発明は、バインダーを表面に被覆したかさ密度が1〜2g/cm3 の無機質重量骨材粒子を散布し、次いでバインダーを表面に被覆したかさ密度が0.1〜1g/cm3 の無機質軽量骨材粒子を散布し、更に上記無機質重量骨材粒子を散布し、得られた積層物を同時に熱圧一体成形することを特徴とするサンドイッチ構造を有する吸音板の製造方法である。
【0008】
【発明の実施の形態】
図1は、本発明の吸音板の一例を模式的に示す断面図である。図1において、サンドイッチ構造を有する吸音板Aは、軽量のバインダー被覆無機質軽量骨材層(内層)1の両面に、高密度、高強度のバインダー被覆無機質重量骨材層(外層)2を積層一体化して構成したものである。
【0009】
吸音板Aの内層1にはかさ密度が0.1〜1g/cm3 、好ましくは0.15〜0.8g/cm3 の無機質軽量骨材粒子(軽量骨材ともいう)を用いる。軽量骨材のかさ密度が0.1g/cm3 より小さいと成形する際に骨材が圧壊して強度が得られず、逆に1g/cm3 を超えると軽量性が損なわれる。また、この軽量骨材は、粒子径が0.3〜3mm、好ましくは0.5〜2mmのものを80重量%以上含むものであることがよい。粒子径0.3mm未満の細粒分が多くなると内層1が緻密化して吸音効果が低下する傾向があり、粒子径の粗粒分が多くなると空気流れ抵抗の減少により吸音性が低下すると共に成形板としての強度が低いものになる。このような軽量骨材としては、例えば黒曜石、真珠石、抗火石、シラス、頁岩、ガラス、セラミック等の各種発泡体などが挙げられる。これらの軽量骨材は単独で用いてもよいし、2種類以上を併用してもよい。
【0010】
高密度の外層2には、かさ密度が1〜2g/cm3 、好ましくは1〜1.8g/cm3 の無機質重量骨材粒子(重量骨材ともいう)を用いる。重量骨材のかさ密度が1g/cm3 より小さいと所定の強度が得られず、逆に2g/cm3 を超えると吸音板としての軽量性が損なわれる。また、この重量骨材は、軽量骨材と同様に、粒子径が0.3〜3mmのものを80重量%以上含むものであることがよく、好ましくは0.5〜2mmのものが80重量%以上であることがよい。これは、軽量骨材と同様な理由によるものである。このような重量骨材としては、例えば天然石、けい砂、セラミック粒子、陶磁器の破砕物、ガラス粒子などが挙げられる。これらの重量骨材は単独で用いてもよいし、2種類以上を併用してもよい。
【0011】
これらの軽量骨材及び重量骨材は、その粒子表面をバインダーで被覆したものを用いる。骨材粒子を被覆するのに用いるバインダーとしては、例えばフェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化型アクリル樹脂等の熱硬化性樹脂や、例えばケイ酸ソーダ、ポリリン酸等の無機系バインダーなどの1種又は2種以上が挙げられる。これらのバインダーの内、熱硬化性樹脂が好ましく、特にフェノール樹脂が好適である。このバインダーは未硬化であることが好ましく、最終的に積層物を熱圧一体成形する工程において、バインダーを加熱硬化させ各粒子間及び各層間を結着させることがよい。バインダー被覆骨材は、骨材粒子とバインダーをミキサー等の混合機で攪拌、混合することで製造することができる。このように、予めバインダーで骨材粒子を被覆することによって、バインダー量を減らして製造コストを低減できるのみならず、骨材の各粒子同士を点結着状態で強固に結合させて吸音板の強度が向上し、また空隙率を上げて吸音性能を向上させることができる。
【0012】
骨材被覆用のバインダー使用量は、必要強度が得られかつ粒子間空隙をバインダーで埋めて吸音性能を阻害しないことを条件として決められるが、軽量骨材として例えばかさ密度0.5g/cm3 のガラス焼成発泡体を用いた場合は、ガラス焼成発泡体粒子100重量部に対しバインダーを3〜7重量部とすることがよい。また、重量骨材として例えばかさ密度1.6g/cm3 の珪砂を用いた場合は、珪砂100重量部に対しバインダーを1〜5重量部とすることがよい。
【0013】
このような吸音板Aの構成において、内層1及び外層2の空隙率は、それぞれ5〜50体積%であることが必要である。この空隙率が5体積%を下回ると吸音板が緻密化し、吸音効果が低下する傾向にある。また、50体積%を超えると空気流れ抵抗の減少により吸音性が低下するとともに成形板としての強度が低下する。
【0014】
本発明の吸音板Aの層構成は、軽量骨材からなる内層1の厚さが100に対して重量骨材からなる各外層2の合計厚さが10〜100であることがよい。また、各外層2は対称形に近いことが好ましく、例えばフェノール樹脂被覆ガラス焼成発泡体を用いた場合の内層1の厚さが7mmに対して、フェノール樹脂被覆珪砂からなる各外層2がそれぞれ1.5mmずつの対称形とし、その外層厚さの合計は3mmであることがよい。各外層2の合計厚さが内層1の100に対して10を下回ると外層の形成が不十分となり、補強効果が得られない。また、100を超えると吸音板全体の重量が重くなり、軽量性が損なわれるとともに外層の引っ張り力によって内層との層間での剥離を生じるおそれがある。さらに、各外層の厚さが極端にアンバランスであると厚い層の引っ張り力が優り、板に反りを生じるおそれがある。
【0015】
図2は、本発明の吸音板の別例を模式的に示す断面図である。この吸音板Bが先の例の吸音板Aと異なるところは、繊維補強材にバインダーを含浸し、半硬化させることによりプリプレグ化した補強層材料を吸音板の上面付近及び下面に配し、これらを熱圧一体成形して繊維補強層3、3’を設けた点である。
【0016】
吸音板Bは、バインダー含浸補強繊維層3’の上にバインダー被覆重量骨材からなる高密度層2''を設け、この上にバインダー被覆軽量骨材からなる内層1を形成し、さらにバインダー含浸補強繊維層3を配し、最上部となる面にバインダー被覆重量骨材からなる高密度層2’を設けたものである。これらの層は、それぞれの層のバインダーにより接着され一体化されて吸音板Bを形成している。なお、補強層の数及び配置は、上記説明に限定されるものではなく、例えば内層1の中央部あるいは最下層の高密度層だけに単一補強層を設けてもよい。
【0017】
また、繊維補強材としては、例えばガラス繊維、炭素繊維、セラミック繊維等の無機質繊維や、例えばポリエステル繊維、ポリアミド繊維、ポリアクリル繊維、ビニロン、ポリエチレン繊維、ポリプロピレン繊維等の合成繊維や、例えば木綿、麻、羊毛等の天然繊維などが挙げられるが、耐熱性と強度の観点から無機質繊維が好ましい。この繊維は、チョップドストランド、一方向配列繊維シート、織布、不織布など任意の形状のものを用いることができる。
【0018】
繊維補強材に含浸するバインダーは、前記の骨材粒子を被覆するのに用いたバインダーと同じものを用いることがよい。バインダーの含浸量は、繊維同士を浸潤し、繊維表面にわずかに染み出す程度であればよく、ガラス繊維織物を用いた場合、バインダー量は繊維100重量部に対し20〜100重量部がよい。
【0019】
【実施例】
実施例1
原料として、粒子径0.5〜2mmの範囲のものが85重量%の珪砂(かさ密度1.6g/cm3 )、ガラス粉造粒発泡体((株)サンライト製、商品名Gライト、かさ密度0.45g/cm3 )をそれぞれ未硬化ノボラック型フェノール樹脂と攪拌混合し、樹脂量が2重量%のフェノール樹脂被覆珪砂及び樹脂量が5重量%のフェノール樹脂被覆ガラス粉造粒発泡体を用いた。まず、成形用金属板の表面に離型剤を塗布し、フェノール樹脂被覆珪砂を1000mm×1000mmの面積に2.5Kgを散布した。次に、この上にフェノール樹脂被覆ガラス粉体造粒発泡体を3.6Kgを散布し積層した。さらに、この積層物にフェノール樹脂被覆珪砂を2.5Kgを散布し三層構造の積層マットを得た。このマットに離型剤を塗布した成形用金属板を被せ、ホットプレスに入れて160℃、2MPa、10分間の条件で熱圧成形した。このようにして作製した高密度外層−軽量内層−高密度外層のサンドイッチ構造の吸音板は、1000mm×1000mm、厚さ10mmであり、その空隙率は外層で27.5体積%、内層で約36体積%であり、吸音板全体の平均空隙率は約33.5体積%であった。
【0020】
実施例2
実施例1と同様な原料と条件で成形するにあたり、吸音板の上下層にガラスクロスプリプレグを一体成形し、板材の強度及び剛性を高めた。このガラスクロスプリプレグは、開口率23面積%のガラスクロス(安全基材(株)製、商品名EM−90、140g/m2 )に半硬化のフェノール樹脂を含浸したものである。まず、離型剤を塗布した成形用金属板に、1000×1000mmに予めカットしたガラスクロスプリプレグを敷き、この上にフェノール樹脂被覆珪砂を2.5Kg散布した。次に、この上にフェノール樹脂被覆ガラス粉体造粒発泡体を3.6Kgを散布積層した。さらに、この積層物にガラスクロスプリプレグを載せ、最後にフェノール樹脂で被覆された珪砂を2.5Kgを散布して三層構造の積層マットを得た。このマットに離型剤を塗布した成形用金属板を被せ、ホットプレスに入れて160℃、2MPa、10分間の条件で熱圧成形した。このようにして作製した補強層−高密度層−軽量内層−補強層−高密度外層の複層サンドイッチ構造の吸音板は厚さ10mmであり、その全体の平均空隙率は33.5体積%であった。
【0021】
比較例1
実施例1で用いたフェノール樹脂被覆珪砂5Kgとフェノール樹脂被覆ガラス粉体造粒発泡体を3.6Kgをドラムブレンダーで10分間混ぜ、この混合物を離型剤を塗布した成形用金属板上に1000mm×1000mmの面積に散布した。得られた混合マットに離型剤を塗布した成形用金属板を被せ、ホットプレスに入れて160℃、2MPa、10分間の条件で熱圧成形した。このようにして作製した吸音板は厚さ9mmであり、その全体の平均空隙率は30体積%であった。ただし、原料の比重差により不均一で吸音板内では比重の高い珪砂が下部に偏析し、下側凹の反りを生じた。
【0022】
比較例2
実施例1で用いたフェノール樹脂被覆珪砂17Kgを離型剤を塗布した成形用金属板上に1000mm×1000mmの面積に散布した。得られたマットに成形用金属板を被せ、ホットプレスに入れて160℃、2MPa、10分間の条件で熱圧成形した。このようにして作製した吸音板は厚さ10mmであり、その全体の平均空隙率は26体積%であった。
【0023】
比較例3
実施例1で用いたフェノール樹脂被覆ガラス粉造粒発泡体を5.4Kgを離型剤を塗布した成形用金属板上に1000mm×1000mmの面積に散布した。得られたマットに成形用金属板を被せ、ホットプレスに入れて160℃、2MPa、10分間の条件で熱圧成形した。このようにして作製した吸音板は厚さ10mmであり、その全体の平均空隙率は33体積%であった。
【0024】
実施例1、2及び比較例1〜3によって得られたそれぞれ吸音板1〜5について、それぞれ厚さ、かさ比重、平面度、3点曲げ強度、弾性率、耐衝撃性及び垂直入射吸音率を測定した。なお、かさ比重はJIS A5908に準拠して行い、平面度は1000×1000mmの吸音板の下側中央凹部の深さを測定し、3点曲げ試験及び弾性率はJISA 1408に準拠して行った。試験体寸法は30×200mmとし、試験体の金型面すなわち積層順の下面側を下にしてスパン180mmの条件で行った。耐衝撃性はJISA 1408に準拠して行った。試験体寸法は500×500mmとし、試験体を砂の上に支持し、中央部に500gのなす型錘を所定の高さから自由落下させ衝撃を加えて、状態を観察した。吸音率はJISA1405に準拠して管内法による垂直入射吸音率(背後空気層50mm)を測定した。試験結果を表1に、垂直入射吸音率を図2に示す。
