JP3848441B2 - Hygroscopic building materials - Google Patents

Hygroscopic building materials Download PDF

Info

Publication number
JP3848441B2
JP3848441B2 JP20814197A JP20814197A JP3848441B2 JP 3848441 B2 JP3848441 B2 JP 3848441B2 JP 20814197 A JP20814197 A JP 20814197A JP 20814197 A JP20814197 A JP 20814197A JP 3848441 B2 JP3848441 B2 JP 3848441B2
Authority
JP
Japan
Prior art keywords
moisture
resin
inorganic particles
building material
hygroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20814197A
Other languages
Japanese (ja)
Other versions
JPH1150559A (en
Inventor
卓哉 古賀
啓雄 伊藤
雅弘 斉藤
康夫 鈴木
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyagi Prefectural Government.
Original Assignee
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyagi Prefectural Government. filed Critical Miyagi Prefectural Government.
Priority to JP20814197A priority Critical patent/JP3848441B2/en
Publication of JPH1150559A publication Critical patent/JPH1150559A/en
Application granted granted Critical
Publication of JP3848441B2 publication Critical patent/JP3848441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内装及び外装建材として使用される吸放湿性建材に関するものである。
【0002】
【従来の技術】
近年、コンクリート構造物である集合住宅の普及に加えて、火災時の安全性要求、生活様式の変化、さらに木材の高騰などにより、特に住宅用の内装建材には木材があまり使用されなくなり、ペンキ仕上やクロス張りのようにコンクリート壁に仕上げ材を直に施工したり、安価で耐火性のあるセッコウボード等の無機系建材が多用されるようになった。木材は高湿時には空気中の水分を吸湿して湿度を下げ、低湿時には自ら保有する水分を放出して乾燥を抑制する、いわゆる吸放湿性を有し、湿度の高い我が国に適した建材である。しかし、コンクリート直仕上げや無機系建材は吸放湿性に乏しく、壁面が結露したり、結露による濡れやしみが生じたり、カビによる汚染が生ずるなどの問題がある。
【0003】
これを解決するものとして、特開平3−109244号公報には、高度活性化処理したゼオライト粉粒体、セメント及び水溶性樹脂硬化剤、繊維等の補強材を湿式混練し、任意の性状に圧縮成形した調湿性建築材料が提案されている。しかしながら、この調湿性建築材料は優れた吸放湿性を有しているものの、割れやすいので小サイズのものしか製造できず、またセメントを結合材としているために後養生が必要で製造に時間がかかり、製品の密度も高い。したがって、これを建物等の壁として施工する場合には、やや重く施工しにくいという問題があった。また、この調湿性建築材料は同時に透湿性の大きい材料でもあるので、グラスウール、ロックウール等の断熱材を組み込んだ壁面として用いる場合には、室内の湿分が透過して断熱材の結露を引き起こす欠点もあった。
【0004】
【発明が解決しようとする課題】
したがって、本発明の目的は、優れた吸放湿性を有すると共に、簡便に製造でき、施工能率を向上させることができる軽量で大型板状の吸放湿性建材を提供することにある。また、本発明は、前記した性能を満足すると共に裏面への透湿を抑えた吸放湿性建材を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記の課題を解決するために、ゼオライト、珪藻土、セピオライト等の吸放湿性無機質粒子を用い、その吸放湿性を阻害することなく、熱硬化性樹脂でこれら無機質粒子を結合固化させるという視点から誠意検討を重ねた結果、粉末状の熱硬化性樹脂を使用し、かつ熱硬化性樹脂の配合割合を調整することにより、この混合物を熱硬化させて得られる建材板は優れた吸放湿性を保持しており、またこの片面又は両面に繊維で補強した表面層を設け一体的に熱硬化させてなるサンドイッチ構造材は、吸放湿性のある軽量で大型の板状建材となしうることを見出し、本発明を完成した。さらに、上記サンドイッチ構造材の一方のコア層と表面層間にプラスチックフィルム等の防湿層を形成し、これらを一体的に接着することにより、吸放湿性であるとともに透湿を抑えた板状材となしうることを見出し、本発明を完成した。
【0006】
すなわち、本発明は、吸放湿性無機質粒子と粉末状フェノール樹脂の混合物の熱圧締物で形成され、下記数式で示される粒子間隙充填率が0.1〜0.5になるように粉末状フェノール樹脂を配合してなる吸放湿性建材である。
粒子間隙充填率 = Vr /(1−Vz )
(式中、Vr は樹脂の体積分率、Vz は無機質粒子の体積分率を示す)
【0007】
また、本発明は、吸放湿性無機質粒子と粉末状フェノール樹脂の混合物から形成されたコア層と、その片面又は両面に繊維で補強された表面層とを一体に熱圧締してなるサンドイッチ構造を有する吸放湿性建材である。さらに、本発明は、サンドイッチ構造を有する前記の吸放湿性建材において、コア層と一方の表面層との間にプラスチックフィルムからなる防湿層を形成してなる透湿を抑えた吸放湿性建材である。
【0008】
また、本発明は、吸放湿性無機質粒子と粉末状フェノール樹脂を混合し、この混合物を下記数式で示される粒子間隙充填率が0.1〜0.5になるように圧力5〜30kg/cm2、温度100〜200℃で熱圧締することを特徴とする吸放湿性建材の製造方法である。
粒子間隙充填率 = V r /(1−V z
(式中、V r は樹脂の体積分率、V z は無機質粒子の体積分率を示す
さらに、本発明は、吸放湿性無機質粒子と粉末状樹脂を混合してコア層を形成し、その片面又は両面に繊維で補強された表面層を重ね合わせた後、熱圧締することを特徴とするサンドイッチ構造を有する上記の吸放湿性建材の製造方法である。
【0009】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。
図1は本発明の吸放湿建材の一例を示す断面模式図であり、図2はサンドイッチ構造を有する吸放湿建材の断面模式図であり、また図3は透湿を抑えた吸放湿建材の断面模式図である。図1において、1は吸放湿性無機質粒子、2はバインダーの熱硬化性樹脂を表す。また、図2及び図3において、11は吸放湿性無機質粒子と熱硬化性樹脂からなるコア層であり、12は無機質繊維で補強された表面層であり、21は防湿層である。
【0010】
本発明に用いられる吸放湿性無機質粒子1としては、多孔質で吸放湿性を有する材料であればよく、例えば天然又は合成ゼオライト、珪藻土、セピオライトなどの乾燥粒子が挙げられる。これらは1種でもよいし、2種以上を併用してもよい。無機質粒子1の粒径は特に限定されないが、表面層12用としては0.01〜0.25mm程度の細粒径のものが材料表面の平滑性を保つ上で好ましい。また、コア層11用としては細粒粒子に0.7〜4mm程度の粗粒粒子を1:2〜3:1程度の割合で混合使用することが、材料の充填構造を低空隙率とし、強度物性に優れた材料とすることができることから好ましい。また、必要に応じて、吸放湿性無機質粒子の一部を、吸放湿性がないかあるいは少ない無機質粒子例えば火山性軽石、人工軽石、軽量骨材などと置換することも可能である。これらの無機質粒子の置換量は、製品に要求される吸放湿性を損なうことのないように決めればよい。
【0011】
本発明では、吸放湿性無機質粒子1の結合剤(バインダー)2として粉末状の熱硬化性樹脂を用いる。このようなバインダーとしては、例えば粉末状のフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などが使用できる。液状の熱硬化性樹脂をバインダーとして用いると、これが吸放湿性無機質粒子の多孔質内部で硬化し、吸放湿性が著しく低下する。
【0012】
吸放湿性無機質粒子に対する粉末状熱硬化性樹脂の配合量は、無機質粒子の全間隙量を超えてはならず、また製品の強度を確保するにはある量以上の配合が必要である。本発明では、前記数式で表される粒子間隙充填率が0.1〜0.5となるように粉末状熱硬化性樹脂を吸放湿性無機質粒子に配合する。なお、この値はバインダーの熱硬化性樹脂が発泡性樹脂である場合には発泡倍率に相当する。粒子間隙充填量が0.1より少ないと製品の十分な強度物性が得られず、0.5を超えると吸放湿性が低下し、また経済性が損なわれる。
【0013】
図2に示すサンドイッチ構造を有する吸放湿建材は、前記の吸放湿建材をコア層11とし、コア層11の両面に繊維で補強された表面層12を一体に熱圧締して形成したものである。なお、図2では、コア層11の両面に表面層12を形成したものを示したが、片面のみに表面層12を形成したものでもよい。また、表面層12とコア層11の厚さ比は、要求される物性や必要とされる製品の厚さに応じて決められるが、実用的には、両面に形成する場合で表面層:コア層の比が1:3〜1:10程度、片面に形成する場合で表面層:コア層の比が1:6〜1:20程度でよい。
【0014】
この補強用の繊維としては、例えばガラス繊維、炭素繊維、セラミックス繊維などの無機質繊維でもよいし、例えばポリエステル繊維、ビニロン等の有機質繊維ででもよいし、両者を併用することもできる。これらのうち、強度、耐熱性、経済性の面からガラス繊維が好適である。これら補強用の繊維は、ストランド状又はクロス状のいずれでもよく、あらかじめ熱硬化性樹脂を含浸処理したプリプレグとして用いることも可能である。補強用繊維の配合量は特に限定されないが、ストランド状繊維では無機質粒子100重量部に対し5〜20重量部程度、クロス状繊維では目付80〜300g/m2 程度がよい。これらの配合量や目付が少ないと製品の強度向上が不十分であり、また多くしても強度の向上は望めず、経済性が損なわれる。
【0015】
図3に示す透湿を抑えた吸放湿性建材は、前記のサンドイッチ構造を有する吸放湿性建材において、コア層11と一方の表面層12との間に防湿層21を形成したものである。防湿層21はプラスチックフィルム、アルミ箔、ステンレス箔等の耐蝕性フィルムなどを挿入することにより形成することができる。この耐蝕性フィルムとしては、厚さ0.1〜0.5mm程度のポリ塩化ビニル、ポリスチレン、ポリエステル等の熱可塑性樹脂フィルムが好ましい。このように、片面だけに防湿層21を形成すると、反対側の表面層12とコア層11を透過した湿気はこの防湿層21で遮断され、防湿層21側の表面層12には到達できず、背面側に位置する断熱材に結露が生じることがない。
【0016】
次に、本発明の吸放湿性建材の製造方法の一例として、サンドイッチ構造を有する建材の製造方法を図4に示す製造フローにより説明する。まず、吸放湿性無機質粒子と粉末状の熱硬化性樹脂を計量し、ナウターミキサー、リボンミキサー等の混合装置(表層用31、コア層用32)を用いて乾燥状態で混合する。この混合原料をベルトフィダー、振動フィダー等散布装置(表層用33、コア層用34)に移し、ベルトコンベア35によって移動してくる離型用の金属板36上に散布積層する。複数台の散布装置が離型用の金属板を移送するベルトコンベアの走行方向に沿って配置されており、表層用として細粒の無機質粒子からなる原料混合物を、コア層用には粗粒の無機質粒子を含む原料混合物をそれぞれ層状に散布積層する。表層散布装置間にはロービング繊維切断用のカッター37が設置されており、ロービングを所定の長さに切断・散布して、表層原料層上にルーズなチョップドストランドマットを形成する。ストランドマット上にさらに次の表層原料混合物を散布すると、散布原料はストランド繊維間隙中に滑落侵入し、ガラス繊維が原料混合物中に分散している繊維強化構造を形成することができる。
【0017】
図4は補強繊維としてストランド繊維を用いるものであるが、クロス状の無機質繊維を用いる場合には、ロービングカッターに代えて無機質クロス巻き出しロールを設置し、あらかじめ散布成層されている原料混合物上にクロスを敷き、さらにその上から原料混合物を散布してクロスを原料混合物間に挟み込み、繊維強化構造を形成すればよい。
【0018】
このようにして得られた積層マットを熱プレスに装入して、圧力5〜30kg/cm2 、温度100〜200℃で、熱硬化性樹脂を硬化させるのに必要な時間熱圧締することにより、サンドイッチ構造の吸放湿性建材を製造することができる。
【0019】
また、防湿層を形成する場合には、合成樹脂フィルム巻き出しロール(図示せず)をいずれかの表層散布装置とコア層散布装置の間に設置して、合成樹脂フィルムを挿入積層した後、熱硬化させることにより、サンドイッチ構造材の一方のコア層と表面層との間に防湿層が形成され、吸放湿性であるとともに透湿性を抑えた板状材を製造することができる。
【0020】
本発明の吸放湿性建材は、粉体流動特性のよい乾式原料混合物を使用することにより、製造装置の制約が少なく、建材板として要求されるほぼ最大サイズのもの、例えば横幅900mm〜1200mm、長さ1800mm〜5000mmが製造可能となる。また、厚さは5mm〜50mm程度のものが製造可能である。表面のデザインは平滑な面とすることも、石目調や、煉瓦・タイル模様等を付けることができる。
【0021】
【作用】
一般に、ゼオライト、珪藻土、セピオライト等の吸放湿性無機質粒子を熱硬化性樹脂で結合固化すると、粒子表面が樹脂で被覆されたり、粒子内部空隙中に樹脂が浸透して、水分の吸脱着が著しく阻害される。本発明に従って粉末状の熱硬化性樹脂を使用すると、当然のことながら無機質粒子との混合時に粒子内部への樹脂の浸透は大きく抑制されるが、熱硬化時に樹脂はラメラ状に発泡し無機質粒子間隙内を充填する。樹脂による粒子間隙充填率を0.1〜0.5として樹脂発泡倍率を相対的に大きくすると、発泡層に占める連続空隙の割合が大きくなり、建材板内で湿分の拡散性は増し、無機質粒子への湿分の供給を阻害しないために良好な吸放湿性が得られると考えられる。
【0022】
【実施例】
以下、本発明の実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0023】
実施例1
天然ゼオライト(新東北化学工業製)を粉砕乾燥して調製した粒度0.01〜0.25mmのゼオライト粒子100重量部とビスフェノールA変性レゾール型フェノール樹脂(旭有機材工業製、SP115PD)11.1重量部をブレンダーで混合し、樹脂率10重量%の原料混合物を調製した。この原料混合物840gを離型用金属板上に置いた内寸30cm×30cmの発泡スチロール枠中に均一に散布成層したのち熱プレスに装入し、温度160℃、圧力10kg/cm2 、時間15分間の条件で熱圧締し、厚さ約8mmの平板を製作した。得られた平板を30mm×200mmに切り出し、3点曲げにより曲げ物性を測定した。また、吸放湿性は底面及び側面をアルミテープで被覆し、一面のみを露出させた50mm×200mmの試験片を用いて、恒温恒湿機中で25℃−RH50%、及び25℃−90%の条件を24時間毎に繰り返し、それぞれ単位面積当たりの吸湿量率と放湿量率を求め、その平均値を吸放湿率(g/m2 )とした。粒子間隙充填率=Vr /(1−Vz )は下記に従い計算した。
Vr = So × Wr × Dr
Vz = So × Wz × Dz
ただし、So は試験板の密度、Wr は樹脂の重量配合比、Wz はゼオライト粒子の重量配合比、Dr は樹脂の真比重(1.30)、Dz はゼオライトの粒子密度(2.44)である。
【0024】
実施例2
実施例1のレゾール型フェノール樹脂の配合量を25重量部(樹脂率20重量%)とし、原料混合物の散布積層量を905gとした以外は、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0025】
実施例3
実施例1のレゾール型フェノール樹脂の配合量を33.5重量部(樹脂率25重量%)とし、原料混合物の散布積層量を995gとした以外は、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0026】
実施例4
実施例1のゼオライト粒子を0.01〜0.25mmの細粒子と0.5〜4mmの粗粒子の等量混合物100重量部、レゾール型フェノール樹脂配合量を8.3重量部(樹脂率7.7重量%)とし、原料混合物の散布積層量を765gとした以外は、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0027】
実施例5
実施例1のゼオライト粒子を0.01〜0.25mmの細粒子と0.5〜4mmの粗粒子の等量混合物100重量部、レゾール型フェノール樹脂配合量を11.1重量部(樹脂率10重量%)とし、原料混合物の散布積層量を850gとした以外は、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0028】
実施例6
実施例2の天然ゼオライトの代わりに珪藻土(北秋珪藻土、オプライト、粒度44μm通過分が70〜80%、真比重2.20)を用いて原料混合物を調製し、この原料混合物605gを散布積層した以外は、実施例2と同様の条件で平板を製作し、同様に評価試験を行った。
【0029】
実施例7
実施例2の天然ゼオライトの代わりにセピオライト(中国産、粒度44μm通過分70〜80%、真比重2.00)に用いて原料混合物を調製し、この原料混合物550gを散布積層した以外は、実施例2と同様の条件で平板を製作し、同様に評価試験を行った。
【0030】
比較例1
実施例1のレゾール型フェノール樹脂の配合量を5.3重量部(樹脂率5重量%)とし、原料混合物の散布積層量を778gとした以外は、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0031】
比較例2
実施例1のレゾール型フェノール樹脂の配合量を42.9重量部(樹脂率30重量%)とし、原料混合物の散布積層量を1,030gとした以外は、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0032】
比較例3
天然ゼオライト100重量部に、粉末状フェノール樹脂に代えて固形分60%の水溶液状のレゾール型樹脂(旭有機材工業製、RG−600)41.7重量部(樹脂率20重量%)を加え、ホバートミキサーで十分に攪拌混合した。この原料混合物931gを散布積層した後、実施例1と同様の条件で平板を製作し、同様に評価試験を行った。
【0033】
上記の実施例1〜7の結果を表1に、また比較例1〜3の結果を表2に示す。なお、表中の曲げ強さの単位はkgf/cm2 である。
【0034】
【表1】

Figure 0003848441
【0035】
【表2】
Figure 0003848441
【0036】
実施例8
製造設備として、離型用の金属板移送用のベルトコンベアの走行方向に沿って散布幅100cmの4台の表層原料散布装置と1台のコア層原料散布装置、及び切断ロール幅100cm、繊維切断長さ38mmのロービングカッターが図3に示す状態で配置されているラインを用いた。実施例2記載の樹脂率20重量%の原料混合物を表層散布用ベルトフィダーに入れ、実施例4記載の樹脂率7.7重量%の原料混合物をコア層散布用ベルトフィダーに入れる。また、複数個の繊維径13μm、番手2400texのガラス繊維ロービング(日東紡績製、RS−240PR−348CS)をロービングカッターにつなぐ。ベルトコンベア上に120×340cmの離型用の金属板を載せて移送し、その金属板状に前記各原料を交互に散布積層して約100cm×300cmの積層マットを調製する。 各原料の散布順序と散布量は次のとおりである。
1. 第1表層散布機 280g/m2
2. チョップドストランド 280g/m2
3. 第2表層散布機 835g/m2
4. コア層散布機 9,035g/m2
5. 第3表層散布機 280g/m2
6. チョップドストランド 280g/m2
7. 第4表層散布機 835g/m2
この一連の操作で、チョップドストランドが細粒ゼオライト・樹脂混合物中に分散した表面層と、粗粒のゼオライトを含む細粒ゼオライト・樹脂混合物(コア層)からなるサンドイッチ構造の積層マットが形成される。次に、この積層マットを熱プレスに入れて、加熱温度160℃、圧力20kg/cm2 の条件で15分間熱圧締して、大きさ100cm×300cm、厚さ約10mmのサンドイッチ構造の建材板を製作した。この建材板について、実施例1と同様の方法で評価試験を行った。
【0037】
実施例9
実施例8のロービングカッターに代えてシート巻き出しロールを設置し、チョップドストランドに代えて目付量100g/m2 、フェノール樹脂含浸率44重量%の平織りガラスクロスプリプレグ(旭ファイバーグラス製)を配置した以外は、実施例8と同条件で熱圧締してサンドイッチ構造の建材板を製作し、同様に評価試験を行った。
【0038】
実施例10
実施例8のコア層散布装置の後にシート巻き出しロールを設置し、コア層用原料混合物散布後、その散布層の上に0.2mm厚さのポリスチレン樹脂フィルム(新日鐵化学製)を置き、その上に第5層目以降の原料を散布積層する操作を行った以外は、実施例8と同様の条件で積層マットを作り、得られた積層マットを実施例8と同条件で熱圧締してサンドイッチ構造の建材板を製作し、同様に評価試験を行った。
【0039】
比較例4
比較のために杉板材の吸放湿性を同様に測定した。
【0040】
実施例8〜10及び比較例4の結果を表3に示す。
【0041】
【表3】
Figure 0003848441
【0042】
【発明の効果】
以上、説明した本発明の吸放湿性建材は、粉末状の熱硬化性樹脂を、ゼオライト、珪藻土、セピオライト等の吸放湿性無機質粒子の粒子間隙の50%以内の配合量で使用し、連続空隙を有する発泡樹脂層で該吸放湿性の無機質粒子を固着させてなる、吸放湿性と強度物性の優れた建材板であり、また、表面層とコア層との間に防湿層を形成させてなる、裏面への透湿を抑えた吸放湿性建材である。さらに、従来の吸放湿性建材にはなかった大型板状製品も容易に製造できる。
【図面の簡単な説明】
【図1】本発明の吸放湿建材を示す断面模式図である。
【図2】サンドイッチ構造を有する吸放湿建材の断面模式図である。
【図3】透湿を抑えた吸放湿建材の断面模式図である。
【図4】サンドイッチ構造を有する吸放湿建材の製造方法を示す製造フローである。
【符号の説明】
1 : 吸放湿性無機質粒子
2 : バインダー
11 : コア層
12 : 表面層
21 : 防湿層
31、32 : 混合装置
33、34 : 散布装置
36 : 離型用の金属板
37 : カッター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hygroscopic building material used as an interior and exterior building material.
[0002]
[Prior art]
In recent years, in addition to the spread of apartment buildings that are concrete structures, due to safety requirements in the event of a fire, changes in lifestyle, and soaring timber, the use of timber, especially in residential interior materials, has been reduced. A finishing material is applied directly to a concrete wall, such as finishing or cloth tension, and inorganic building materials such as cheap and fire-resistant gypsum board are used frequently. Wood is a building material that absorbs moisture in the air at high humidity to lower humidity and releases moisture it owns to suppress drying at low humidity, so-called moisture absorption and release, and is a building material suitable for Japan with high humidity. . However, concrete direct finishing and inorganic building materials have poor moisture absorption and desorption, and there are problems such as condensation on the walls, wetting and blotting due to condensation, and contamination by mold.
[0003]
As a solution to this problem, Japanese Patent Application Laid-Open No. 3-109244 discloses that a highly activated zeolite powder, cement, a water-soluble resin curing agent and a reinforcing material such as fiber are wet-kneaded and compressed to an arbitrary property. Molded humidity control building materials have been proposed. However, although this moisture-controllable building material has excellent moisture absorption and desorption properties, it is easy to break and can only be manufactured in small sizes, and since cement is used as a binder, post-curing is necessary and time is required for manufacturing. The product density is high. Therefore, when constructing this as a wall of a building or the like, there is a problem that it is somewhat heavy and difficult to construct. In addition, since this moisture-controllable building material is also a material with high moisture permeability, when used as a wall surface incorporating a heat insulating material such as glass wool or rock wool, moisture in the room permeates to cause condensation of the heat insulating material. There were also drawbacks.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a lightweight and large plate-like moisture-absorbing / releasing building material that has excellent moisture-absorbing / releasing properties, can be easily manufactured, and can improve construction efficiency. Another object of the present invention is to provide a moisture-absorbing / releasing building material that satisfies the above-described performance and suppresses moisture permeation to the back surface.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors used hygroscopic inorganic particles such as zeolite, diatomaceous earth, and sepiolite, and bound these inorganic particles with a thermosetting resin without inhibiting the hygroscopic property. As a result of repeated sincerity studies from the viewpoint of solidifying, the building material board obtained by thermosetting this mixture by using a powdered thermosetting resin and adjusting the blending ratio of the thermosetting resin is excellent The sandwich structure material that retains moisture absorption and desorption, and is provided with a surface layer reinforced with fibers on one or both sides and thermally cured integrally is a lightweight and large plate-shaped building material with moisture absorption and desorption. As a result, the present invention has been completed. Furthermore, by forming a moisture-proof layer such as a plastic film between one core layer and the surface layer of the sandwich structure material, and bonding them together, a plate-like material that absorbs and releases moisture and suppresses moisture transmission As a result, the present invention has been completed.
[0006]
That is, the present invention is formed of a hot pressed product of a mixture of hygroscopic inorganic particles and powdered phenol resin , and is in a powder form so that the particle gap filling rate represented by the following formula is 0.1 to 0.5. It is a moisture-absorbing / releasing building material containing a phenolic resin .
Particle gap filling factor = Vr / (1-Vz)
(In the formula, Vr represents the volume fraction of the resin, and Vz represents the volume fraction of the inorganic particles)
[0007]
Further, the present invention provides a sandwich structure in which a core layer formed from a mixture of hygroscopic inorganic particles and powdered phenol resin and a surface layer reinforced with fibers on one or both sides thereof are integrally heat-pressed. It is a moisture-absorbing / releasing building material. Furthermore, the present invention relates to the moisture absorbing / releasing building material having a sandwich structure, wherein moisture permeation is suppressed by forming a moisture-proof layer made of a plastic film between the core layer and one surface layer. is there.
[0008]
Further, in the present invention, moisture-absorbing / releasing inorganic particles and powdered phenol resin are mixed, and the pressure of 5-30 kg / cm 2 of this mixture is adjusted so that the particle gap filling rate represented by the following formula is 0.1-0.5. A method for producing moisture-absorbing / releasing building materials, characterized in that it is hot-pressed at a temperature of 100 to 200 ° C.
Particle gap filling factor = Vr / (1- Vz )
(In the formula, V r represents the volume fraction of the resin, and V z represents the volume fraction of the inorganic particles )
Further, the present invention is characterized in that moisture absorbing / releasing inorganic particles and powdered resin are mixed to form a core layer, and a surface layer reinforced with fibers is superposed on one side or both sides thereof, followed by hot pressing. This is a method for producing a hygroscopic building material having a sandwich structure.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of the moisture-absorbing / releasing building material of the present invention, FIG. 2 is a schematic cross-sectional view of the moisture-absorbing / releasing building material having a sandwich structure, and FIG. It is a cross-sectional schematic diagram of a building material. In FIG. 1, 1 is a moisture-absorbing / releasing inorganic particle, and 2 is a thermosetting resin as a binder. 2 and 3, 11 is a core layer made of moisture-absorbing / releasing inorganic particles and a thermosetting resin, 12 is a surface layer reinforced with inorganic fibers, and 21 is a moisture-proof layer.
[0010]
The hygroscopic inorganic particles 1 used in the present invention may be any porous and hygroscopic material, and examples thereof include dry particles such as natural or synthetic zeolite, diatomaceous earth, and sepiolite. These may be used alone or in combination of two or more. Although the particle size of the inorganic particles 1 is not particularly limited, a fine particle size of about 0.01 to 0.25 mm is preferable for the surface layer 12 in order to maintain the smoothness of the material surface. Further, for the core layer 11, it is possible to mix and use coarse particles of about 0.7 to 4 mm in a ratio of about 1: 2 to 3: 1 to the fine particles, so that the material filling structure has a low porosity, It is preferable because a material having excellent strength properties can be obtained. Further, if necessary, a part of the hygroscopic inorganic particles can be replaced with inorganic particles that have no or few hygroscopic properties, such as volcanic pumice, artificial pumice, and light aggregate. The amount of replacement of these inorganic particles may be determined so as not to impair the moisture absorption / release properties required for the product.
[0011]
In the present invention, a powdery thermosetting resin is used as the binder (binder) 2 of the hygroscopic inorganic particles 1. As such a binder, a powdery phenol resin, an epoxy resin, an unsaturated polyester resin, etc. can be used, for example. When a liquid thermosetting resin is used as a binder, it cures in the porous interior of the moisture absorbing / releasing inorganic particles, and the moisture absorbing / releasing property is remarkably reduced.
[0012]
The blending amount of the powdered thermosetting resin with respect to the hygroscopic inorganic particles must not exceed the total gap amount of the inorganic particles, and a certain amount or more is necessary to ensure the strength of the product. In the present invention, the powdery thermosetting resin is blended with the moisture-absorbing / releasing inorganic particles so that the particle gap filling rate represented by the above formula is 0.1 to 0.5. This value corresponds to the expansion ratio when the thermosetting resin of the binder is a foamable resin. If the particle gap filling amount is less than 0.1, sufficient strength physical properties of the product cannot be obtained, and if it exceeds 0.5, the moisture absorption / release property is lowered and the economical efficiency is impaired.
[0013]
The moisture absorbing / releasing building material having a sandwich structure shown in FIG. 2 is formed by using the moisture absorbing / releasing building material as a core layer 11 and integrally pressing the surface layer 12 reinforced with fibers on both sides of the core layer 11. Is. In FIG. 2, the surface layer 12 is formed on both surfaces of the core layer 11, but the surface layer 12 may be formed only on one surface. Further, the thickness ratio between the surface layer 12 and the core layer 11 is determined according to the required physical properties and the required product thickness. When the layer ratio is about 1: 3 to 1:10, the ratio of the surface layer to the core layer may be about 1: 6 to 1:20.
[0014]
The reinforcing fiber may be an inorganic fiber such as glass fiber, carbon fiber, or ceramic fiber, or may be an organic fiber such as polyester fiber or vinylon, or both may be used in combination. Of these, glass fiber is preferred from the viewpoint of strength, heat resistance, and economy. These reinforcing fibers may be either strand-like or cloth-like, and can also be used as a prepreg impregnated with a thermosetting resin in advance. The blending amount of the reinforcing fiber is not particularly limited, but is preferably about 5 to 20 parts by weight with respect to 100 parts by weight of the inorganic particles for the strand-like fibers, and about 80 to 300 g / m 2 for the cloth-like fibers. If the blending amount or basis weight is small, the strength of the product is insufficiently improved, and if it is increased, the strength cannot be improved, and the economic efficiency is impaired.
[0015]
The moisture-absorbing / releasing building material with reduced moisture permeability shown in FIG. 3 is a moisture-absorbing / releasing building material having the sandwich structure described above, in which a moisture-proof layer 21 is formed between the core layer 11 and one surface layer 12. The moisture-proof layer 21 can be formed by inserting a corrosion-resistant film such as a plastic film, an aluminum foil, or a stainless steel foil. As this corrosion-resistant film, a thermoplastic resin film such as polyvinyl chloride, polystyrene, or polyester having a thickness of about 0.1 to 0.5 mm is preferable. In this way, when the moisture-proof layer 21 is formed only on one side, moisture transmitted through the opposite surface layer 12 and the core layer 11 is blocked by the moisture-proof layer 21 and cannot reach the surface layer 12 on the moisture-proof layer 21 side. Condensation does not occur in the heat insulating material located on the back side.
[0016]
Next, as an example of the method for producing a hygroscopic building material of the present invention, a method for producing a building material having a sandwich structure will be described with reference to a production flow shown in FIG. First, moisture-absorbing / releasing inorganic particles and powdered thermosetting resin are weighed and mixed in a dry state using a mixing device (surface layer 31 and core layer 32) such as a Nauter mixer or ribbon mixer. This mixed raw material is transferred to a spreading device (for surface layer 33, for core layer 34) such as a belt feeder and a vibration feeder, and is spread and laminated on a metal plate 36 for release that is moved by a belt conveyor 35. A plurality of spraying devices are arranged along the traveling direction of a belt conveyor for transferring a metal plate for release, and a raw material mixture composed of fine inorganic particles is used for the surface layer, and a coarse particle is used for the core layer. Each raw material mixture containing inorganic particles is spread and laminated in layers. A cutter 37 for cutting roving fibers is installed between the surface spraying devices, and the roving is cut and sprayed to a predetermined length to form a loose chopped strand mat on the surface material layer. When the following surface layer raw material mixture is further sprayed onto the strand mat, the sprayed raw material slides into the strand fiber gap to form a fiber reinforced structure in which glass fibers are dispersed in the raw material mixture.
[0017]
In FIG. 4, strand fibers are used as reinforcing fibers. However, when cloth-like inorganic fibers are used, an inorganic cloth unwinding roll is installed in place of the roving cutter, and the material mixture that has been spread and stratified in advance is installed. A fiber reinforced structure may be formed by laying a cloth and then spraying a raw material mixture on the cloth and sandwiching the cloth between the raw material mixtures.
[0018]
The laminated mat thus obtained is inserted into a hot press and hot pressed for a time necessary to cure the thermosetting resin at a pressure of 5 to 30 kg / cm 2 and a temperature of 100 to 200 ° C. Thus, a hygroscopic building material having a sandwich structure can be produced.
[0019]
Moreover, in the case of forming a moisture-proof layer, a synthetic resin film unwinding roll (not shown) is installed between any surface layer spraying device and the core layer spraying device, and the synthetic resin film is inserted and laminated, By thermosetting, a moisture-proof layer is formed between one core layer and the surface layer of the sandwich structure material, and a plate-like material that is moisture-absorbing and releasing and suppresses moisture permeability can be manufactured.
[0020]
The moisture-absorbing / releasing building material of the present invention uses a dry raw material mixture with good powder flow characteristics, so that there are few restrictions on the production equipment, and almost the maximum size required as a building material board, for example, width 900 mm to 1200 mm, long A length of 1800 mm to 5000 mm can be manufactured. A thickness of about 5 mm to 50 mm can be manufactured. The surface design can be a smooth surface, or it can have a stone texture or brick / tile pattern.
[0021]
[Action]
In general, when moisture-absorbing / releasing inorganic particles such as zeolite, diatomaceous earth, and sepiolite are bonded and solidified with a thermosetting resin, the particle surface is coated with the resin, or the resin penetrates into the internal voids of the particle, so that moisture absorption and desorption is remarkable. Be inhibited. When a powdered thermosetting resin is used in accordance with the present invention, it is a matter of course that the penetration of the resin into the inside of the particle is greatly suppressed when mixed with the inorganic particle. Fill the gap. If the resin gap ratio is set to 0.1 to 0.5 and the resin foaming ratio is relatively large, the proportion of continuous voids in the foamed layer increases, the moisture diffusibility increases in the building material board, and the inorganic material It is considered that good moisture absorption / release properties can be obtained because the moisture supply to the particles is not hindered.
[0022]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.
[0023]
Example 1
100 parts by weight of zeolite particles having a particle size of 0.01 to 0.25 mm prepared by pulverizing and drying natural zeolite (manufactured by Shin-Tohoku Chemical Industry) and bisphenol A-modified resol type phenolic resin (manufactured by Asahi Organic Materials Co., Ltd., SP115PD) 11.1 Part by weight was mixed with a blender to prepare a raw material mixture having a resin rate of 10% by weight. After 840 g of this raw material mixture was uniformly spread and layered on a foamed polystyrene frame having an inner size of 30 cm × 30 cm placed on a release metal plate, it was charged into a hot press, and the temperature was 160 ° C., the pressure was 10 kg / cm 2 , and the time was 15 minutes. A flat plate having a thickness of about 8 mm was manufactured under the conditions described above. The obtained flat plate was cut into 30 mm × 200 mm, and the bending properties were measured by three-point bending. In addition, moisture absorption and desorption is performed at 25 ° C.-RH 50% and 25 ° C.-90% in a thermo-hygrostat using a 50 mm × 200 mm test piece in which the bottom and side surfaces are covered with aluminum tape and only one surface is exposed. The above conditions were repeated every 24 hours to obtain the moisture absorption rate and moisture release rate per unit area, and the average value was taken as the moisture absorption / release rate (g / m 2 ). Particle gap filling factor = Vr / (1-Vz) was calculated according to the following.
Vr = So x Wr x Dr
Vz = So x Wz x Dz
Where So is the density of the test plate, Wr is the weight blending ratio of the resin, Wz is the weight blending ratio of the zeolite particles, Dr is the true specific gravity of the resin (1.30), and Dz is the particle density of the zeolite (2.44). is there.
[0024]
Example 2
A flat plate was produced under the same conditions as in Example 1 except that the amount of the resol type phenolic resin of Example 1 was 25 parts by weight (resin ratio 20% by weight), and the amount of the raw material mixture was 905 g. Similarly, an evaluation test was conducted.
[0025]
Example 3
A flat plate was produced under the same conditions as in Example 1 except that the amount of the resol type phenolic resin in Example 1 was 33.5 parts by weight (resin ratio 25% by weight) and the amount of the raw material mixture was 995 g. In the same manner, an evaluation test was conducted.
[0026]
Example 4
100 parts by weight of an equal amount mixture of 0.01 to 0.25 mm fine particles and 0.5 to 4 mm coarse particles, and 8.3 parts by weight of a resol type phenol resin (resin ratio 7) A flat plate was produced under the same conditions as in Example 1 except that the amount of the dispersion layer of the raw material mixture was 765 g, and the evaluation test was similarly performed.
[0027]
Example 5
The zeolite particles of Example 1 were mixed with 100 parts by weight of an equal amount mixture of fine particles of 0.01 to 0.25 mm and coarse particles of 0.5 to 4 mm, and 11.1 parts by weight of the resol type phenol resin (resin ratio 10). %) And a flat plate was produced under the same conditions as in Example 1 except that the amount of the raw material mixture was 850 g, and an evaluation test was conducted in the same manner.
[0028]
Example 6
A raw material mixture was prepared using diatomaceous earth (Hokuaki diatomaceous earth, Oplite, particle size 44 μm passing through 70-80%, true specific gravity 2.20) instead of the natural zeolite of Example 2, and 605 g of this raw material mixture was spread and laminated. Except for the above, a flat plate was produced under the same conditions as in Example 2, and the evaluation test was similarly conducted.
[0029]
Example 7
A raw material mixture was prepared using sepiolite (produced in China, particle size 44 μm passing through 70-80%, true specific gravity 2.00) in place of the natural zeolite of Example 2, and this was carried out except that 550 g of this raw material mixture was sprayed and laminated. A flat plate was produced under the same conditions as in Example 2, and an evaluation test was conducted in the same manner.
[0030]
Comparative Example 1
A flat plate was produced under the same conditions as in Example 1, except that the amount of the resol-type phenolic resin in Example 1 was 5.3 parts by weight (resin ratio 5% by weight) and the amount of the raw material mixture was 778 g. In the same manner, an evaluation test was conducted.
[0031]
Comparative Example 2
A flat plate was formed under the same conditions as in Example 1 except that the amount of the resol type phenolic resin of Example 1 was 42.9 parts by weight (resin ratio 30% by weight) and the amount of the raw material mixture was 1,030 g. Were manufactured and evaluated in the same manner.
[0032]
Comparative Example 3
To 100 parts by weight of natural zeolite, 41.7 parts by weight (resin ratio 20% by weight) of an aqueous resol type resin (manufactured by Asahi Organic Materials Co., Ltd., RG-600) having a solid content of 60% is added instead of powdered phenol resin. The mixture was sufficiently stirred and mixed with a Hobart mixer. After spraying and laminating 931 g of this raw material mixture, a flat plate was produced under the same conditions as in Example 1, and an evaluation test was conducted in the same manner.
[0033]
The results of Examples 1 to 7 are shown in Table 1, and the results of Comparative Examples 1 to 3 are shown in Table 2. The unit of bending strength in the table is kgf / cm 2 .
[0034]
[Table 1]
Figure 0003848441
[0035]
[Table 2]
Figure 0003848441
[0036]
Example 8
As production equipment, along the running direction of the belt conveyor for transferring the metal plate for release, four surface layer raw material spreaders with a spread width of 100 cm, one core layer raw material spreader, and a cutting roll width of 100 cm, fiber cutting A line in which a roving cutter having a length of 38 mm was arranged in the state shown in FIG. 3 was used. The raw material mixture having a resin rate of 20% by weight described in Example 2 is put in a surface layer spreading belt feeder, and the raw material mixture having a resin rate of 7.7% by weight described in Example 4 is put in a core layer spreading belt feeder. Further, a plurality of glass fiber rovings (manufactured by Nitto Boseki Co., Ltd., RS-240PR-348CS) having a fiber diameter of 13 μm and a count of 2400 tex are connected to the roving cutter. A metal plate for mold release of 120 × 340 cm is placed on a belt conveyor and transferred, and the respective raw materials are alternately sprayed and laminated on the metal plate to prepare a laminated mat of about 100 cm × 300 cm. The application order and application amount of each raw material are as follows.
1. First surface layer spreader 280g / m 2
2. Chopped strand 280g / m 2
3. Second surface sprayer 835g / m 2
4). Core layer spreader 9,035 g / m 2
5). Third surface spreader 280g / m 2
6). Chopped strand 280g / m 2
7). 4th surface spreader 835g / m 2
Through this series of operations, a sandwich mat having a surface layer in which chopped strands are dispersed in a fine-grained zeolite / resin mixture and a fine-grained zeolite / resin mixture (core layer) containing coarse zeolite is formed. . Next, this laminated mat is put into a hot press and hot-pressed for 15 minutes under the conditions of a heating temperature of 160 ° C. and a pressure of 20 kg / cm 2 , and a sandwich construction material plate having a size of 100 cm × 300 cm and a thickness of about 10 mm. Was made. About this building material board, the evaluation test was done by the method similar to Example 1. FIG.
[0037]
Example 9
A sheet unwinding roll was installed instead of the roving cutter of Example 8, and a plain weave glass cloth prepreg (manufactured by Asahi Fiber Glass Co., Ltd.) having a basis weight of 100 g / m 2 and a phenol resin impregnation ratio of 44% by weight was disposed instead of the chopped strand. Except for the above, hot-pressing was performed under the same conditions as in Example 8 to produce a sandwich-structure building material plate, and an evaluation test was similarly performed.
[0038]
Example 10
A sheet unwinding roll was installed after the core layer spraying apparatus of Example 8, and after spraying the raw material mixture for the core layer, a 0.2 mm thick polystyrene resin film (manufactured by Nippon Steel Chemical Co., Ltd.) was placed on the sprayed layer. A laminated mat was produced under the same conditions as in Example 8 except that the operation of spraying and laminating the raw material from the fifth layer on was performed thereon, and the obtained laminated mat was subjected to hot pressing under the same conditions as in Example 8. The building material board of the sandwich structure was manufactured by tightening, and the evaluation test was similarly performed.
[0039]
Comparative Example 4
For comparison, the moisture absorption / release property of cedar board was measured in the same manner.
[0040]
The results of Examples 8 to 10 and Comparative Example 4 are shown in Table 3.
[0041]
[Table 3]
Figure 0003848441
[0042]
【The invention's effect】
As described above, the moisture-absorbing / releasing building material of the present invention uses a powdered thermosetting resin in a blending amount within 50% of the particle gap of moisture-absorbing / releasing inorganic particles such as zeolite, diatomaceous earth, and sepiolite. It is a building material board excellent in moisture absorption / release properties and strength properties, in which the moisture absorbing / releasing inorganic particles are fixed with a foamed resin layer having a moisture resistance, and a moisture barrier layer is formed between the surface layer and the core layer. It is a moisture-absorbing and releasing building material that suppresses moisture permeation to the back surface. Furthermore, a large plate-shaped product that was not found in conventional hygroscopic building materials can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a moisture absorbing / releasing building material of the present invention.
FIG. 2 is a schematic cross-sectional view of a moisture absorbing / releasing building material having a sandwich structure.
FIG. 3 is a schematic cross-sectional view of a moisture absorbing / releasing building material in which moisture permeability is suppressed.
FIG. 4 is a manufacturing flow showing a method for manufacturing a moisture absorbing / releasing building material having a sandwich structure.
[Explanation of symbols]
1: Hygroscopic inorganic particles 2: Binder 11: Core layer 12: Surface layer 21: Moisture-proof layers 31 and 32: Mixing devices 33 and 34: Dispersing device 36: Metal plate 37 for releasing mold: Cutter

Claims (6)

吸放湿性無機質粒子と粉末状フェノール樹脂の混合物の熱圧締物で形成され、下記数式で示される粒子間隙充填率が0.1〜0.5になるように粉末状フェノール樹脂を配合してなる吸放湿性建材。
粒子間隙充填率 = Vr /(1−Vz )
(式中、Vr は樹脂の体積分率、Vz は無機質粒子の体積分率を示す)
Absorbing formed by hot press of a mixture of wet inorganic particles and powdered phenolic resin, by blending a powdery phenolic resin as particles gap filling factor represented by the following formula is 0.1 to 0.5 Hygroscopic building material.
Particle gap filling factor = Vr / (1-Vz)
(In the formula, Vr represents the volume fraction of the resin, and Vz represents the volume fraction of the inorganic particles)
請求項1記載の吸放湿性無機質粒子と粉末状フェノール樹脂の混合物から形成されたコア層と、その片面又は両面に繊維で補強された表面層とを一体に熱圧締してなるサンドイッチ構造を有する吸放湿性建材。A sandwich structure in which a core layer formed from a mixture of hygroscopic inorganic particles according to claim 1 and a powdered phenol resin and a surface layer reinforced with fibers on one or both sides thereof are integrally heat-pressed. Hygroscopic building material. サンドイッチ構造を有する請求項2記載の吸放湿性建材において、コア層と一方の補強層との間にプラスチックフィルムからなる防湿層を形成してなる透湿を抑えた吸放湿性建材。The moisture-absorbing / releasing building material according to claim 2 , having a sandwich structure, wherein moisture permeability is suppressed by forming a moisture-proof layer made of a plastic film between the core layer and one reinforcing layer. 吸放湿性無機質粒子が、ゼオライト、珪藻土又はセピオライトの1種又は2種以上である請求項1〜3いずれかに記載の吸放湿性建材。 The hygroscopic building material according to any one of claims 1 to 3, wherein the hygroscopic inorganic particles are one or more of zeolite, diatomaceous earth, or sepiolite . 吸放湿性無機質粒子と粉末状樹脂を混合し、この混合物を下記数式で示される粒子間隙充填率が0.1〜0.5になるように圧力5〜30kg/cm2、温度100〜200℃で熱圧締することを特徴とする吸放湿性建材の製造方法。Hygroscopic inorganic particles and powdered resin are mixed, and this mixture is mixed at a pressure of 5 to 30 kg / cm 2 and a temperature of 100 to 200 ° C. so that a particle gap filling rate represented by the following mathematical formula is 0.1 to 0.5. A method for producing a moisture-absorbing / releasing building material, characterized by hot-pressing.
粒子間隙充填率 = VParticle gap filling factor = V r r /(1−V/ (1-V z z )
(式中、V(Where V r r は樹脂の体積分率、VIs the volume fraction of resin, V z z は無機質粒子の体積分率を示す)Indicates the volume fraction of inorganic particles)
吸放湿性無機質粒子と粉末状樹脂を混合してコア層を形成し、その片面又は両面に繊維で補強された表面層を重ね合わせた後、熱圧締することを特徴とするサンドイッチ構造を有する請求項5記載の吸放湿性建材の製造方法。It has a sandwich structure characterized by mixing moisture-absorbing / releasing inorganic particles and powdered resin to form a core layer, superposing a surface layer reinforced with fibers on one or both sides, and then hot pressing. The manufacturing method of the hygroscopic building material of Claim 5.
JP20814197A 1997-08-01 1997-08-01 Hygroscopic building materials Expired - Fee Related JP3848441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20814197A JP3848441B2 (en) 1997-08-01 1997-08-01 Hygroscopic building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20814197A JP3848441B2 (en) 1997-08-01 1997-08-01 Hygroscopic building materials

Publications (2)

Publication Number Publication Date
JPH1150559A JPH1150559A (en) 1999-02-23
JP3848441B2 true JP3848441B2 (en) 2006-11-22

Family

ID=16551324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20814197A Expired - Fee Related JP3848441B2 (en) 1997-08-01 1997-08-01 Hygroscopic building materials

Country Status (1)

Country Link
JP (1) JP3848441B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180563A (en) * 2000-12-15 2002-06-26 Shinichiro Hayashi External wall material having humidity control function
JP2003090563A (en) * 2001-09-19 2003-03-28 Chiyonobu Eguchi Humidity control panel and means therefor

Also Published As

Publication number Publication date
JPH1150559A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
US4303722A (en) Building components
US7132629B2 (en) Heat-conducting plate of expanded graphite, composite and method for production
AU2017205327B2 (en) Prepregs, cores and composite articles including synergistic and compounded flame retardant materials
JP4118331B2 (en) Airgel composite containing fibers
EP2132385B1 (en) Utility materials incorporating a microparticle matrix
US2694025A (en) Structural panel
EP2083129A2 (en) Non-woven glass fiber mat faced gypsum board and process of manufacture
NL8100187A (en) NON-FLAMMABLE COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING IT.
JP3848441B2 (en) Hygroscopic building materials
JP3583251B2 (en) Sound absorption and insulation panels
JP2010018961A (en) Sound-absorbing and sound-insulating composite material
JP4105784B2 (en) Sound absorbing plate and manufacturing method thereof
CA2113834A1 (en) Composite structure with foam plastic core and method of making same
JP3813020B2 (en) Sound absorbing plate having sandwich structure and manufacturing method thereof
JPH04284242A (en) Light-weight composite panel
JP3678320B2 (en) Composite board
CN112373143A (en) Aerogel rock wool composite insulation board and preparation method thereof
KR100799612B1 (en) Flameretardant panel using foamed glass grain and preparation thereof
JP3848674B2 (en) Sound absorption and insulation panel
JP2825696B2 (en) Manufacturing method of inorganic building board
JPH09228507A (en) Composite heat insulative panel
JP2001009970A (en) Fire retardant finish material
JPS6158735A (en) Refractory composite board
JPH02273232A (en) Fire-resistant composite panel
JPS6117783B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees