JPH1199588A - Fire resistant composite floor material - Google Patents
Fire resistant composite floor materialInfo
- Publication number
- JPH1199588A JPH1199588A JP27992297A JP27992297A JPH1199588A JP H1199588 A JPH1199588 A JP H1199588A JP 27992297 A JP27992297 A JP 27992297A JP 27992297 A JP27992297 A JP 27992297A JP H1199588 A JPH1199588 A JP H1199588A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- thermosetting resin
- core material
- porous inorganic
- glass fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願発明は、建築材料に関す
るものであって、耐火性および床材としての強度を有
し、OAフロアーに使用される複合床材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a building material, and more particularly to a composite flooring material having fire resistance and strength as a flooring material and used for an OA floor.
【0002】[0002]
【従来の技術】コンピュータ等を設置するOAフロアー
の床材は、コンピュータの重量に耐え、地震時にコンピ
ュータ等が転倒した場合でもその衝撃で破損しないこと
が要求され、また、配線を床下面に配設することになる
ため、ケーブル火災などでも耐えられるように耐火性に
も優れていることが必要とされている。このようなOA
フロアーの床材としては、スチール、アルミニウムな
どの金属を使用したもの、ポリ塩化ビニル、ABS樹
脂、ポリプロピレンなどの樹脂製のもの、コンクリー
ト製のもの、ケイ酸カルシウム板に金属板を貼付した
もの、パーティクルボードなどの木質系のものがあ
る。2. Description of the Related Art The floor material of an OA floor on which a computer or the like is installed is required to withstand the weight of the computer and not be damaged by the impact of the computer or the like even if the computer or the like falls over during an earthquake. Therefore, it is necessary to have excellent fire resistance so that it can withstand a cable fire or the like. Such OA
As floor materials for the floor, those using metals such as steel and aluminum, those made of resins such as polyvinyl chloride, ABS resin, and polypropylene, those made of concrete, and those obtained by attaching a metal plate to a calcium silicate plate, There are wood-based materials such as particle boards.
【0003】[0003]
【発明が解決しようとする課題】ところが、の金属を
使用したもの、のコンクリート製のもの、のケイ酸
カルシウム板に金属を貼付したものは、重く、加工性も
悪い。の樹脂製のものやのパーティクルボードは、
耐火性に劣る。このため、強度が高く、軽くて耐火性に
優れ、加工性にも優れた実用的な床材はこれまで開発さ
れていなかった。ところで、建築材料としては、石膏ボ
ードがコストの観点で優れており、壁材等に使用されて
いる。例えば、熱可塑性樹脂製のプリプレグを石膏ボー
ドに貼付した壁、間仕切り用の建築材料が特開平7−3
29236号に提案されている。However, those using a metal, those made of concrete, and those obtained by attaching a metal to a calcium silicate plate are heavy and have poor workability. Resin and particle board
Poor fire resistance. For this reason, a practical flooring material having high strength, light weight, excellent fire resistance, and excellent workability has not been developed so far. By the way, as a building material, gypsum board is excellent in terms of cost, and is used for wall materials and the like. For example, a building material for a wall and a partition in which a prepreg made of a thermoplastic resin is adhered to a gypsum board is disclosed in Japanese Unexamined Patent Publication No. 7-3.
29236.
【0004】しかしながら、これは床材としての使用で
はない。石膏ボードは強度が低いため床材に使用するこ
とはできないというのが建築業界の常識であった。本願
発明は、このような常識を覆し、石膏ボードなどの多孔
質無機芯材を床材に使用して、強度が高く、軽くて耐火
性に優れ、加工性にも優れた理想的な床材を提案するこ
とを目的とする。However, this is not a use as flooring. It was common knowledge in the construction industry that gypsum board could not be used for flooring because of its low strength. The present invention overturns such common sense and uses a porous inorganic core material such as gypsum board for the flooring material, and is an ideal floor having high strength, light weight, excellent fire resistance, and excellent workability. The purpose is to propose materials.
【0005】本願発明は、次の1〜4である。 1.多孔質無機芯材の少なくとも一方の面に、熱硬化性
樹脂および無機質繊維からなる補強層を設けたことを特
徴とする耐火性複合床材。 2.前記多孔質無機芯材は、石膏ボードである1に記載
の耐火性複合床材。 3.前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹
脂、メラミン樹脂、尿素樹脂から選ばれる少なくとも1
種以上である1に記載の耐火性複合床材。 4.前記補強層は、ガラス繊維のシートに熱硬化性樹脂
を含浸させ硬化してなる1に記載の耐火性複合床材。[0005] The present invention is the following 1 to 4. 1. A fire-resistant composite flooring material, comprising a reinforcing layer made of a thermosetting resin and inorganic fibers provided on at least one surface of a porous inorganic core material. 2. 2. The fire-resistant composite flooring according to 1, wherein the porous inorganic core is gypsum board. 3. The thermosetting resin is at least one selected from an epoxy resin, a phenol resin, a melamine resin, and a urea resin.
2. The refractory composite flooring according to 1, which is at least one kind. 4. 2. The fire-resistant composite flooring according to 1, wherein the reinforcing layer is formed by impregnating a thermosetting resin into a glass fiber sheet and curing the resin.
【0006】石膏ボードなどの多孔質無機芯材は、引っ
張りの力に対する強度が低く、圧縮強度は高い。このた
め、床材に力が加わると、力が加わった側とは反対側に
引っ張りの力が発生して、この力の発生点を起点として
破壊が生じる。本願発明の耐熱性複合床材100は、図
1に示すように熱硬化性樹脂1および無機質繊維2から
なり、加工性に優れ、しかも高強度の補強層4を、多孔
質無機芯材3の表面に形成して、引っ張りの力が加わっ
た場合でも破壊が起きないようにしている。従って、補
強層4は、少なくとも多孔質無機芯材3の裏面側(室内
側の反対側)に形成されていることが必要である。ま
た、補強層4は、図1のように多孔質無機質芯材3の片
面のみ、あるいは図2のように多孔質無機質芯材3の両
面に形成されていてもよい。また、熱硬化性樹脂は熱可
塑性樹脂と異なり、耐火性に優れ、高温化でも軟化しな
いため、補強層としての機能が失われない。さらに、本
願発明の耐火性複合床材100は、多孔質無機芯材3、
熱硬化性樹脂1、および無機質繊維2から構成されるた
め、軽量で加工性に優れる。[0006] A porous inorganic core material such as gypsum board has low strength against tensile force and high compressive strength. For this reason, when a force is applied to the floor material, a pulling force is generated on the side opposite to the side on which the force is applied, and destruction starts from the point at which this force is generated. The heat-resistant composite flooring material 100 of the present invention comprises a thermosetting resin 1 and an inorganic fiber 2 as shown in FIG. Formed on the surface to prevent breakage even when a pulling force is applied. Therefore, the reinforcing layer 4 needs to be formed at least on the back surface side (the opposite side of the indoor side) of the porous inorganic core material 3. Further, the reinforcing layer 4 may be formed on only one surface of the porous inorganic core material 3 as shown in FIG. 1 or on both surfaces of the porous inorganic core material 3 as shown in FIG. Further, unlike a thermoplastic resin, a thermosetting resin has excellent fire resistance and does not soften even at a high temperature, so that the function as a reinforcing layer is not lost. Further, the fire-resistant composite flooring material 100 of the present invention has a porous inorganic core material 3,
Since it is composed of the thermosetting resin 1 and the inorganic fibers 2, it is lightweight and has excellent workability.
【0007】前記熱硬化性樹脂1は、フェノール樹脂、
メラミン樹脂、エポキシ樹脂、ポリイミド樹脂、尿素樹
脂などがよい。The thermosetting resin 1 is a phenol resin,
Melamine resin, epoxy resin, polyimide resin, urea resin and the like are preferable.
【0008】前記無機質繊維2としては、ガラス繊維、
ロックウール、セラミックファイバーが望ましい。低価
格で耐熱性、強度に優れるからである。無機質繊維2
は、非連続の繊維がマット状に成形されていてもよく、
また、連続長繊維を3〜7cmに切断してマット状にし
たもの(チョップドストランドマット)、あるいは連続
長繊維を渦巻き状に積層しマット状にしたもの、さらに
は連続長繊維を織りあげたものでもよい。The inorganic fibers 2 include glass fibers,
Rock wool and ceramic fibers are preferred. This is because it is low in price and excellent in heat resistance and strength. Inorganic fiber 2
May have non-continuous fibers formed into a mat,
In addition, continuous long fibers cut into 3 to 7 cm into a mat shape (chopped strand mat), or continuous long fibers spirally laminated into a mat shape, and further woven continuous long fibers May be.
【0009】前記補強層4に含まれる熱硬化性樹脂の含
有量は、10重量%〜65重量%であることが望まし
い。この理由は、この範囲では、充分な剛性、耐衝撃性
などが得られ、かつ高い耐火性を維持できるからであ
る。The content of the thermosetting resin contained in the reinforcing layer 4 is desirably 10% by weight to 65% by weight. The reason is that in this range, sufficient rigidity and impact resistance can be obtained, and high fire resistance can be maintained.
【0010】前記補強層4の厚さは、0.3mm〜3.
5mmが望ましい。この理由は、この範囲では、充分な
剛性、耐衝撃性などが得られ、かつ高い加工性を維持で
きるからである。The thickness of the reinforcing layer 4 ranges from 0.3 mm to 3.0 mm.
5 mm is desirable. The reason is that in this range, sufficient rigidity and impact resistance can be obtained, and high workability can be maintained.
【0011】また、前記補強層4には、水酸化アルミニ
ウム、水酸化マグネシウムなどの難燃化剤、ならびにシ
リカゾル、アルミナゾル、水ガラスなど一般に使用され
る無機質の結合剤を添加してもよい。The reinforcing layer 4 may contain a flame retardant such as aluminum hydroxide and magnesium hydroxide, and a commonly used inorganic binder such as silica sol, alumina sol and water glass.
【0012】前記多孔質無機芯材3は、石膏ボード、ケ
イ酸カルシウム板、スラグ石膏板などが望ましい。これ
らは比較的軽く、低コストだからである。また、その厚
さは、15mm〜30mmであることが望ましい。この
理由は、この範囲では、充分な剛性および耐衝撃性が得
られ、かつ床下の配線スペースを充分確保でき、また高
い加工性を有するからである。また、15mm未満の厚
みの芯材を複数枚積層して上記の厚みに調整してもよ
い。The porous inorganic core material 3 is desirably a gypsum board, a calcium silicate board, a slag gypsum board or the like. These are relatively light and low cost. Further, the thickness is desirably 15 mm to 30 mm. The reason is that in this range, sufficient rigidity and impact resistance can be obtained, a sufficient wiring space under the floor can be secured, and high workability is obtained. Alternatively, a plurality of core materials having a thickness of less than 15 mm may be laminated and adjusted to the above-described thickness.
【0013】本願発明の耐火性複合床材100の製造方
法としては、無機、有機バインダなどを含浸させた無
機質繊維を予め板状に成形し、ここに熱硬化性樹脂組成
物を含浸、乾燥、硬化させたものを接着剤を介して多孔
質無機芯材に貼付する方法がある。また、無機質繊維
のマットに樹脂組成物を含浸、乾燥した後、加熱プレス
し、熱硬化性樹脂を硬化せしめて成形し、これを接着剤
を介して多孔質無機芯材に貼付する方法でもよい。ある
いは、無機質繊維のマットに樹脂組成物を含浸、乾燥し
た後、多孔質無機芯材に積層し、加熱プレスし、熱硬化
性樹脂を硬化せしめて成形する方法でもよい。また、多
孔質無機芯材に熱硬化性樹脂を塗布しておき、ここに無
機質繊維のマットを載置し、加熱プレスする方法でもよ
い。As a method for producing the refractory composite flooring material 100 of the present invention, an inorganic fiber impregnated with an inorganic or organic binder or the like is preliminarily formed into a plate shape, and a thermosetting resin composition is impregnated therein, dried, There is a method of attaching the cured product to a porous inorganic core material via an adhesive. Also, a method of impregnating a resin composition into a mat of inorganic fibers, drying and heating, pressing and curing a thermosetting resin, forming the same, and attaching this to a porous inorganic core material via an adhesive. Good. Alternatively, a method in which a resin composition is impregnated into a mat of inorganic fibers, dried, laminated on a porous inorganic core material, heat-pressed, and a thermosetting resin is cured to form the molded article. Alternatively, a thermosetting resin may be applied to a porous inorganic core material, a mat of inorganic fibers may be placed on the thermosetting resin, and hot pressing may be performed.
【0014】さらに、ガラス繊維、ロックウール、セ
ラミックファイバーの繊維表面にフェノール樹脂などの
熱硬化性樹脂をBステージでコーティングしておき、多
孔質無機芯材に積層して加熱プレスする方法も採用でき
る。繊維表面に熱硬化性樹脂をBステージでコーティン
グしておく方法では、含浸した樹脂との密着性が向上
し、また繊維同士を接着しやすく、また樹脂の含浸率を
改善できるため有利である。このようなコーティングの
方法としては、ガラス繊維、ロックウール、セラミック
ファイバーの原料溶融物をノズルから流出させて、ブロ
ーイング法あるいは遠心法により、繊維化し、この繊維
化と同時にフェノール樹脂などの熱硬化性樹脂の溶液を
吹きつけて集綿するのである。Further, a thermosetting resin such as a phenol resin is coated on the fiber surface of glass fiber, rock wool, or ceramic fiber at a B stage, and the resulting material is laminated on a porous inorganic core material and heated and pressed. it can. The method of coating the surface of the fiber with a thermosetting resin at the B stage is advantageous because the adhesion to the impregnated resin is improved, the fibers are easily bonded to each other, and the impregnation ratio of the resin can be improved. As a method of such coating, a raw material melt of glass fiber, rock wool, and ceramic fiber is discharged from a nozzle, and fiberized by a blowing method or a centrifugal method. The cotton is collected by spraying the resin solution.
【0015】なお、ガラス繊維、ロックウール、セラミ
ックファイバーを使用する場合は、シランカップリング
剤をコーティングしておくとよい。When using glass fibers, rock wool or ceramic fibers, it is preferable to coat them with a silane coupling agent.
【0016】以下、実施例に則して説明する。Hereinafter, description will be made in accordance with embodiments.
【0017】[0017]
(実施例1) (1)未硬化状態のフェノール樹脂が付着(付着量 固
形分換算13%)したマット状ガラス繊維(重量500
g/m2 )を200℃の温度にて5分間プレスし、厚さ
1.5mmのシート状ガラス繊維とした。 (2)このシート状ガラス繊維に硬化剤を添加したフェ
ノール樹脂溶液を含浸(含浸量 固形分換算5%)した
後、80℃の温度にて20分間プレスして、厚さ1.5
mmのフェノール樹脂含浸シートを得た。 (3)ケイ酸カルシウム板(比重 1.0 厚さ20m
m)の片面に硬化剤を添加したフェノール樹脂溶液を2
50g/m2 (固形分換算)の割合で塗布し、前記
(2)で作成したフェノール樹脂含浸シートを重ねた。
さらに、この上に硬化剤を添加したフェノール樹脂溶液
を250g/m2 (固形分換算)の割合で塗布した後、
市販のガラス繊維チョップドストランドマット(重量4
50g/m2 )を重ね80℃の温度にて20分間プレス
し、厚さ22mmの複合床材を得た。(Example 1) (1) Matte glass fiber (weight 500) to which an uncured phenolic resin adhered (adhesion amount: 13% in solid content)
g / m 2 ) was pressed at a temperature of 200 ° C. for 5 minutes to obtain a 1.5 mm-thick sheet glass fiber. (2) After impregnating the sheet-like glass fiber with a phenol resin solution containing a curing agent (impregnation amount: 5% in terms of solid content), the sheet-like glass fiber was pressed at a temperature of 80 ° C. for 20 minutes to obtain a thickness of 1.5%.
mm phenol resin impregnated sheet was obtained. (3) Calcium silicate plate (specific gravity 1.0, thickness 20m
m) a phenol resin solution containing a curing agent on one side
It was applied at a rate of 50 g / m 2 (in terms of solid content), and the phenol resin impregnated sheets prepared in the above (2) were stacked.
Further, a phenol resin solution to which a curing agent was added was applied thereon at a rate of 250 g / m 2 (in terms of solid content).
Commercially available glass fiber chopped strand mat (weight 4
50 g / m 2 ) and pressed at a temperature of 80 ° C. for 20 minutes to obtain a composite flooring material having a thickness of 22 mm.
【0018】(実施例2) (1)未硬化状態のフェノール樹脂が付着(付着量 固
形分換算13%)したマット状ガラス繊維(重量500
g/m2 )を200℃の温度にて5分間プレスし、厚さ
1.5mmのシート状ガラス繊維とした。 (2)このシート状ガラス繊維に硬化剤を添加したフェ
ノール樹脂溶液を含浸(含浸量 固形分換算15%)し
た後、80℃の温度にて20分間プレスして、厚さ1.
5mmのフェノール樹脂含浸シートを得た。 (3)ケイ酸カルシウム板(比重 0.8 厚さ22
mm)の片面に硬化剤を添加したフェノール樹脂溶液を
250g/m2 (固形分換算)の割合で塗布し、前記
(2)で作成したフェノール樹脂含浸シートを重ねた。
さらに、この上に硬化剤を添加したフェノール樹脂溶液
を250g/m2 (固形分換算)の割合で塗布した後、
市販のガラス繊維チョップドストランドマット(重量4
50g/m2)を重ね80℃の温度にて20分間プレス
し、厚さ24mmの複合床材を得た。Example 2 (1) Matte glass fiber (weight 500) to which uncured phenolic resin adhered (adhesion amount 13% in solid content)
g / m 2 ) was pressed at a temperature of 200 ° C. for 5 minutes to obtain a 1.5 mm-thick sheet glass fiber. (2) After impregnating the sheet-like glass fiber with a phenol resin solution containing a curing agent (impregnation amount: 15% in terms of solid content), the sheet-shaped glass fiber was pressed at a temperature of 80 ° C. for 20 minutes to obtain a thickness of 1.
A 5 mm phenol resin impregnated sheet was obtained. (3) Calcium silicate plate (specific gravity 0.8 thickness 22
mm), a phenol resin solution to which a curing agent was added was applied at a rate of 250 g / m 2 (solid content), and the phenol resin impregnated sheet prepared in (2) above was overlaid.
Further, a phenol resin solution to which a curing agent was added was applied thereon at a rate of 250 g / m 2 (in terms of solid content).
Commercially available glass fiber chopped strand mat (weight 4
50 g / m 2 ) and pressed at a temperature of 80 ° C. for 20 minutes to obtain a composite flooring material having a thickness of 24 mm.
【0019】(実施例3) (1)未硬化状態のフェノール樹脂が付着(付着量 固
形分換算13%)したマット状ガラス繊維(重量500
g/m2 )を200℃の温度にて5分間プレスし、厚さ
1.5mmのシート状ガラス繊維とした。 (2)このシート状ガラス繊維に硬化剤を添加したフェ
ノール樹脂溶液を含浸(含浸量 固形分換算20%)し
た後、80℃の温度にて20分間プレスして、1.5m
mのフェノール樹脂含浸シートを得た。 (3)スラグ石膏ボード(比重 1.0 厚さ20m
m)の片面に硬化剤を添加したフェノール樹脂溶液を2
50g/m2 (固形分換算)の割合で塗布し、前記
(2)で作成したフェノール樹脂含浸シートを重ねた。
さらに、この上に硬化剤を添加したフェノール樹脂溶液
を250g/m2 (固形分換算)の割合で塗布した後、
市販のガラス繊維チョップドストランドマット(重量4
50g/m2 )を重ね80℃の温度にて20分間プレス
し、厚さ22mmの複合床材を得た。Example 3 (1) Matte glass fiber (weight 500) to which an uncured phenolic resin adhered (adhesion amount: 13% in solid content)
g / m 2 ) was pressed at a temperature of 200 ° C. for 5 minutes to obtain a 1.5 mm-thick sheet glass fiber. (2) After impregnating a phenolic resin solution obtained by adding a curing agent to the sheet-like glass fiber (impregnation amount: 20% in terms of solid content), the sheet-like glass fiber was pressed at a temperature of 80 ° C. for 20 minutes to obtain 1.5 m
m of the phenol resin-impregnated sheet was obtained. (3) Slag gypsum board (specific gravity 1.0, thickness 20m
m) a phenol resin solution containing a curing agent on one side
It was applied at a rate of 50 g / m 2 (in terms of solid content), and the phenol resin impregnated sheets prepared in the above (2) were stacked.
Further, a phenol resin solution to which a curing agent was added was applied thereon at a rate of 250 g / m 2 (in terms of solid content).
Commercially available glass fiber chopped strand mat (weight 4
50 g / m 2 ) and pressed at a temperature of 80 ° C. for 20 minutes to obtain a composite flooring material having a thickness of 22 mm.
【0020】(実施例4) (1)未硬化状態のフェノール樹脂が付着(付着量 固
形分換算13%)したマット状ガラス繊維(重量500
g/m2 )を200℃の温度にて5分間プレスし、厚さ
1.5mmのシート状ガラス繊維とした。 (2)このシート状ガラス繊維に硬化剤を添加したフェ
ノール樹脂溶液を含浸(含浸量 固形分換算25%)し
た後、75℃の温度にて20分間プレスして、1.5m
mのフェノール樹脂含浸シートを得た。 (3)石膏ボード(比重 1.2 厚さ25mm)の
片面に硬化剤を添加したフェノール樹脂溶液を250g
/m2 (固形分換算)の割合で塗布し、前記(2)で作
成したフェノール樹脂含浸シートを重ねた。さらに、こ
の上に硬化剤を添加したフェノール樹脂溶液を250g
/m2 (固形分換算)の割合で塗布した後、市販のガラ
ス繊維チョップドストランドマット(重量450g/m
2 )を重ね80℃の温度にて20分間プレスし、厚さ2
4mmの複合床材を得た。Example 4 (1) Matt-like glass fiber (weight 500) to which an uncured phenolic resin adhered (adhesion amount: 13% in solid content)
g / m 2 ) was pressed at a temperature of 200 ° C. for 5 minutes to obtain a 1.5 mm-thick sheet glass fiber. (2) After impregnating the sheet-like glass fiber with a phenol resin solution obtained by adding a curing agent (impregnation amount: 25% in terms of solid content), press at 75 ° C. for 20 minutes to obtain 1.5 m
m of the phenol resin-impregnated sheet was obtained. (3) 250 g of a phenol resin solution obtained by adding a curing agent to one side of a gypsum board (specific gravity 1.2, thickness 25 mm)
/ M 2 (in terms of solid content), and the phenol resin-impregnated sheets prepared in the above (2) were overlaid. Further, 250 g of a phenol resin solution to which a curing agent was added was further added.
/ M 2 (in terms of solid content), and then coated with a commercially available glass fiber chopped strand mat (weight 450 g / m 2).
2 ) and pressed at a temperature of 80 ° C. for 20 minutes.
A 4 mm composite floor was obtained.
【0021】(実施例5)実施例1と同様であるが、
(3)の工程の代わりに次のような工程を実施した。石
膏ボード(比重 1.2 厚さ25mm)の片面に硬
化剤を添加したフェノール樹脂溶液を500g/m
2 (固形分換算)の割合で塗布し、市販のガラス繊維チ
ョップドストランドマット(重量900g/m2 )を重
ね、75℃の温度にて20分間プレスし、厚さ26mm
の複合床材を得た。(Embodiment 5) Same as Embodiment 1, except that
The following steps were performed instead of the step (3). 500 g / m of a phenol resin solution containing a hardener added to one side of a gypsum board (specific gravity 1.2, thickness 25 mm)
2 (in terms of solid content), a commercially available glass fiber chopped strand mat (weight 900 g / m 2 ) was stacked, and pressed at a temperature of 75 ° C. for 20 minutes to obtain a thickness of 26 mm.
Was obtained.
【0022】(実施例6)実施例1と同様であるが、
(3)の工程の代わりに次のような工程を実施した。ケ
イ酸カルシウム板(比重 1.0 厚さ20mm)の
片面に硬化剤を添加したフェノール樹脂溶液を350g
/m2 (固形分換算)の割合で塗布し、市販のガラス繊
維チョップドストランドマット(重量600g/m2 )
を重ね、80℃の温度にて20分間プレスし、厚さ26
mmの複合床材を得た。(Embodiment 6) Same as Embodiment 1, except that
The following steps were performed instead of the step (3). 350 g of a phenol resin solution containing a hardener added to one side of a calcium silicate plate (specific gravity 1.0, thickness 20 mm)
/ M 2 (solid content conversion), and commercially available glass fiber chopped strand mat (weight 600 g / m 2 )
And pressed at a temperature of 80 ° C. for 20 minutes.
mm composite flooring was obtained.
【0023】(実施例7)実施例1と同様であるが、
(3)の工程の代わりに次のような工程を実施した。石
膏ボード(比重 0.8 厚さ25mm)の片面に硬
化剤を添加したフェノール樹脂溶液を500g/m
2 (固形分換算)の割合で塗布し、市販のガラス繊維ロ
ービイングクロス(重量580g/m2 )を重ね、75
℃の温度にて20分間プレスし、厚さ26mmの複合床
材を得た。(Embodiment 7) As in Embodiment 1, except that
The following steps were performed instead of the step (3). 500 g / m of a phenol resin solution containing a hardener added to one side of a gypsum board (specific gravity 0.8, thickness 25 mm)
2 (in terms of solid content), and a commercially available glass fiber rowing cloth (weight: 580 g / m 2 )
It pressed at the temperature of 20 degreeC for 20 minutes, and obtained the composite flooring material of thickness 26mm.
【0024】(実施例8)実施例1と同様であるが、
(3)の工程の代わりに次のような工程を実施した。ス
ラグ石膏ボード(比重 1.0 厚さ22mm)の片面
に硬化剤を添加したフェノール樹脂溶液を500g/m
2 (固形分換算)の割合で塗布し、市販のガラス繊維チ
ョップドストランドマット(重量600g/m2 )を重
ね、80℃の温度にて20分間プレスし、厚さ23mm
の複合床材を得た。(Embodiment 8) As in Embodiment 1, except that
The following steps were performed instead of the step (3). 500 g / m of a phenol resin solution containing a hardener added to one side of a slag gypsum board (specific gravity 1.0, thickness 22 mm)
2 (in terms of solid content), and a commercially available glass fiber chopped strand mat (weight: 600 g / m 2 ) was stacked and pressed at a temperature of 80 ° C. for 20 minutes to obtain a thickness of 23 mm.
Was obtained.
【0025】(実施例9)実施例1と同様であるが、フ
ェノール樹脂含浸シートを表裏面に重ねて、加熱プレス
し、複合床材を得た。Example 9 The same as Example 1, except that a phenolic resin-impregnated sheet was overlaid on the front and back surfaces and heated and pressed to obtain a composite floor material.
【0026】(比較例1) (1)厚さ1.0mmのポリプロピレン製シートとガラ
ス繊維チョップドストランドマット(重量450g/m
2 )を重ね、180℃の温度にて15分間加熱プレス
後、冷却し、ポリプロピレン樹脂含浸シート(樹脂含浸
量33重量%)を得た。 (2)スラグ石膏ボード(比重1.0 厚さ22mm)
の片面に(1)で作成したシートを重ね、170℃の温
度でプレスした後冷却し、厚さ23mmの複合床材を得
た。Comparative Example 1 (1) A 1.0 mm thick polypropylene sheet and a glass fiber chopped strand mat (weight: 450 g / m2)
2 ) were stacked, heated and pressed at a temperature of 180 ° C. for 15 minutes, and then cooled to obtain a polypropylene resin-impregnated sheet (resin impregnation amount: 33% by weight). (2) Slag gypsum board (specific gravity 1.0, thickness 22mm)
The sheet prepared in (1) was placed on one side of the sample, pressed at a temperature of 170 ° C., and then cooled to obtain a composite flooring material having a thickness of 23 mm.
【0027】このように作成した複合床材について、J
IS−A−1450 フリーアクセスフロア構成材試験
方法に準じて質量30kgの砂袋を500mmの高さか
ら落下させる衝撃負荷試験を実施しその結果を表1に示
した。また、試験体裏面を80℃の温度に加熱した状態
にて上記と同様の衝撃負荷試験を実施し、その結果も表
1に示した。With respect to the composite floor material thus prepared, J
An impact load test was conducted in which a sand bag having a mass of 30 kg was dropped from a height of 500 mm according to the IS-A-1450 free access floor component material test method, and the results are shown in Table 1. In addition, the same impact load test as described above was performed with the back surface of the test body heated to a temperature of 80 ° C., and the results are also shown in Table 1.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【発明の効果】以上説明のように、本発明の耐火性複合
床材は、軽量であり、加工性、耐火性に優れ、また、常
温および高温下、いずれにおいても耐衝撃性も備えてお
り、床材として優れている。As described above, the fire-resistant composite flooring material of the present invention is lightweight, has excellent workability and fire resistance, and has impact resistance at normal temperature and high temperature. Excellent as flooring.
【図1】本願発明の床材の断面模式図FIG. 1 is a schematic cross-sectional view of the flooring material of the present invention.
【図2】本願発明の床材の断面模式図FIG. 2 is a schematic cross-sectional view of the flooring material of the present invention.
1 熱硬化性樹脂 2 無機質繊維 3 多孔質無機芯材 4 補強層 DESCRIPTION OF SYMBOLS 1 Thermosetting resin 2 Inorganic fiber 3 Porous inorganic core material 4 Reinforcement layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 哲也 岐阜県揖斐郡揖斐川町北方1−1 イビデ ン株式会社内 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tetsuya Nishimura 1-1, Ibigawa-cho, Ibi-gun, Gifu Prefecture Inside Ibiden Co., Ltd.
Claims (4)
に、熱硬化性樹脂および無機質繊維からなる補強層を設
けたことを特徴とする耐火性複合床材。1. A fire-resistant composite flooring material comprising a reinforcing layer made of a thermosetting resin and inorganic fibers provided on at least one surface of a porous inorganic core material.
る請求項1に記載の耐火性複合床材。2. The fire-resistant composite flooring according to claim 1, wherein the porous inorganic core is a gypsum board.
ェノール樹脂、メラミン樹脂、尿素樹脂から選ばれる少
なくとも1種以上である請求項1に記載の耐火性複合床
材。3. The fire-resistant composite flooring according to claim 1, wherein the thermosetting resin is at least one selected from an epoxy resin, a phenol resin, a melamine resin, and a urea resin.
硬化性樹脂を含浸させ硬化してなる請求項1に記載の耐
火性複合床材。4. The fire-resistant composite flooring according to claim 1, wherein the reinforcing layer is formed by impregnating a glass fiber sheet with a thermosetting resin and curing the resin.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27992297A JPH1199588A (en) | 1997-09-26 | 1997-09-26 | Fire resistant composite floor material |
PCT/JP1998/001809 WO1999016984A1 (en) | 1997-09-26 | 1998-04-20 | Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition |
EP98914107A EP1022400A1 (en) | 1997-09-26 | 1998-04-20 | Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27992297A JPH1199588A (en) | 1997-09-26 | 1997-09-26 | Fire resistant composite floor material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1199588A true JPH1199588A (en) | 1999-04-13 |
Family
ID=17617787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27992297A Pending JPH1199588A (en) | 1997-09-26 | 1997-09-26 | Fire resistant composite floor material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1199588A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11320735A (en) * | 1998-05-20 | 1999-11-24 | Toray Ind Inc | Fiber-reinforced plastic fire resistant building member and its manufacture |
KR100492253B1 (en) * | 2002-01-29 | 2005-05-31 | 서성오 | Fiber resin complex panel with color stone |
CN100334170C (en) * | 2003-09-02 | 2007-08-29 | 天津市塘沽区天虹化工涂料装饰有限公司 | Anticracking agent for outer wall beat insulating anticracking water proofing coating material and its preparation method |
JP2016505736A (en) * | 2012-12-12 | 2016-02-25 | セン・ゴバン プラコ エスアーエス | Panel for building structure |
CN110002821A (en) * | 2019-04-22 | 2019-07-12 | 郑州轻工业学院 | A kind of fire-proof and thermal-insulation energy conservation door leaf and preparation method thereof |
CN110903098A (en) * | 2019-12-12 | 2020-03-24 | 天津市隆源达环保科技发展有限公司 | Composite refractory material based on waste inorganic fiber material and preparation method thereof |
CN113547766A (en) * | 2021-06-22 | 2021-10-26 | 李芙蓉 | Preparation device for solid buoyancy material component epoxy resin related prepreg |
-
1997
- 1997-09-26 JP JP27992297A patent/JPH1199588A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11320735A (en) * | 1998-05-20 | 1999-11-24 | Toray Ind Inc | Fiber-reinforced plastic fire resistant building member and its manufacture |
KR100492253B1 (en) * | 2002-01-29 | 2005-05-31 | 서성오 | Fiber resin complex panel with color stone |
CN100334170C (en) * | 2003-09-02 | 2007-08-29 | 天津市塘沽区天虹化工涂料装饰有限公司 | Anticracking agent for outer wall beat insulating anticracking water proofing coating material and its preparation method |
JP2016505736A (en) * | 2012-12-12 | 2016-02-25 | セン・ゴバン プラコ エスアーエス | Panel for building structure |
CN110002821A (en) * | 2019-04-22 | 2019-07-12 | 郑州轻工业学院 | A kind of fire-proof and thermal-insulation energy conservation door leaf and preparation method thereof |
CN110903098A (en) * | 2019-12-12 | 2020-03-24 | 天津市隆源达环保科技发展有限公司 | Composite refractory material based on waste inorganic fiber material and preparation method thereof |
CN113547766A (en) * | 2021-06-22 | 2021-10-26 | 李芙蓉 | Preparation device for solid buoyancy material component epoxy resin related prepreg |
CN113547766B (en) * | 2021-06-22 | 2023-05-12 | 湖南赛尔维新材料科技有限公司 | Epoxy prepreg preparation facilities |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999016984A1 (en) | Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition | |
JPH1199588A (en) | Fire resistant composite floor material | |
JP2555684B2 (en) | Flame retardant panel | |
JP4105784B2 (en) | Sound absorbing plate and manufacturing method thereof | |
JPH01306236A (en) | Element for self-supporting structure | |
JPH11303369A (en) | Fire resisting composite building material and fire resisting composite flooring | |
JPH11227081A (en) | Fire resistant composite floor material | |
WO2000049246A1 (en) | Composite building material and production method thereof and comosite floor material | |
JP3813020B2 (en) | Sound absorbing plate having sandwich structure and manufacturing method thereof | |
JP2838982B2 (en) | Fireproof panel | |
JPH11314980A (en) | Production of refractory composite building material | |
CN102619290A (en) | Fireproof vertical filament inorganic silicon fiber insulation board | |
JPH05222784A (en) | Heat-sound-fire preventing panel | |
JPH11315595A (en) | Fire-resistive complex building material and fire-resistive composite floor material | |
JP3985357B2 (en) | Sandwich structure | |
JPH0596675A (en) | Sandwiched board | |
JPH11227095A (en) | Fire-resistant composite flooring material | |
JPH0681407A (en) | Metallic sandwich panel excellent in sound absorption | |
JPH11315593A (en) | Fire-resistive complex building material and fire-resistive composite floor material | |
JPH10252182A (en) | Fire resisting composite building material and manufacturing thereof | |
JPH11315594A (en) | Fire-resistive complex building material and fire-resistive composite floor material | |
JP2000291175A (en) | Noncombustible decorative plate and manufacture thereof | |
JPH0661899B2 (en) | Composite panel manufacturing method | |
JP2001009970A (en) | Fire retardant finish material | |
JP3230775B2 (en) | Composite board |