【0025】
【表1】

Figure 0003813020
【0026】
表1の結果から、サンドイッチ構造とした吸音板1及び2は、かさ比重に対する強度(比強度)が単独層吸音板3〜5に比べて高いことが認められた。すなわち、軽量性と強度のバランスがとれた板状吸音体が得られた。特に、無機質繊維で補強した吸音板2は耐衝撃性を含め優れた吸音特性を示した。また、板の形状も吸音板1及び2はほぼフラットな面であるのに対して珪砂とガラス粉造粒発泡体の混合単独層吸音板3は均一層が形成できずに高比重の珪砂が下側に偏析して下に大きな反りが生じ、実用不向きな板であった。また、吸音板4は重量平方メートルあたり17Kgとサンドイッチ型の約2倍と重く、吸音板5は軽量ではあるものの強度が低く、実用的ではなかった。
【0027】
【発明の効果】
本発明のサンドイッチ構造を有する吸音板は、軽量で高い吸音性能を有し、形状の安性に優れ、曲げ強度が高く、しかもその製造コストが低廉でかつ大判の吸音板を効率的に製造することが可能となった。
【図面の簡単な説明】
【図1】本発明のサンドイッチ構造を有する吸音板の構成の一例を模式的に示す断面図である。
【図2】本発明のサンドイッチ構造を有する吸音板の構成の別例を模式的に示す断面図である。
【図3】実施例及び比較例の吸音板の垂直入射吸音率を示すグラフである。
【符号の説明】
A、B : 吸音板
1 : バインダー被覆軽量骨材層(内層)
2 : バインダー被覆重量骨材層(外層)
2’、2'': バインダー被覆重量骨材層(表面層)
3 、3’: バインダー含浸補強繊維層(補強層)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sound-absorbing plate having a sandwich structure and a method for manufacturing the same, and more specifically, installed in a house, a music room, a hall, a theater, an indoor pool, various buildings, various factories, machines, a railway, a road, a tunnel, or the like. The present invention relates to a large-sized sound-absorbing plate that is excellent in water resistance and weather resistance for the purpose of noise reduction and noise reduction, and is lightweight and has high specific strength, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally known sound absorbing plates include fiber systems, ceramic sintered systems, and metal sintered systems. A fiber-based sound absorbing board is made by bonding inorganic fibers such as glass wool and rock wool with a thermosetting resin binder such as phenol resin, but it can be easily recessed when pressed by hand, and has water resistance, durability, and air resistance. Inferior to Moreover, the ceramic sintered system and the metal sintered system sound-absorbing plate are formed by sintering and fixing ceramic particles and metal particles having continuous voids at a high temperature of 500 to 1000 ° C. or more in a plate shape. Although it is expensive, it is fragile and it is difficult to manufacture a large format due to restrictions on the manufacturing process. In addition, the raw material cost and the manufacturing cost are high, and the energy consumption during sintering is large, resulting in a large environmental burden.
[0003]
In addition, as for light-weight sound-absorbing plates, generally, light-weight sound-absorbing plates in which light-weight aggregates are hardened with a binder, or light-weight sound-absorbing plates in which high-density irregularly shaped particles and light-weight aggregates are uniformly mixed and bonded with a binder. No. 9-30664) has been proposed, but all of them were low in strength and not practical.
[0004]
Further, the conventional particle-based sound absorbing plate made of a binder is a single layer, and the plate thickness is increased in order to ensure mechanical strength, or a reinforcing layer is bonded in a later step in JP-A-5-273984. What has been proposed. However, increasing the plate thickness causes an increase in cost and weight, and post-adhesion of the reinforcing material causes problems such as the warpage of the plate and the complexity of the process.
[0005]
[Problems to be solved by the invention]
Therefore, the object of the present invention has a structure in which both sides of the inner layer made of lightweight aggregate are sandwiched with the outer layer of high strength and high hardness made of heavy aggregate in order to reduce the weight and improve the cutting performance in one sound absorbing plate, An object of the present invention is to provide a sound absorbing plate having a high sound absorbing performance and having a light weight and a large size, and a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
That is, the present invention has a porosity of 5 to 50% by volume formed by covering the surface of inorganic lightweight aggregate particles having a bulk density of 0.1 to 1 g / cm 3 and binding the particles in a dot-like manner. The porosity formed by coating the binder on the surface of inorganic heavy weight aggregate particles having a bulk density of 1 to 2 g / cm 3 and binding the particles in a dot-like manner is located on both sides of the inner layer and the inner layer. A sound absorbing plate having a sandwich structure in which 50% by volume of outer layers are laminated and integrated. In this sound-absorbing plate, the thickness of the outer layer is preferably 10 to 100 with respect to the thickness 100 of the inner layer, and the lightweight aggregate having a particle diameter of 0.3 to 3 mm is 80% by weight or more. The particle diameter of 0.3 to 3 mm is preferably 80% by weight or more.
[0007]
In the present invention, inorganic heavy aggregate particles having a bulk density of 1-2 g / cm 3 with a binder coated on the surface are sprayed, and then the bulk density of the binder coated on the surface is 0.1-1 g / cm 3 . A method for producing a sound-absorbing plate having a sandwich structure, characterized in that inorganic light-weight aggregate particles are dispersed, the inorganic heavy-weight aggregate particles are further dispersed, and the resulting laminate is simultaneously integrally formed by hot-pressing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view schematically showing an example of a sound absorbing plate of the present invention. In FIG. 1, a sound-absorbing plate A having a sandwich structure has a high-density, high-strength binder-coated inorganic heavy-weight aggregate layer (outer layer) 2 laminated on both sides of a lightweight binder-coated inorganic light-weight aggregate layer (inner layer) 1. It is made up of.
[0009]
For the inner layer 1 of the sound absorbing plate A, inorganic lightweight aggregate particles (also referred to as lightweight aggregate) having a bulk density of 0.1 to 1 g / cm 3 , preferably 0.15 to 0.8 g / cm 3 are used. If the bulk density of the lightweight aggregate is less than 0.1 g / cm 3 , the aggregate will be crushed during molding and strength will not be obtained. Conversely, if it exceeds 1 g / cm 3 , the lightness will be impaired. The lightweight aggregate should contain 80% by weight or more of particles having a particle diameter of 0.3 to 3 mm, preferably 0.5 to 2 mm. When the fine particle content with a particle diameter of less than 0.3 mm increases, the inner layer 1 tends to be densified and the sound absorption effect tends to decrease. When the coarse particle content with a particle diameter increases, the sound absorption decreases due to a decrease in air flow resistance and molding The strength as a plate is low. Examples of such lightweight aggregates include various foams such as obsidian, pearlite, anti-fluorite, shirasu, shale, glass, and ceramic. These lightweight aggregates may be used alone or in combination of two or more.
[0010]
For the high-density outer layer 2, inorganic heavy aggregate particles (also referred to as heavy aggregate) having a bulk density of 1 to 2 g / cm 3 , preferably 1 to 1.8 g / cm 3 are used. If the bulk density of the heavy aggregate is less than 1 g / cm 3 , a predetermined strength cannot be obtained, and conversely if it exceeds 2 g / cm 3 , the lightness as a sound absorbing plate is impaired. Further, this heavy aggregate, like the lightweight aggregate, may contain 80% by weight or more of particles having a particle diameter of 0.3 to 3 mm, and preferably 80% by weight or more of 0.5 to 2 mm. It is good that it is. This is for the same reason as the lightweight aggregate. Examples of such heavy aggregate include natural stone, silica sand, ceramic particles, crushed ceramics, and glass particles. These heavy aggregates may be used alone or in combination of two or more.
[0011]
As these lightweight aggregate and heavy aggregate, those whose particle surfaces are coated with a binder are used. Examples of the binder used to coat the aggregate particles include thermosetting resins such as phenol resin, melamine resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, and so on such as sodium silicate and polyphosphoric acid. 1 type, or 2 or more types, such as an inorganic binder, are mentioned. Of these binders, thermosetting resins are preferable, and phenol resins are particularly preferable. This binder is preferably uncured, and in the final step of hot-pressing and integrally forming the laminate, the binder is preferably heat-cured to bond the particles and the layers. The binder-coated aggregate can be produced by stirring and mixing the aggregate particles and the binder with a mixer such as a mixer. Thus, by covering the aggregate particles with the binder in advance, not only can the amount of the binder be reduced to reduce the manufacturing cost, but also the particles of the aggregate can be firmly bonded in a point-bonded state to form the sound absorbing plate. The strength can be improved, and the sound absorption performance can be improved by increasing the porosity.
[0012]
The amount of binder used for coating the aggregate is determined on condition that the required strength is obtained and that the interparticle voids are filled with the binder so as not to impair the sound absorption performance. For example, a bulk density of 0.5 g / cm 3 is used as a lightweight aggregate. When the glass fired foam is used, the binder is preferably 3 to 7 parts by weight with respect to 100 parts by weight of the glass fired foam particles. Moreover, when silica sand with a bulk density of 1.6 g / cm 3 is used as the heavy aggregate, for example, the binder is preferably 1 to 5 parts by weight with respect to 100 parts by weight of silica sand.
[0013]
In such a structure of the sound absorbing plate A, the porosity of the inner layer 1 and the outer layer 2 needs to be 5 to 50% by volume, respectively. If this porosity is less than 5% by volume, the sound absorbing plate becomes dense and the sound absorbing effect tends to be reduced. On the other hand, if it exceeds 50% by volume, the sound absorption is lowered due to the decrease in air flow resistance and the strength as a molded plate is lowered.
[0014]
In the layer structure of the sound absorbing plate A of the present invention, the total thickness of the outer layers 2 made of heavy aggregate is preferably 10 to 100 with respect to the thickness of the inner layer 1 made of lightweight aggregate. Moreover, it is preferable that each outer layer 2 is close to a symmetrical shape. For example, when the thickness of the inner layer 1 is 7 mm when a phenol resin-coated glass fired foam is used, each outer layer 2 made of phenol resin-coated quartz sand is 1 each. It is preferable that the thickness is symmetrical by 5 mm, and the total thickness of the outer layers is 3 mm. If the total thickness of each outer layer 2 is less than 10 with respect to 100 of the inner layer 1, the formation of the outer layer becomes insufficient and a reinforcing effect cannot be obtained. On the other hand, if it exceeds 100, the weight of the entire sound-absorbing plate becomes heavy, and the lightness may be impaired. Furthermore, if the thickness of each outer layer is extremely unbalanced, the pulling force of the thick layer is excellent, and the board may be warped.
[0015]
FIG. 2 is a cross-sectional view schematically showing another example of the sound absorbing plate of the present invention. The sound absorbing plate B is different from the sound absorbing plate A of the previous example in that the reinforcing layer material prepreg-impregnated by impregnating the fiber reinforcing material with a binder and semi-curing is disposed near the upper surface and the lower surface of the sound absorbing plate. This is a point in which the fiber reinforcement layers 3 and 3 ′ are provided by hot-pressure integrated molding.
[0016]
The sound-absorbing plate B is provided with a high-density layer 2 ″ made of a binder-coated heavy aggregate on a binder-impregnated reinforcing fiber layer 3 ′, on which an inner layer 1 made of a binder-coated lightweight aggregate is formed, and further impregnated with the binder A reinforcing fiber layer 3 is arranged, and a high-density layer 2 ′ made of a binder-coated heavy aggregate is provided on the uppermost surface. These layers are bonded and integrated with the binder of each layer to form the sound absorbing plate B. The number and arrangement of the reinforcing layers are not limited to the above description, and for example, a single reinforcing layer may be provided only in the central portion of the inner layer 1 or the lowermost high-density layer.
[0017]
Examples of the fiber reinforcing material include inorganic fibers such as glass fiber, carbon fiber, and ceramic fiber, synthetic fibers such as polyester fiber, polyamide fiber, polyacrylic fiber, vinylon, polyethylene fiber, and polypropylene fiber, and cotton, Examples thereof include natural fibers such as hemp and wool, but inorganic fibers are preferable from the viewpoint of heat resistance and strength. As this fiber, chopped strands, unidirectionally arranged fiber sheets, woven fabrics, non-woven fabrics and the like can be used.
[0018]
The binder used for impregnating the fiber reinforcing material is preferably the same as the binder used to coat the aggregate particles. The amount of the binder impregnated is only required to infiltrate the fibers and slightly exude on the fiber surface. When a glass fiber fabric is used, the amount of the binder is preferably 20 to 100 parts by weight with respect to 100 parts by weight of the fibers.
[0019]
【Example】
Example 1
As raw materials, silica sand (bulk density 1.6 g / cm 3 ) having a particle size of 0.5 to 2 mm, glass powder granulated foam (manufactured by Sunlite Co., Ltd., trade name G Light, Bulk density 0.45 g / cm 3 ) was mixed with an uncured novolac-type phenol resin by stirring, respectively, and a phenol resin-coated silica sand having a resin amount of 2% by weight and a phenol resin-coated glass powder granulated foam having a resin amount of 5% by weight. Was used. First, a release agent was applied to the surface of the forming metal plate, and 2.5 kg of a phenol resin-coated silica sand was sprayed over an area of 1000 mm × 1000 mm. Next, 3.6 kg of phenol resin-coated glass powder granulated foam was sprayed thereon and laminated. Further, 2.5 kg of phenol resin-coated silica sand was sprayed on the laminate to obtain a laminated mat having a three-layer structure. The mat was covered with a forming metal plate coated with a release agent, and placed in a hot press to perform hot-pressure forming under conditions of 160 ° C., 2 MPa, and 10 minutes. The sound absorbing plate having a sandwich structure of high density outer layer-light weight inner layer-high density outer layer produced in this manner has a size of 1000 mm × 1000 mm and a thickness of 10 mm, and its porosity is 27.5% by volume in the outer layer and about 36 in the inner layer. The average porosity of the entire sound absorbing plate was about 33.5% by volume.
[0020]
Example 2
In forming with the same raw materials and conditions as in Example 1, glass cloth prepregs were integrally formed on the upper and lower layers of the sound absorbing plate to increase the strength and rigidity of the plate material. This glass cloth prepreg is obtained by impregnating a semi-cured phenolic resin into a glass cloth having an aperture ratio of 23 area% (trade name EM-90, 140 g / m 2 manufactured by Safety Base Co., Ltd.). First, a glass cloth prepreg cut in advance to 1000 × 1000 mm was laid on a forming metal plate coated with a release agent, and 2.5 kg of phenol resin-coated silica sand was sprayed thereon. Next, 3.6 kg of phenol resin-coated glass powder granulated foam was sprayed and laminated thereon. Further, a glass cloth prepreg was placed on the laminate, and finally 2.5 kg of silica sand coated with phenol resin was sprayed to obtain a three-layer laminated mat. The mat was covered with a forming metal plate coated with a release agent, and placed in a hot press to perform hot-pressure forming under conditions of 160 ° C., 2 MPa, and 10 minutes. The sound absorbing plate having a multilayer sandwich structure of reinforcing layer-high density layer-light weight inner layer-reinforcing layer-high density outer layer thus produced has a thickness of 10 mm, and the overall average porosity is 33.5% by volume. there were.
[0021]
Comparative Example 1
5 kg of phenolic resin-coated silica sand used in Example 1 and 3.6 kg of phenolic resin-coated glass powder granulated foam were mixed with a drum blender for 10 minutes, and this mixture was 1000 mm on a metal plate for forming coated with a release agent. It sprayed on the area of * 1000mm. The obtained mixed mat was covered with a molding metal plate coated with a release agent, placed in a hot press, and hot pressed under conditions of 160 ° C., 2 MPa, and 10 minutes. The sound absorbing plate thus produced was 9 mm in thickness, and the overall average porosity was 30% by volume. However, due to the difference in specific gravity of the raw materials, the silica sand which is non-uniform and has a high specific gravity within the sound absorbing plate segregates in the lower part, resulting in warping of the lower concave.
[0022]
Comparative Example 2
17 kg of the phenol resin-coated silica sand used in Example 1 was sprayed over an area of 1000 mm × 1000 mm on a forming metal plate coated with a release agent. The obtained mat was covered with a molding metal plate, placed in a hot press, and hot-press molded at 160 ° C., 2 MPa for 10 minutes. The sound absorbing plate thus produced was 10 mm in thickness, and the overall average porosity was 26% by volume.
[0023]
Comparative Example 3
5.4 Kg of the phenol resin-coated glass powder granulated foam used in Example 1 was sprayed over an area of 1000 mm × 1000 mm on a forming metal plate coated with a release agent. The obtained mat was covered with a molding metal plate, placed in a hot press, and hot-press molded at 160 ° C., 2 MPa for 10 minutes. The sound absorbing plate thus produced was 10 mm in thickness, and the overall average porosity was 33% by volume.
[0024]
For each of the sound absorbing plates 1 to 5 obtained in Examples 1 and 2 and Comparative Examples 1 to 3, the thickness, bulk specific gravity, flatness, three-point bending strength, elastic modulus, impact resistance, and normal incidence sound absorbing coefficient are set respectively. It was measured. The bulk specific gravity was measured according to JIS A5908, the flatness was measured by measuring the depth of the lower central recess of the sound absorbing plate of 1000 × 1000 mm, and the three-point bending test and the elastic modulus were performed according to JIS A 1408. . The test body size was 30 × 200 mm, and the test was performed under the condition of a span of 180 mm with the mold surface of the test body, that is, the lower surface side in the stacking order down. Impact resistance was performed in accordance with JISA 1408. The size of the test body was 500 × 500 mm, the test body was supported on sand, a mold weight of 500 g was freely dropped from a predetermined height at the center, an impact was applied, and the state was observed. As for the sound absorption coefficient, the normal incident sound absorption coefficient (back air layer: 50 mm) was measured by a pipe method according to JIS A1405. The test results are shown in Table 1, and the normal incident sound absorption coefficient is shown in FIG.
[0025]
[Table 1]
Figure 0003813020
[0026]
From the results of Table 1, it was recognized that the sound absorbing plates 1 and 2 having the sandwich structure had higher strength (specific strength) with respect to the bulk specific gravity than the single layer sound absorbing plates 3 to 5. That is, a plate-like sound absorber having a balance between lightness and strength was obtained. In particular, the sound absorbing plate 2 reinforced with inorganic fibers showed excellent sound absorbing characteristics including impact resistance. In addition, the sound absorbing plates 1 and 2 are substantially flat surfaces, whereas the mixed single layer sound absorbing plate 3 of silica sand and glass powder granulated foam cannot form a uniform layer and has high specific gravity silica sand. The plate was segregated to the lower side and a large warp was generated underneath, which was not suitable for practical use. Further, the sound absorbing plate 4 is 17 kg per square meter, which is about twice as heavy as the sandwich type, and the sound absorbing plate 5 is light but has low strength and is not practical.
[0027]
【The invention's effect】
The sound-absorbing plate having the sandwich structure of the present invention is lightweight and has high sound-absorbing performance, excellent shape safety, high bending strength, and low production cost, and efficiently manufactures a large-sized sound-absorbing plate. It became possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of the configuration of a sound absorbing plate having a sandwich structure of the present invention.
FIG. 2 is a cross-sectional view schematically showing another example of the configuration of the sound absorbing plate having the sandwich structure of the present invention.
FIG. 3 is a graph showing the normal incident sound absorption coefficient of the sound absorbing plates of Examples and Comparative Examples.
[Explanation of symbols]
A, B: Sound absorption plate 1: Binder-coated lightweight aggregate layer (inner layer)
2: Binder coating weight aggregate layer (outer layer)
2 ', 2'': Binder coating weight aggregate layer (surface layer)
3, 3 ': Binder-impregnated reinforcing fiber layer (reinforcing layer)

Claims (4)

かさ密度が0.1〜1/cm の無機質軽量骨材粒子の表面にバインダーを被覆し粒子同士を点状に結着してなる空隙率が5〜50体積%の内層と、該内層の両面に位置し、かさ密度が1〜2g/cm の無機質重量骨材粒子の表面にバインダーを被覆し粒子同士を点状に結着してなる空隙率が5〜50体積%の外層とを積層一体化してなるサンドイッチ構造を有する吸音板。An inner layer having a porosity of 5 to 50% by volume formed by coating a binder on the surface of inorganic lightweight aggregate particles having a bulk density of 0.1 to 1 g / cm 3 and binding the particles to each other in the form of dots, and the inner layer An outer layer having a porosity of 5 to 50% by volume formed by coating a binder on the surface of inorganic heavy aggregate particles having a bulk density of 1 to 2 g / cm 3 and binding the particles in a dot-like manner. A sound-absorbing plate having a sandwich structure obtained by laminating and integrating. 内層の厚さ100に対し外層の合計厚さが10〜100である請求項1記載のサンドイッチ構造を有する吸音板。The sound absorbing plate having a sandwich structure according to claim 1, wherein the total thickness of the outer layer is 10 to 100 with respect to the thickness 100 of the inner layer. 無機質軽量骨材粒子の粒子径が0.3〜3mmのものが80重量%以上であり、かつ無機質重量骨材粒子の粒子径が0.3〜3mmのものが80重量%以上である請求項1又は2記載のサンドイッチ構造を有する吸音板。The inorganic light-weight aggregate particles having a particle diameter of 0.3 to 3 mm are 80% by weight or more, and the inorganic light-weight aggregate particles having a particle diameter of 0.3 to 3 mm are 80% by weight or more. A sound-absorbing plate having the sandwich structure according to 1 or 2. バインダーを表面に被覆したかさ密度が1〜2g/cm3 の無機質重量骨材粒子を散布し、次いでバインダーを表面に被覆したかさ密度が0.1〜1g/cm3 の無機質軽量骨材粒子を散布し、更に上記無機質重量骨材粒子を散布し、得られた積層物を同時に熱圧一体成形することを特徴とするサンドイッチ構造を有する吸音板の製造方法。Bulk density was coated with a binder on the surface sprayed with inorganic weight aggregate particles of 1 to 2 g / cm 3, then bulk density was coated on the surface of the binder to inorganic lightweight aggregate particles of 0.1 to 1 g / cm 3 A method for producing a sound-absorbing plate having a sandwich structure, characterized by spraying, further spraying the above-mentioned inorganic weight aggregate particles, and simultaneously forming the obtained laminate by hot-pressure integrated molding.
JP13354798A 1998-05-15 1998-05-15 Sound absorbing plate having sandwich structure and manufacturing method thereof Expired - Fee Related JP3813020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13354798A JP3813020B2 (en) 1998-05-15 1998-05-15 Sound absorbing plate having sandwich structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13354798A JP3813020B2 (en) 1998-05-15 1998-05-15 Sound absorbing plate having sandwich structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11327564A JPH11327564A (en) 1999-11-26
JP3813020B2 true JP3813020B2 (en) 2006-08-23

Family

ID=15107372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13354798A Expired - Fee Related JP3813020B2 (en) 1998-05-15 1998-05-15 Sound absorbing plate having sandwich structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3813020B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060014878A1 (en) * 2002-11-13 2006-01-19 The University Of Southern Queensland Polymer concrete
JP4989390B2 (en) * 2007-09-18 2012-08-01 株式会社オーディオテクニカ Dynamic microphone
JP5382867B2 (en) * 2009-03-26 2014-01-08 公益財団法人鉄道総合技術研究所 Soundproof material, manufacturing method thereof, and soundproof structure of rail
CN104264596B (en) * 2014-09-30 2017-01-18 四川正升声学科技有限公司 Particle sound barrier and sound absorption and insulation barrier board thereof
PL443458A1 (en) * 2023-01-11 2024-07-15 Skibiński Tytus Labtest Sound absorbing panel

Also Published As

Publication number Publication date
JPH11327564A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JPS61163846A (en) Porous composite material for soundproofing and manufacture thereof
JP3813020B2 (en) Sound absorbing plate having sandwich structure and manufacturing method thereof
JP3583251B2 (en) Sound absorption and insulation panels
CA2113834A1 (en) Composite structure with foam plastic core and method of making same
JP4105784B2 (en) Sound absorbing plate and manufacturing method thereof
JPH1199588A (en) Fire resistant composite floor material
US3523849A (en) Sheet material for use in building
JPH11327565A (en) Sound absorbing material
JP3848441B2 (en) Hygroscopic building materials
JPH04284242A (en) Light-weight composite panel
JPH0740489A (en) Manufacture of inorganic composite molding
JP4054112B2 (en) Sound barrier
JPH07195621A (en) Mineral fiber molded object and production thereof
JP3848674B2 (en) Sound absorption and insulation panel
JPH11303369A (en) Fire resisting composite building material and fire resisting composite flooring
JPH0691833A (en) Production of composite panel
JPH0835326A (en) Concrete form panel
JPH11227095A (en) Fire-resistant composite flooring material
JP3377561B2 (en) Inorganic composite molded article for building material and method for producing the same
JPH11179823A (en) Laminated product and its manufacture
JPH112019A (en) Backing material of floor and manufacture thereof
JPS63280152A (en) Water permeable floor material and its production
CN116968404A (en) Sound-absorbing heat-insulating honeycomb composite board and preparation method thereof
JPH04301449A (en) Manufacture of composite panel
JP5137364B2 (en) Inorganic board and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees