JP4105784B2 - Sound absorbing plate and manufacturing method thereof - Google Patents

Sound absorbing plate and manufacturing method thereof Download PDF

Info

Publication number
JP4105784B2
JP4105784B2 JP23510997A JP23510997A JP4105784B2 JP 4105784 B2 JP4105784 B2 JP 4105784B2 JP 23510997 A JP23510997 A JP 23510997A JP 23510997 A JP23510997 A JP 23510997A JP 4105784 B2 JP4105784 B2 JP 4105784B2
Authority
JP
Japan
Prior art keywords
metal plate
adhesive
porous
molded body
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23510997A
Other languages
Japanese (ja)
Other versions
JPH1171837A (en
Inventor
徹 大石
信行 林
賢二 舞原
茂 桑江
弘基 薦田
国弘 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Coated Sheet Corp
Original Assignee
Nippon Steel Coated Sheet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Coated Sheet Corp filed Critical Nippon Steel Coated Sheet Corp
Priority to JP23510997A priority Critical patent/JP4105784B2/en
Publication of JPH1171837A publication Critical patent/JPH1171837A/en
Application granted granted Critical
Publication of JP4105784B2 publication Critical patent/JP4105784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、床板、天井、壁材等の屋内建築用資材として使用される吸音性に優れた金属サンドイッチパネル吸音板に関する。
【0002】
【従来の技術】
従来の木材、コンクリート等の建築用資材に代えて、プラスチック製合成木材や、チップを圧縮成形した合成木材や、繊維質原料をバインダー等で固化・成形したものなど各種の素材が使用され始めている。なかでも、ガラスウール、ロックウール、セラミックファイバー等の無機質繊維は、軽量でかつ不燃性であることから、有望な不燃建築用資材として期待されている。例えば、特公昭52−25644号公報には、ガラスウール、ロックウール等の無機質繊維を一対のカバーシートに挟み込んだサンドイッチ状の絶縁パネルが紹介されている。このカバーシートとしては、金属シート、プラスターポード、ファイバーボード、ベニヤ板、壁紙などが使用されている。
【0003】
この絶縁パネルにおいて、カバーシートの間に挟み込まれた繊維質マットは、パネルを軽量化すると共にパネル間に耐火・防火層と吸音空隙を形成することを狙ったものである。しかしながら、カバーシートとして金属板を繊維質マットの両面に貼り合わせた絶縁パネルは、金属板の表面で反射される振動波が生じ、繊維質マットが本来有している振動吸収特性が損なわれる。そのため、金属は、火災時の高温火炎輻射の遮蔽やパネルの補強としては有効であるが、吸音性の面では改善の余地がある。
【0004】
このような問題に対し、特開平6−81407号公報には、圧縮成形した繊維質マットの片面又は両面にパンチングメタル(有孔金属板)を貼り合わせることにより、強度等の機械的特性を高め、繊維層本来の吸音性を活かした金属サンドイッチパネルが開示されている。しかしながら、この金属サンドイッチパネルは、金属板と繊維質マットを高分子系接着剤で接着する工程において、有孔金属板のパンチ孔から接着剤が流れ出し、有孔金属板の表面に付着して商品価値を著しく損なうという問題があった。また、接着剤の使用量を減らしてその流出を防止すると得られるパネルの強度が低下するいう問題があった。
【0005】
【発明が解決しようとする課題】
したがって、本発明の目的は、圧縮成形した繊維質マット等の多孔質成型体の表面に有孔金属板を貼り合わせてなる金属サンドイッチパネルにおいて、パネル強度が高く、かつパネル表面に接着剤が付着していない吸音板及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
すなわち、本発明は、多孔質成型体とその両面に接着一体化された金属板を備え、金属板の少なくとも一方が有孔金属板からなる金属サンドイッチパネル吸音板において、有孔金属板の孔径が1〜5mm、開孔率が25〜35%であると共に、前記有孔金属板と多孔質成型体との間に厚さ0.3〜1mmの繊維層を設けてなることを特徴とする吸音板である。
【0007】
また、本発明は、接着剤を含浸させた厚さ0.3〜1mmの繊維層の片面に、孔径が1〜5mm、開孔率が25〜35%である有孔金属板を重ね、反対側の面に多孔質成型体を重ね、多孔質成型体の反対側の面に接着剤を介して無孔金属板を重ねて積層体を形成し、この積層体を加熱加圧成型することを特徴とする金属サンドイッチパネル吸音板の製造方法である。
【0008】
【発明の実施の形態】
図1は、本発明の金属サンドイッチパネル吸音板の一例を示す断面図であり、多孔質成型体1を芯材とし、その片面に有孔金属板2と反対側の面に無孔金属板3を接着剤5、5’により接着一体化してなる金属サンドイッチパネルにおいて、多孔質成型体1と有孔金属板2との間に繊維層4を設けたものである。この繊維層4によって、接着剤5がパンチ孔2aから有孔金属板2の表面に流れ出るのを防止し、もってパネルの強度を損なうことなく、表面に接着剤が付着しない金属サンドイッチパネル吸音板としたものである。
【0009】
本発明の金属サンドイッチパネル吸音板に用いられる多孔質成型体1としては、芯材として要求される強度を有し、かつ吸音板として要求される振動吸収特性を有するものであれば任意の多孔質成型体を用いることができる。このような多孔質成型体としては、例えば有機質繊維マット、無機質繊維マット等の繊維質マットや、発泡ウレタン、発泡フェノール等の発泡プラスチックや、木片、木粉等を高分子系バインダーで圧縮成型した木質系吸音板や、気泡コンクリート、気泡ガラス等の無機質吸音板などが挙げられる。これらの多孔質成型体のうち、ロックウール、ガラスウール、セラミックファイバー等の無機質繊維を圧縮成形した繊維質マットは、芯材として優れた強度と吸音材として優れた振動吸収特性を有するだけでなく、不燃建材として要求される不燃性を有するので好ましい。
【0010】
特に好ましい多孔質成型体は、高炉スラグ、電気炉スラグ等の各種冶金スラグや、玄武岩、輝緑岩等の天然岩石を原料とするロックウールから製造されたロックウール成型マットである。このロックウール成型マットは、ロックウールの薄層を複数枚積層するかあるいはロックウール繊維のフロックを集積したものを、フェノール樹脂等の高分子系バインダーにより圧縮成形したものである。ロックウール成型マットは、断熱性、遮音性、軽量性、強度、耐圧縮性等を勘案して密度80〜250kg/m3 となるように圧縮成形したものが好ましい。密度が80kg/m3 より低いと強度、耐圧縮性が低下する。逆に、250kg/m3 を超える密度では、繊維質マットの長所である軽量性が低下するだけでなく、多量のロックウール繊維が必要となることから経済性が損なわれる。
【0011】
ロックウールマットの積層方法としては、例えば薄層のロックウールマットをベルトコンベア上で積層するとき、薄層のロックウールマットをベルトコンベアの走行方向と直角方向に揺動させながら連続的に折り畳む方法、薄層のロックウールマットをベルトコンベアの走行方向に連続的に折り畳む方法、薄層のロックウールマットをベルトコンベアの走行方向に連続的に積み重ねる方法、製品の出来上り寸法に切断した薄層のロックウールシートを複数層積み重ねてベルトコンベア上に載せ断続的に走行させる方法などがある。このようにして得られた積層体を上下方向から加圧しながら、加熱することによって圧縮成形したものが採用されるが、薄層のロックウールマットをベルトコンベアの走行方向と直角方向に揺動させながら連続的に折り畳んで得られた積層体を圧縮成形したものが、他の方法で得られたものよりも強度があることから好ましい。
【0012】
ロックウールを圧縮成形するに先立って、高分子系バインダーをロックウールに混合することもできる。混合された高分子系バインダーは、ロックウールの各繊維を繊維相互の交叉点で結束し、繊維質マットの強度を向上させる。ロックウール繊維結束用の高分子系バインダーとしては、例えばフェノール樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂などが挙げられる。なかでも、比較的耐熱性が良好なこと及び低廉な価格であるフェノール樹脂系バインダーが好ましい。バインダーの配合量としては、ロックウール成型マットの耐火性、強度、耐熱性、耐圧縮性等を勘案して、固形分として0.5〜3重量%になるようにしたものが好ましい。バインダーの配合量が0.5重量%より少ないと強度、耐圧縮性等が低下し、3重量%を超えると火災時にバインダーの燃焼に起因してパネルの耐火・防火性が損なわれるおそれがある。
【0013】
多孔質成型体1の両面に接着一体化される有孔金属板2及び無孔金属板3としては、火災時等の火炎輻射温度である900〜1100℃の高温でも溶融せず、火炎輻射を遮断することができる高融点金属の板状体であれば任意の金属板が使用できるが、安価な亜鉛鉄板、化粧鋼板等の鉄板を使用することが好ましい。なお、図1では多孔質成型体1の片面のみに有孔金属板2を用いる例を示したが、必要に応じて両面とも有孔金属板とすることもできる。これら金属板2、3の厚さについては、軽量化、加工性及びコストなどの観点から、0.2〜1.2mm程度が好ましい。
【0014】
有孔金属板2としては、例えば丸孔や、三角形、四角形、五角形、六角形等の多角形の孔、星型孔など任意の形状の孔を千鳥や並列に孔抜きした金属板、いわゆるパンチングメタルを用いることができる。パンチングメタルの具体例としては、丸孔60°千鳥抜板、丸孔45°千鳥抜板、丸孔90°並列抜板、角孔千鳥抜板、角孔並列抜板、長孔千鳥抜板、長孔並列抜板などが挙げられる。この有孔金属板2の開孔率は25〜35%程度が好ましい。開孔率が25%より低いと吸音性能が著しく損なわれ、35%を超えるとパネルの強度が低下するのみならず、耐火・防火性能が低下したり、接着剤がにじみ出す傾向がある。そして、丸孔パンチングメタルでは、その孔径は1〜5mmである。孔径が5mmを超えると接着剤がにじみ出しやすくなり、1mmより小さいとパンチング作業に手間がかかり、コスト高となる。また、開孔率が同じであっても、小さな孔が密に設けられたものは、大きな孔が疎らに設けられたものより吸音性能の面で優れている。
【0015】
多孔質成型体1と有孔金属板2又は無孔金属板3を接着する接着剤5、5’としては、例えば酢酸ビニル樹脂、エチレン−酢酸ビニル樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、メラミン樹脂、スチレン−ブタジエンゴム等の高分子系接着剤や、珪酸ソーダ等の無機接着剤などが挙げられる。これらの接着剤は単独でもよいが、必要に応じて2種類以上を併用してもよい。
【0016】
本発明の金属サンドイッチパネル吸音板には、多孔質成型体1と有孔金属板2との間に繊維層4を設ける。このように繊維層4を設けると多孔質成型体1と有孔金属板2とが強固に接着されると共に、接着剤5が有孔金属板2のパンチ孔2aから流れ出ることがない。したがって、接着剤が有孔金属板2の表面に付着して商品価値を損なうことがなく、製品の歩留を高めることができる。この繊維層4は、多孔質成型体1と有孔金属板2とを接着する際、不織布、織布等の繊維布に接着剤が含浸した状態で用いることにより容易に形成することができる。
【0017】
繊維層4を形成する不織布としては、例えばガラス繊維不織布、セラミックファイバー不織布等の無機質繊維不織布や、例えばポリエステル繊維不織布、ポリプロピレン繊維不織布等の有機質繊維不織布などを用いることができる。耐火・防火性の観点から、多孔質成型体1としてロックウール成型マット等の無機質繊維マットを用いる場合は、不織布として無機質繊維不織布を用いるのがよく、より好ましくは吸音性と経済性の面からガラス繊維不織布である。場合によっては、不織布の代わりに織布を用いることもできる。
【0018】
この繊維層4の厚さは0.3〜1mmである。繊維層の厚みが0.3mmより薄いと接着剤を保留できず、パネル表面に接着剤が流れ出るおそれがあり、1mmを超えると接着不良となったり、多量の接着剤を必要とし、経済性が損なわれる。このため、繊維布はほぼ同様の厚さで、目付量が30〜100g/m程度のものがよい。また、繊維布は、接着剤とのなじみを改善するため、樹脂系サイジング剤でサイジングしたものやシランカップリング剤等で処理したものが好ましい。

【0019】
また、高分子系接着剤を用いた場合、繊維布への接着剤の塗布量は、パネルの強度の面から200〜350g/m2 程度が好ましい。塗布量が200g/m2 より少ないとパネル強度が低下し、350g/m2 を超えると火災時にあっては接着剤の燃焼に起因して有毒ガスが発生したり、パネルの不燃性、耐火・防火性及び吸音性が損なわれるおそれがある。接着剤の塗布は、例えばロールコーター、カーテンコーター、スプレーコーター等の塗工機を用いて行うことでよい。
【0020】
本発明の金属サンドイッチパネルは、例えば、有孔金属板2の表面に繊維布4を重ね、その表面に接着剤5を塗布し、次いでその上に多孔質成型体1を重ね、その表面に接着剤5’を塗布し、更にその上に無孔金属板3を重ねて積層体を形成し、この積層体をホットプレス等の加熱加圧成型機を用いて成形することにより製造することができる。また、予め多孔質成型体1と無孔金属板3とを仮接着したものに、有孔金属板2を繊維布4を介して積層し、接着してもよい。なお、接着剤5を塗布する代わりに、予め接着剤5を繊維布4に含浸させたものを用いてもよい。
【0021】
【実施例】
実施例1
高炉スラグを主材とした原料をキュポラで溶融し、遠心力を利用してロックウールを製綿すると同時に、バインダーとしてフェノール樹脂水溶液を噴射して付着させた後、薄層のロックウールマットをベルトコンベアの走行方向と直角方向に揺動させながら連続的に折り畳んだ。この積層体を上下方向から加圧しながら250℃の雰囲気に保持してフェノール樹脂を硬化させ、ロックウール成型マットを製造した。得られたロックウール成型マットは、厚さ100mm、バインダー量2.4重量%、密度108kg/m3 であった。
【0022】
このロックウール成型マットを50mm幅に切断し、90度回転して並べて縦910mm、横605mmのロックウール芯材1を製作した。室内側となる金属板2には、縦910mm、横605mm、厚さ1.0mmの鋼板に孔径3.0mmの丸パンチ孔2aをピッチ5.0mmで千鳥状に多数穿設した鋼製パンチングメタル(開孔率32.58%)、建物外壁面側となる金属板3には、縦910mm、横605mm、厚さ0.6mmの塗装鋼板(無孔板)をそれぞれ使用した。また、接着剤5、5’には変性ウレタン樹脂、繊維布4には厚さ0.5mm、目付量50g/m2 、サイジング処理されたガラス繊維不織布(日本バイリーン製)を使用した。
【0023】
鋼製パンチングメタル2にガラス繊維不織布4を重ね、その上からウレタン系接着剤300g/m2 を塗布したものと、予め塗装鋼板3に同じ接着剤300g/m2 を塗布しロックウール芯材1を仮接着したものとを重ねて積層体を形成した。この積層体をホットプレスで60℃に15分間保持し、厚さが50mmの鋼板サンドイッチパネルを製造した。得られた鋼板サンドイッチパネルは、パンチングメタル2のパンチ孔2aの近傍には接着剤が付着しておらず、その引っ張り強度は、無孔鋼板に同様なロックウール成形マットを接着剤量250g/m2 で一体化したパネルの引っ張り強度に略相当し、十分実用に耐えるものであった。
【0024】
この鋼板サンドイッチパネルの残響室法吸音率をJlSA1409に準じて測定したところ、表2に示す結果が得られた。表2における数値は、ロックウール成型板(厚さ50mm、密度100kg/m3 )の各周波数における吸音率を1としたときの比率で示されている。なお、試験条件は、温度28℃及び湿度82%に設定した。
【0025】
また、この鋼板サンドイッチパネルを用いて壁耐火1時間の耐火試験を実施した。耐火試験は、塗装鋼板3側を炉内側に配置して、JlSA1304に準じて行った。鋼製パンチングメタル2側の表面温度を測定した結果、いずれの測定点の温度も260℃を超えることがなく、壁耐火1時間の耐火性能を有していた。
【0026】
実施例2
ガラス繊維不織布側の接着剤5の塗布量(150、250、350g/m2 )を変えた以外は、実施例1と同様にして、厚さ50mmの鋼板サンドイッチパネルを製造した。得られた鋼板サンドイッチパネルにはいずれもパンチ孔2aの近傍に接着剤が付着していなかった。接着剤5の塗布量とパネルの引っ張り強度比の関係を表1に示す。なお、引っ張り強度比は実施例1(実験番号3)の強度を1としたときのものである。表1から明らかなように、接着剤5の塗布量が150g/m2 と少ないものは、引っ張り強度が低く、輸送や施工時にパンチングメタルが剥がれるおそれがある。
【0027】
【表1】

Figure 0004105784
【0028】
得られた鋼板サンドイッチパネル(実験番号3及び4)の残響室法吸音率を実施例1と同様にして測定したところ、表2に示す結果が得られた。接着剤量が350g/m2 になると特に高音域の吸音特性が低下することが認められた。
【0029】
実施例3
開孔率20%の鋼製パンチングメタルを用いた以外は、実施例1と同様にして、厚さが50mmの鋼板サンドイッチパネルを製造した。得られた鋼板サンドイッチパネルにはパンチ孔2aの近傍に接着剤が付着していなかった。この鋼板サンドイッチパネルの残響室法吸音率を実施例1と同様にして測定したところ、表2に示す結果が得られた。開孔率が20%の鋼製パンチングメタルでは、高音域の吸音特性が低下する傾向が認められた。
【0030】
【表2】
Figure 0004105784
【0031】
比較例
実施例1と同様な鋼板サンドイッチパネルの製造において、ガラス繊維不織布を使用せず繊維層4を設けなかった以外は、実施例1と同様にして、厚さが50mmの鋼板サンドイッチパネルを製造した。得られた鋼板サンドイッチパネルのパンチ孔2aの近傍には接着剤が付着した箇所がかなりあることが観察された。よって、製品としての価値のないものであった。
【0032】
【発明の効果】
多孔質成型体1と有孔金属板2との間に繊維層4を設けてなる本発明の金属サンドイッチパネル吸音板は、多孔質成型体1と有孔金属板2とを接着する際、接着剤5を不織布等の繊維布に含浸した状態で用いることにより、多孔質成型体1と有孔金属板2とが強固に接着されると共に、接着剤5が有孔金属板2のパンチ孔2aから流れ出ることがない。したがって、パネル表面に接着剤に起因する汚れが着くことがなく、商品価値を高めることができる。
【図面の簡単な説明】
【図1】本発明の金属サンドイッチパネルの一例を示す断面図である。
【符号の説明】
1 : 多孔質成型体
2 : 有孔金属板
2a : パンチ孔
3 : 無孔金属板
4 : 繊維層
5、5’: 接着剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal sandwich panel sound absorbing plate having excellent sound absorbing properties used as an indoor building material such as a floor board, a ceiling, and a wall material.
[0002]
[Prior art]
In place of conventional building materials such as wood and concrete, various materials such as plastic synthetic wood, synthetic wood in which chips are compression-molded, and fiber materials solidified and molded with binders are beginning to be used. . Among these, inorganic fibers such as glass wool, rock wool, and ceramic fibers are expected to be promising noncombustible building materials because they are lightweight and nonflammable. For example, Japanese Patent Publication No. 52-25644 introduces a sandwich-like insulating panel in which inorganic fibers such as glass wool and rock wool are sandwiched between a pair of cover sheets. As the cover sheet, a metal sheet, plaster pod, fiber board, plywood board, wallpaper or the like is used.
[0003]
In this insulating panel, the fiber mat sandwiched between the cover sheets aims to reduce the weight of the panel and to form a fireproof / fireproof layer and a sound absorbing gap between the panels. However, an insulating panel in which a metal plate is bonded to both surfaces of a fiber mat as a cover sheet generates vibration waves reflected on the surface of the metal plate, and the vibration absorption characteristics inherent to the fiber mat are impaired. Therefore, metal is effective for shielding high-temperature flame radiation at the time of fire and reinforcing the panel, but there is room for improvement in terms of sound absorption.
[0004]
In order to solve such problems, Japanese Patent Laid-Open No. 6-81407 discloses that mechanical properties such as strength are improved by bonding a punching metal (a perforated metal plate) to one or both sides of a compression-molded fiber mat. In addition, a metal sandwich panel utilizing the inherent sound absorption of the fiber layer is disclosed. However, this metal sandwich panel is a product that adheres to the surface of the perforated metal plate when the metal plate and the fiber mat are bonded to each other with a polymer adhesive, and the adhesive flows out from the punched hole of the perforated metal plate. There was a problem that the value was significantly impaired. The intensity of the panel obtained to prevent its outflow is a problem called reduced by reducing the amount of adhesive.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a metal sandwich panel in which a perforated metal plate is bonded to the surface of a porous molded body such as a compression-molded fiber mat, and the panel strength is high and an adhesive adheres to the panel surface. It is in providing the sound-absorbing board which is not performed, and its manufacturing method.
[0006]
[Means for Solving the Problems]
That is, the present invention comprises a porous molded body and a metal sandwich panel sound absorbing plate comprising a porous molded body and a metal plate bonded and integrated on both surfaces thereof, wherein at least one of the metal plates is a perforated metal plate. 1 to 5 mm, an open area ratio of 25 to 35%, and a sound absorbing layer characterized in that a fiber layer having a thickness of 0.3 to 1 mm is provided between the perforated metal plate and the porous molded body. It is a board.
[0007]
In the present invention , a perforated metal plate having a hole diameter of 1 to 5 mm and a hole area ratio of 25 to 35% is stacked on one side of a fiber layer having a thickness of 0.3 to 1 mm impregnated with an adhesive. A porous molded body is stacked on the side surface, a non-porous metal plate is stacked on the opposite surface of the porous molded body with an adhesive, and a laminated body is formed. It is a manufacturing method of the metal sandwich panel sound-absorbing plate characterized.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing an example of a metal sandwich panel sound-absorbing plate according to the present invention, in which a porous molded body 1 is used as a core material, and a non-porous metal plate 3 is provided on the opposite side of the porous metal plate 2 on one side. In the metal sandwich panel formed by bonding and bonding with the adhesives 5 and 5 ′, the fiber layer 4 is provided between the porous molded body 1 and the perforated metal plate 2. The fiber layer 4 prevents the adhesive 5 from flowing out of the punched holes 2a onto the surface of the perforated metal plate 2, thereby reducing the strength of the panel and preventing the adhesive from adhering to the surface. It is a thing.
[0009]
As the porous molded body 1 used for the metal sandwich panel sound absorbing plate of the present invention, any porous material can be used as long as it has strength required as a core material and vibration absorption characteristics required as a sound absorbing plate. A molded body can be used. As such a porous molded body, for example, fiber mats such as organic fiber mats and inorganic fiber mats, foamed plastics such as foamed urethane and foamed phenol, wood pieces, and wood powder are compression molded with a polymer binder. Examples thereof include a wood-based sound absorbing plate, and an inorganic sound absorbing plate such as cellular concrete and cellular glass. Of these porous moldings, fiber mats made by compression molding inorganic fibers such as rock wool, glass wool and ceramic fibers not only have excellent strength as a core material and excellent vibration absorption characteristics as a sound absorbing material. Since it has nonflammability requested | required as a nonflammable building material, it is preferable.
[0010]
A particularly preferable porous molded body is a rock wool molding mat manufactured from rock wool made of various metallurgical slags such as blast furnace slag and electric furnace slag, and natural rocks such as basalt and diorite. This rock wool molding mat is formed by laminating a plurality of thin layers of rock wool or accumulating rock wool fiber flocs by compression molding with a polymer binder such as phenol resin. The rock wool molding mat is preferably compression molded so as to have a density of 80 to 250 kg / m 3 in consideration of heat insulation, sound insulation, light weight, strength, compression resistance and the like. When the density is lower than 80 kg / m 3 , strength and compression resistance are lowered. On the other hand, if the density exceeds 250 kg / m 3 , not only the lightness, which is an advantage of the fiber mat, is lowered, but also a large amount of rock wool fibers is required, so the economic efficiency is impaired.
[0011]
As a method of laminating a rock wool mat, for example, when laminating a thin layer of rock wool mat on a belt conveyor, a method of continuously folding the thin layer of rock wool mat while swinging in a direction perpendicular to the running direction of the belt conveyor. , A method of continuously folding a thin layer rock wool mat in the running direction of the belt conveyor, a method of continuously stacking a thin layer rock wool mat in the running direction of the belt conveyor, a thin layer lock cut to the finished product dimensions There is a method in which a plurality of layers of wool sheets are stacked and placed on a belt conveyor to run intermittently. The laminate obtained in this way is compressed and compressed by heating while pressing from above and below, but the thin layer rock wool mat is swung in the direction perpendicular to the running direction of the belt conveyor. However, the one obtained by compression-molding the laminated body obtained by continuously folding is preferred because it has higher strength than those obtained by other methods.
[0012]
Prior to compression molding of rock wool, a polymeric binder can also be mixed with rock wool. The mixed polymer binder binds each fiber of rock wool at the crossing point of the fibers and improves the strength of the fiber mat. Examples of the polymer binder for binding rock wool fibers include phenol resin, epoxy resin, urethane resin, melamine resin, and the like. Of these, phenol resin binders having relatively good heat resistance and low price are preferable. The blending amount of the binder is preferably 0.5% to 3% by weight as a solid content in consideration of fire resistance, strength, heat resistance, compression resistance and the like of the rock wool molding mat. If the blending amount of the binder is less than 0.5% by weight, the strength, compression resistance and the like are lowered, and if it exceeds 3% by weight, the fire resistance and fire resistance of the panel may be impaired due to the burning of the binder at the time of fire. .
[0013]
The perforated metal plate 2 and the non-porous metal plate 3 that are bonded and integrated on both surfaces of the porous molded body 1 are not melted even at a high temperature of 900 to 1100 ° C. that is a flame radiation temperature at the time of a fire, etc. Any metal plate can be used as long as it is a refractory metal plate that can be cut off, but it is preferable to use an iron plate such as an inexpensive zinc iron plate or decorative steel plate. In addition, although the example which uses the perforated metal plate 2 only for the single side | surface of the porous molded object 1 was shown in FIG. 1, it can also be made into a perforated metal plate on both surfaces as needed. About thickness of these metal plates 2 and 3, about 0.2-1.2 mm is preferable from viewpoints of weight reduction, workability, cost, etc.
[0014]
As the perforated metal plate 2, for example, a metal plate obtained by punching holes in an arbitrary shape such as a round hole, a polygonal hole such as a triangle, a quadrangle, a pentagon, a hexagon, or a star hole, so-called punching Metal can be used. Specific examples of punching metal include: round hole 60 ° staggered plate, round hole 45 ° staggered plate, round hole 90 ° parallel strip, square hole staggered strip, square hole parallel strip, long hole staggered strip, A long hole parallel punching board etc. are mentioned. The aperture ratio of the perforated metal plate 2 is preferably about 25 to 35%. If the opening ratio is lower than 25%, the sound absorbing performance is remarkably impaired, and if it exceeds 35%, not only the strength of the panel is lowered, but also the fire resistance / fireproof performance is lowered and the adhesive tends to ooze out. Then, in the round hole punching metal, the pore size is 1~5mm. If the hole diameter exceeds 5 mm, the adhesive tends to ooze out. If the hole diameter is less than 1 mm, the punching work takes time and costs increase. Moreover, even if the hole area ratio is the same, those in which small holes are densely provided are superior in sound absorption performance to those in which large holes are provided sparsely.
[0015]
Examples of the adhesives 5 and 5 'for bonding the porous molded body 1 to the perforated metal plate 2 or the non-porous metal plate 3 include vinyl acetate resin, ethylene-vinyl acetate resin, acrylic resin, epoxy resin, phenol resin, and urethane. Examples thereof include polymer adhesives such as resin, melamine resin, and styrene-butadiene rubber, and inorganic adhesives such as sodium silicate. These adhesives may be used alone or in combination of two or more if necessary.
[0016]
In the metal sandwich panel sound absorbing plate of the present invention, a fiber layer 4 is provided between the porous molded body 1 and the perforated metal plate 2. When the fiber layer 4 is provided in this manner, the porous molded body 1 and the perforated metal plate 2 are firmly bonded, and the adhesive 5 does not flow out of the punch holes 2 a of the perforated metal plate 2. Therefore, the adhesive does not adhere to the surface of the perforated metal plate 2 and the commercial value is not impaired, and the product yield can be increased. The fiber layer 4 can be easily formed by using a fiber cloth such as a nonwoven fabric or a woven cloth impregnated with an adhesive when the porous molded body 1 and the perforated metal plate 2 are bonded.
[0017]
As a nonwoven fabric which forms the fiber layer 4, inorganic fiber nonwoven fabrics, such as a glass fiber nonwoven fabric and a ceramic fiber nonwoven fabric, for example, organic fiber nonwoven fabrics, such as a polyester fiber nonwoven fabric and a polypropylene fiber nonwoven fabric, etc. can be used. From the viewpoint of fire resistance and fire resistance, when an inorganic fiber mat such as a rock wool molding mat is used as the porous molded body 1, an inorganic fiber nonwoven fabric is preferably used as the nonwoven fabric, and more preferably from the viewpoint of sound absorption and economy. It is a glass fiber nonwoven fabric. In some cases, a woven fabric can be used instead of the non-woven fabric.
[0018]
The thickness of the fiber layer 4 is 0.3 to 1 mm. If the thickness of the fiber layer is less than 0.3 mm, the adhesive cannot be retained, and the adhesive may flow out to the panel surface. If the thickness exceeds 1 mm, poor adhesion or a large amount of adhesive is required, which is economical. Damaged. For this reason, it is preferable that the fiber cloth has substantially the same thickness and a basis weight of about 30 to 100 g / m 2 . Further, the fiber cloth is preferably sized with a resin sizing agent or treated with a silane coupling agent in order to improve compatibility with the adhesive.

[0019]
When a polymer adhesive is used, the amount of adhesive applied to the fiber cloth is preferably about 200 to 350 g / m 2 from the viewpoint of the strength of the panel. If the coating amount is less than 200 g / m 2 , the panel strength decreases, and if it exceeds 350 g / m 2 , in the event of a fire, toxic gas is generated due to the burning of the adhesive, the non-flammability of the panel, Fire resistance and sound absorption may be impaired. Application | coating of an adhesive agent may be performed using coating machines, such as a roll coater, a curtain coater, a spray coater, for example.
[0020]
In the metal sandwich panel of the present invention, for example, a fiber cloth 4 is overlaid on the surface of a perforated metal plate 2, an adhesive 5 is applied on the surface, and then a porous molded body 1 is overlaid thereon and adhered to the surface. It can be manufactured by applying the agent 5 ′, and further stacking the non-porous metal plate 3 thereon to form a laminate, and molding the laminate using a heat and pressure molding machine such as a hot press. . Alternatively, the porous metal body 2 and the non-porous metal plate 3 may be preliminarily bonded to each other, and the perforated metal plate 2 may be laminated via the fiber cloth 4 and bonded. Instead of applying the adhesive 5, a fiber cloth 4 impregnated in advance with the adhesive 5 may be used.
[0021]
【Example】
Example 1
The raw material made of blast furnace slag as a main material is melted with a cupola and cotton wool is made using centrifugal force. At the same time, a phenolic resin aqueous solution is sprayed and adhered as a binder. Folded continuously while swinging in a direction perpendicular to the running direction of the conveyor. The laminated body was held in an atmosphere at 250 ° C. while pressing from above and below to cure the phenolic resin, thereby producing a rock wool molding mat. The obtained rock wool molding mat had a thickness of 100 mm, a binder amount of 2.4% by weight, and a density of 108 kg / m 3 .
[0022]
The rock wool molding mat was cut into a width of 50 mm, rotated 90 degrees, and arranged to produce a rock wool core material 1 having a length of 910 mm and a width of 605 mm. The metal plate 2 on the indoor side is a steel punching metal in which a number of round punch holes 2a having a hole diameter of 3.0 mm are formed in a staggered pattern at a pitch of 5.0 mm on a steel plate having a length of 910 mm, a width of 605 mm, and a thickness of 1.0 mm. (Aperture ratio 32.58%) A coated steel plate (non-porous plate) having a length of 910 mm, a width of 605 mm, and a thickness of 0.6 mm was used as the metal plate 3 on the building outer wall surface side. Further, a modified urethane resin was used for the adhesives 5 and 5 ′, and a glass fiber nonwoven fabric (manufactured by Nippon Vilene) that was sized and processed with a thickness of 0.5 mm and a basis weight of 50 g / m 2 was used for the fiber cloth 4.
[0023]
A glass wool nonwoven fabric 4 is laminated on a steel punching metal 2 and a urethane adhesive 300 g / m 2 is applied thereon, and the same adhesive 300 g / m 2 is applied to the coated steel plate 3 in advance to form a rock wool core 1 A layered product was formed by stacking the materials temporarily bonded to each other. This laminate was held at 60 ° C. for 15 minutes with a hot press to produce a steel plate sandwich panel having a thickness of 50 mm. In the obtained steel sheet sandwich panel, no adhesive was adhered in the vicinity of the punch hole 2a of the punching metal 2, and the tensile strength thereof was obtained by applying a rock wool molding mat similar to the non-porous steel sheet to an adhesive amount of 250 g / m. It was roughly equivalent to the tensile strength of the panel integrated in 2 and was sufficiently practical.
[0024]
When the sound absorption coefficient of the reverberation chamber method of this steel sheet sandwich panel was measured according to JlSA1409, the results shown in Table 2 were obtained. The numerical values in Table 2 are shown as ratios when the sound absorption coefficient at each frequency of the rock wool molded plate (thickness 50 mm, density 100 kg / m 3 ) is 1. The test conditions were set to a temperature of 28 ° C. and a humidity of 82%.
[0025]
Moreover, the fire resistance test of 1 hour wall fire resistance was implemented using this steel plate sandwich panel. The fire resistance test was performed according to JlSA1304 with the coated steel plate 3 side disposed inside the furnace. As a result of measuring the surface temperature on the steel punching metal 2 side, the temperature at any of the measurement points did not exceed 260 ° C., and the wall had a fire resistance of 1 hour.
[0026]
Example 2
A steel plate sandwich panel having a thickness of 50 mm was produced in the same manner as in Example 1 except that the coating amount (150, 250, 350 g / m 2 ) of the adhesive 5 on the glass fiber nonwoven fabric side was changed. In any of the obtained steel sheet sandwich panels, no adhesive adhered to the vicinity of the punch hole 2a. Table 1 shows the relationship between the coating amount of the adhesive 5 and the tensile strength ratio of the panel. The tensile strength ratio is that when the strength of Example 1 (Experiment No. 3) is 1. As is apparent from Table 1, when the application amount of the adhesive 5 is as small as 150 g / m 2 , the tensile strength is low, and the punching metal may be peeled off during transportation or construction.
[0027]
[Table 1]
Figure 0004105784
[0028]
When the sound absorption coefficient of the reverberation chamber method of the obtained steel plate sandwich panel (experiment numbers 3 and 4) was measured in the same manner as in Example 1, the results shown in Table 2 were obtained. It was recognized that the sound absorption characteristics particularly in the high sound range were reduced when the amount of the adhesive was 350 g / m 2 .
[0029]
Example 3
A steel plate sandwich panel having a thickness of 50 mm was manufactured in the same manner as in Example 1 except that a steel punching metal having a porosity of 20% was used. The obtained steel sheet sandwich panel had no adhesive adhered in the vicinity of the punch hole 2a. When the reverberation chamber method sound absorption coefficient of this steel sheet sandwich panel was measured in the same manner as in Example 1, the results shown in Table 2 were obtained. In the steel punching metal having an open area ratio of 20%, the tendency of the sound absorption characteristics in the high sound range to decrease was recognized.
[0030]
[Table 2]
Figure 0004105784
[0031]
Comparative Example A steel sheet sandwich panel having a thickness of 50 mm was manufactured in the same manner as in Example 1 except that the glass fiber nonwoven fabric was not used and the fiber layer 4 was not provided. did. It was observed that there were quite a number of places where the adhesive adhered in the vicinity of the punch holes 2a of the obtained steel sheet sandwich panel. Therefore, it was not worth the product.
[0032]
【The invention's effect】
The metal sandwich panel sound absorbing plate of the present invention in which the fiber layer 4 is provided between the porous molded body 1 and the perforated metal plate 2 is bonded when the porous molded body 1 and the perforated metal plate 2 are bonded. By using the agent 5 in a state in which a fiber cloth such as a nonwoven fabric is impregnated, the porous molded body 1 and the perforated metal plate 2 are firmly bonded, and the adhesive 5 is punched 2a of the perforated metal plate 2. Will not flow out of. Therefore, the panel surface is not soiled by the adhesive, and the commercial value can be increased.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a metal sandwich panel of the present invention.
[Explanation of symbols]
1: Porous molding 2: Perforated metal plate 2a: Punch hole 3: Non-porous metal plate 4: Fiber layer 5, 5 ′: Adhesive

Claims (3)

多孔質成型体とその両面に接着一体化された金属板を備え、金属板の少なくとも一方が有孔金属板からなる金属サンドイッチパネル吸音板において、有孔金属板の孔径が1〜5mm、開孔率が25〜35%であると共に、前記有孔金属板と多孔質成型体との間に厚さ0.3〜1mmの繊維層を設けてなることを特徴とする吸音板。A metal sandwich panel sound absorbing plate comprising a porous molded body and a metal plate bonded and integrated on both surfaces thereof, wherein at least one of the metal plates is a perforated metal plate. with rate is 25% to 35%, the perforated metal plate and the porous molded body with the sound absorbing plate, characterized by comprising providing a fiber layer having a thickness of 0.3~1mm between. 繊維層がガラス繊維不織布であり、有孔金属板と多孔質成型体とを接着一体化するために高分子系接着剤を使用し、その接着剤の塗布量が200〜350g/mである請求項1記載の吸音板。The fiber layer is a glass fiber nonwoven fabric, and a polymer adhesive is used to bond and integrate the perforated metal plate and the porous molded body, and the applied amount of the adhesive is 200 to 350 g / m 2 . The sound absorbing plate according to claim 1. 接着剤を含浸させた厚さ0.3〜1mmの繊維層の片面に、孔径が1〜5mm、開孔率が25〜35%である有孔金属板を重ね、反対側の面に多孔質成型体を重ね、多孔質成型体の反対側の面に接着剤を介して無孔金属板を重ねて積層体を形成し、この積層体を加熱加圧成型することを特徴とする金属サンドイッチパネル吸音板の製造方法。A porous metal plate having a pore diameter of 1 to 5 mm and an open area ratio of 25 to 35% is stacked on one side of a fiber layer having a thickness of 0.3 to 1 mm impregnated with an adhesive, and porous on the opposite side. A metal sandwich panel characterized by stacking a molded body, forming a laminated body by laminating a non-porous metal plate on an opposite surface of the porous molded body with an adhesive, and then heating and pressing the laminated body A method for producing a sound absorbing plate.
JP23510997A 1997-08-29 1997-08-29 Sound absorbing plate and manufacturing method thereof Expired - Fee Related JP4105784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23510997A JP4105784B2 (en) 1997-08-29 1997-08-29 Sound absorbing plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23510997A JP4105784B2 (en) 1997-08-29 1997-08-29 Sound absorbing plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1171837A JPH1171837A (en) 1999-03-16
JP4105784B2 true JP4105784B2 (en) 2008-06-25

Family

ID=16981198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23510997A Expired - Fee Related JP4105784B2 (en) 1997-08-29 1997-08-29 Sound absorbing plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4105784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786147B1 (en) * 2013-03-13 2017-10-17 (주)엘지하우시스 Transparent sound absorbing material assembly having led lighting apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470522B2 (en) * 2010-06-30 2014-04-16 株式会社トヨックス Air conditioning unit
JP5965112B2 (en) * 2011-07-06 2016-08-03 日鉄住金鋼板株式会社 Fireproof panel
JP2013193227A (en) * 2012-03-16 2013-09-30 Nitto Denko Corp Fireproof structural material
CN114603943B (en) * 2021-11-30 2023-03-28 中国电力科学研究院有限公司 Heat-preservation sound-absorption and sound-insulation enclosure wall for transformer substation
KR102575061B1 (en) * 2022-10-24 2023-09-06 원광수 Panel for Sound Absorbing and Manufacturing Method of it
KR102575059B1 (en) * 2022-10-24 2023-09-07 원광수 Panel for Sound Absorbing and Manufacturing Method of it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786147B1 (en) * 2013-03-13 2017-10-17 (주)엘지하우시스 Transparent sound absorbing material assembly having led lighting apparatus

Also Published As

Publication number Publication date
JPH1171837A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US7829488B2 (en) Non-woven glass fiber mat faced gypsum board and process of manufacture
CA2316586C (en) Acoustical panel having a calendered, flame-retardant paper backing and method of making the same
JPS61163846A (en) Porous composite material for soundproofing and manufacture thereof
US20040266304A1 (en) Non-woven glass fiber mat faced gypsum board and process of manufacture
US20080045101A1 (en) Decorative dual scrim composite panel
WO2015164195A1 (en) Multi-layer ceiling tile
WO1999013697A1 (en) Nonflammable radio wave absorber
JP4105784B2 (en) Sound absorbing plate and manufacturing method thereof
US5185197A (en) Multicolor textured finished fiberglass/mineral fiber acoustical wall and ceiling panels
JPS6088163A (en) Composite foil based on discontinuous inorganic fiber
JP2004217829A (en) Stampable sheet, method for producing the same, mat and expansion molding
KR100877365B1 (en) Plate made by combining short fiber and heterogeneous material and its manufacturing method
JPH0681407A (en) Metallic sandwich panel excellent in sound absorption
JP2000129815A (en) Sound insulation panel
JPH06123141A (en) Fireproofing panel
KR102188303B1 (en) Manufacturing method of laminated interior material for construction and automobile and its laminated interior material
KR102188309B1 (en) Manufacturing method of laminated interior material for construction and automobile and its laminated interior material
JP2880933B2 (en) Method for producing inorganic fiber board
KR20040060090A (en) manufacturing method of fiber-mat for interior materials
JP2001009970A (en) Fire retardant finish material
KR102155878B1 (en) Manufacturing method of flame retardant sheet for construction and automobile interior material and its flame retardant sheet
JP2678058B2 (en) Fireproof composite panel
JPH02273232A (en) Fire-resistant composite panel
JPH01156562A (en) Fiber molded body
WO2022067260A1 (en) Plaster boards and methods for making them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060724

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees