JP3808757B2 - Manufacturing method of highly ductile Mg alloy material - Google Patents

Manufacturing method of highly ductile Mg alloy material Download PDF

Info

Publication number
JP3808757B2
JP3808757B2 JP2001353624A JP2001353624A JP3808757B2 JP 3808757 B2 JP3808757 B2 JP 3808757B2 JP 2001353624 A JP2001353624 A JP 2001353624A JP 2001353624 A JP2001353624 A JP 2001353624A JP 3808757 B2 JP3808757 B2 JP 3808757B2
Authority
JP
Japan
Prior art keywords
quasi
processing
alloy
warm
hydrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001353624A
Other languages
Japanese (ja)
Other versions
JP2003155547A (en
Inventor
善治 堀田
浩一 槙井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001353624A priority Critical patent/JP3808757B2/en
Publication of JP2003155547A publication Critical patent/JP2003155547A/en
Application granted granted Critical
Publication of JP3808757B2 publication Critical patent/JP3808757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高延性Mg合金の製法に関し、より詳細には、低温でも高延性を有し成形加工性に優れたMg合金を生産性よく製造することのできる方法に関するものである。
【0002】
なお本発明において「準静水圧加工」とは、形状の拘束は受けるが断面形状は変化させずに変形させる加工をいい、「準静水圧温間加工」とは、該準静水圧加工を温間で行うことを言う。
【0003】
【従来の技術】
Mgは稠密六方構造で塑性変形能が極めて小さく、インゴットのままでは殆ど成形加工することができない。そのため、複雑形状のものはもとより比較的単純な形状の部品などであっても、鋳造と切削加工を組み合わせた方法で成形せざるを得ず、加工コストが非常に高価につくことから、汎用化の最大の隘路となっていた。
【0004】
こうした状況の下で、2次成形の可能な高延性Mg合金の開発を目的として幾つかの研究が進められており、例えば特開2000-271631号、同2000-271693号、同2000-271695号各公報などに開示の方法が提案されている。
【0005】
これらの方法の基本原理は、まず温間乃至熱間で押出比10前後の押出加工を施した後、温間で準静水圧加工する方法[この方法は、例えば後記図3の概念図(図中、1は供試材、2はダイ、3はプランジャー、4は加圧装置、T1、T2は熱電対をそれぞれ表している)に示すような加工法であり、ECAP(Equal Channel Angular Press)を採用することが多い(以下、本明細書ではこの方法を「イーキャップ加工」という)]で大きな歪を与え、結晶組織を微細化すると共に金属間化合物の粒径も微細化し、伸び率で220%以上といったレベルの延性を与えるもので、難加工材であるMg合金の2次成形加工を可能にした点で優れた技術といえる。
【0006】
しかしこれらの方法では、220%以上の伸び率を保障する真歪を与えるのに、前記準静水圧加工による導入真歪で例えば9以上といった非常に大きな歪を与えねばならず、そのためには、例えば8回以上といった多数回の繰返し剪断変形を与えねばならないので生産性が非常に低い。
【0007】
他方、本発明者らも同様の目的を掲げてかねてより研究を重ねており、先に「Scripta Met.」Vol.40,No.4(1999),p477(渡辺など)や「Mat. Trans. JIM」Vol.40,No.8(1999),p809(渡辺など)、「Superplasticity & Superplastic Forming」(1998),p179(渡辺など)等を開示した。
【0008】
しかしこれらに開示した方法には、
▲1▼温間での押出比を例えば100程度の非常に高い値に設定しなければならず、押出工程で生じる加工発熱によってZnなどの強偏析部が液相化し、加工割れを起こし易い、
▲2▼加工発熱を抑えるため押出速度を遅くすると、生産性が極端に低下する、
▲3▼押出比が非常に大きい(即ち押出比100の場合、押出加工物の断面サイズは加工前の1/100になる)ため、最終製品(素材)は小型にならざるを得ず、大型加工品が得られ難くなる、
といった難点があり、実用化のためには改善の必要がある。
【0009】
【発明が解決しようとする課題】
本発明は上記のような事情に着目してなされたものであって、その目的は、従来の温間押出しと準静水圧加工をうまく組み合わせ、成形加工性に優れたMg合金素材を従来法に比べて効率よく製造し得ると共に、大型サイズのMg合金素材であっても効率よく容易に得ることのできる技術を確立することにある。
【0010】
【課題を達成するための手段】
上記課題を解決することのできた本発明に係る高延性Mg合金素材の製法とは、例えばZr等の分散強化型粒子を含むMg合金を、15以上、70以下の押出比で温間加工した後、温間で真歪が0.5以上、3以下の準静水圧温間加工を施すところに要旨を有している。
【0011】
【発明の実施の形態】
前述の如くMgは稠密六方型で、塑性変形能の小さい結晶構造を有しているため、インゴットのままでは殆ど加工性がない。そこで本発明では、Mg合金に加工性を与えるための手段として、中間工程で準静水圧温間加工を施してランダム方位の再結晶組織とし滑り系を増大することで、塑性変形能を発現させるものであるが、こうした基本思想自体は、前掲の公開公報に開示されている方法と本質的に変わりがない。
【0012】
しかし本発明では、ランダム方位を持った微細結晶粒の大型Mg合金素材を工業的に生産性よく容易に得るため、Mg合金として分散強化型粒子を含むMg合金を選択し、先ず第1工程で、押出比15以上、70以下の温間加工を行った後、第2工程において準静水圧温間加工を施すことにより、0.5以上、3以下の真歪を与える。
【0013】
第1工程の温間加工における押出比を15以上と定めたのは、該温間加工でランダム方位の微細結晶粒を得るには最低限15以上の押出比を与えねばならないからである。ランダム微細結晶粒の確保という観点からすると、該第1工程の温間加工時における押出比の上限は特に制限されないが、押出比が大きくなるほど押出原料素材に対する押出品のサイズは小さくなり、大型部材の製造ができなくなるので、大型素材の製造を可能にし製品としてのサイズの自由度を高めるには、押出比を高くとも70以下に抑えるべきである。ランダム方位微細結晶の確保と大型素材の生産を両立させる上でより好ましい第1工程の押出比は、25以上、40以下である。
【0014】
この様に、第1工程で実施される温間加工時の押出比を必要最小限に抑えることで、押出加工時の加工発熱も抑えられ、好適押出温度範囲も十分に保障されると共に、大型素材の製造も可能となる。
【0015】
本発明では、該第1工程の温間押出加工の後、第2工程では準静水圧温間加工を施して歪を与え、それにより伸び率(延性)を高めることによって高レベルの成形加工性を付与する。この工程で、本発明で意図するレベルの塑性変形能、即ち成形加工性を与えるには、真歪で少なくとも0.5以上の歪を与えねばならず、より好ましくは累積真歪で1.0以上を与えることが望ましい。
【0016】
累積真歪を大きくするほど冷間加工性は高まるが、後記図2でも明らかにする如く本発明で用いるMg合金では、第2工程の準静水圧温間加工で付与される歪による延性改善効果は、約3の累積真歪でほぼ飽和し、それ以上に累積真歪を増大しても延性は殆ど向上しなくなり、準静水圧温間加工回数の無為の増大により生産性を低下させるだけに過ぎなくなる。よって生産性の両立を考えると、累積真歪は3以下、より実用的には2.0以下に抑えることが望ましい。
【0017】
なお、上記第1工程および第2工程で実施される温間加工および準静水圧温間加工を行う際の「温間」の温度は、用いるMg合金の鋳造組織を破壊すると共に結晶粒や金属間化合物の粗大化を防止するため、用いるMg合金の再結晶温度以上に設定すべきであり、具体的な温度はMg合金の種類、即ち分散強化型元素の種類や含有率等によって若干変わるが、標準的には250〜360℃、より一般的には300〜350℃の範囲である。
【0018】
なお本発明で使用されるMg合金としては、例えばZr,Ag,Al,Ga,Mn,Sn,Th,Ti,Zn,Y等の如き分散強化型合金元素を比較的少量(0.1〜1質量%、より好ましくは0.2〜0.7質量%程度)含有する2元系のMg合金が挙げられる。
【0019】
ちなみに前掲の従来技術では、AZ系(Mg-Zn-Al系)やZK系(Mg-Zn-Zr系)のMg合金が使用されており、これらは何れも合金添加量が多いため、第1工程で再結晶を適切に進めるのに押出比を例えば100程度の高い値に設定したり、第2工程での準静水圧温間加工による累積真歪みを9以上といった非常に高い値に設定せざるを得なかったものと推定される。
【0020】
これに対し本発明では、上記の様に固溶強化元素を削減した分散強化型粒子を含むMg合金を選択しているため、前述の如く第1工程、第2工程ともに工業的に汎用性の高い条件設定が可能になったものと考えている。よって本発明では、固溶強化型ではなく、分散強化型の2元系Mg合金を使用するのがよく、固溶強化元素を添加するにしても、Mgの再結晶が過度に抑制されないよう高合金系は避けるべきである。
【0021】
かくして本発明によれば、分散強化型粒子を含むMg合金を選択し、第1工程の温間加工で相対的に低めの押出比を採用し、且つ第2工程の準静水圧温間加工(イーキャップ加工)では、0.5〜3といった従来技術に比べて少ない累積真歪を与えるだけで高レベルの延性を与えることができ、相対的に大きいサイズのものであっても、高延性で優れた成形加工性を有するMg合金を少ない工程数で生産性よく製造することができる。
【0022】
また本発明によって得られるMg合金素材は、Mg合金が本来有している1)軽量で比強度が高い、2)振動吸収能が高い、3)電磁波遮蔽性が良好である、といった多くの特徴を有しているので、これらの特徴を活かし、例えばノートパソコンやポータブルMDプレイヤー、ビデオ一体カメラなどを始めとして、軽量で高剛性が要求される各種部品の素材として幅広く有効に活用できる。
【0023】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に包含される。
【0024】
実施例
Mg−0.6%Zrインゴットを、直径60mmの丸棒に、また一部は直径45mmの丸棒に機械加工し、第1工程では350℃で直径10mmの丸棒に押出加工した(各々押出比は36と20)。また、押出加工することなく機械加工で直径10mmに直接仕上げたものも用意した。
【0025】
これら直径10mmの合金素材を、300℃で準静水圧温間加工(90°剪断)を1回、2回および4回行った。その時に与えられる加工歪みは1回当たり約1.15である。得られた素材から引張試験片を切出し、300℃で歪速度3.3×10-5〜3.3×10-1の範囲で引張試験を行った。
【0026】
その結果、 機械加工で直径10mmの丸棒とした材料を、第1工程の温間押出しをすることなく準静水圧温間加工した場合は、準静水圧温間加工中に破壊した。これに対し、第1工程を押出比20(直径45mmから10mmに押出し)で行った場合、第2工程の準静水圧温間加工時に破壊することなく、直径10mmの素材が得られた。該素材の引張試験を行ったところ、変形温度300℃、変形速度3.3×10-4での伸びは120%であった。
【0027】
また、第1工程の押出比を36(直径60mmから10mmに押出し)とした場合は、図1,2に示す結果が得られた。即ち図1は、温間押出しまま材(第1工程材)と、その後さらに第2工程で1回の準静水圧温間加工を行った素材(イーキャップ材)の延性(伸び率)と引張歪速度の関係を示したグラフであり、1回の準静水圧温間加工を行っただけで、3.3×10-4の変形速度で420%という巨大伸びが発現しており、僅か1回の加工(相当歪み約1.15)、即ち従来に比べて画期的に少ない加工数で延性が飛躍的に改善されている。
【0028】
また図2は、変形温度300℃、変形速度3.3×10-3で引張試験を行った場合の、準静水圧温間加工(イーキャップ加工)回数増加による延性(伸び率)の向上と、1回当たりの延性(伸び率)改善代を調べた結果を示したグラフである。この図2からも明らかな様に、第1回目の準静水圧温間加工による延性改善代は約90%と非常に高い値が得られているのに対し、第2回の準静水圧温間加工による延性改善代は約40%、第4回目の準静水圧温間加工による延性改善代は約20%と、準静水圧温間加工(イーキャップ加工)の繰返し数が増すにつれて延性改善代は大幅に低下してくる。換言すると本発明による延性改善効果は、温間押出加工後に行われる第1回乃至2,3回の準静水圧温間加工で高い延性改善代を得ることができ、準静水圧温間加工回数をそれ以上に多くしても延性は殆ど向上しなくなる。
【0029】
よって準静水圧温間加工回数は1回〜数回(3〜4回)程度で十分であり、真歪みでいうと3程度以下、より好ましくは2.0程度以下で十分であることが分る。
【0030】
【発明の効果】
本発明は以上の様に構成されており、分散強化型のMg合金を使用し、第1工程の温間加工時における押出比を必要最小限に抑えると共に、第2工程で準静水圧温間加工により適度の累積真歪を与えることで、高レベルの成形加工性を有するMg合金素材を生産性よく製造できる。特に本発明では、第1工程の温間加工時における押出比を必要最小限に抑えることで、大型サイズの易加工性Mg合金素材の製造を可能にすると共に、加工発熱も最小限に抑えて温度制御を容易にし、且つ第2工程では1回〜数回の準静水圧温間加工で高レベルの延性を与えることができるので、生産性を大幅に高めることが可能となる。
【図面の簡単な説明】
【図1】Mg−0.6%Zr合金の伸び率(延性)と歪速度の関係を示すグラフである。
【図2】Mg−0.6%Zr合金の準静水圧温間加工によって与えられる累積真歪が、伸び率と準静水圧温間加工(イーキャップ加工)1回当たりの延性向上代に与える影響を示すグラフである。
【図3】準静水圧温間加工(イーキャップ加工)法を例示する断面概念図である。
【符号の説明】
1 供試材
2 ダイ
3 プランジャー
4 加圧装置
1、T2 熱電対
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a highly ductile Mg alloy, and more particularly to a method capable of producing a Mg alloy having high ductility and excellent formability even at low temperatures with high productivity.
[0002]
In the present invention, “quasi-hydrostatic processing” refers to processing that deforms without changing the cross-sectional shape, although it is constrained in shape, and “quasi-hydrostatic warm processing” refers to the quasi-hydrostatic processing. Say what to do between.
[0003]
[Prior art]
Mg has a dense hexagonal structure and extremely low plastic deformability, so that it can hardly be formed with an ingot. Therefore, even complicated parts as well as parts with relatively simple shapes must be molded by a method that combines casting and cutting, and the processing cost is very expensive, so it is versatile. It was the biggest Kushiro.
[0004]
Under such circumstances, several studies have been conducted for the purpose of developing a highly ductile Mg alloy capable of secondary forming. For example, JP 2000-271631, 2000-271693, 2000-271695 A method disclosed in each publication is proposed.
[0005]
The basic principle of these methods is a method of first performing warming or hot extrusion processing with an extrusion ratio of about 10 and then performing warm quasi-hydrostatic processing [this method is, for example, a conceptual diagram of FIG. 1 is a test material, 2 is a die, 3 is a plunger, 4 is a pressurizing device, T 1 and T 2 are thermocouples, respectively), and ECAP (Equal Channel Angular Press) is often used (hereinafter, this method is referred to as “ecap processing” in this specification)], and the crystal structure is refined and the grain size of the intermetallic compound is refined. It gives a ductility of a level such as 220% or higher in elongation, and can be said to be an excellent technique in that it enables secondary forming of a difficult-to-work material Mg alloy.
[0006]
However, in these methods, in order to give a true strain that guarantees an elongation rate of 220% or more, it is necessary to give a very large strain such as 9 or more in the introduced true strain by the quasi-hydrostatic processing. For example, productivity must be very low because a large number of repeated shear deformations such as 8 or more must be applied.
[0007]
On the other hand, the inventors of the present invention have also been researching for the same purpose, and “Scripta Met.” Vol. 40, No. 4 (1999), p477 (Watanabe etc.) and “Mat. Trans. "JIM" Vol.40, No.8 (1999), p809 (Watanabe etc.), "Superplasticity & Superplastic Forming" (1998), p179 (Watanabe etc.) etc. were disclosed.
[0008]
However, the methods disclosed in these include:
(1) The extruding ratio during warming must be set to a very high value of about 100, for example, due to processing heat generated in the extrusion process, strong segregation parts such as Zn are liquified and are liable to cause processing cracks.
(2) If the extrusion speed is slowed to suppress the processing heat generation, the productivity will be extremely reduced.
(3) Since the extrusion ratio is very large (ie, when the extrusion ratio is 100, the cross-sectional size of the extruded product is 1/100 before processing), the final product (material) must be small and large. It becomes difficult to obtain processed products,
However, there is a need for improvement for practical use.
[0009]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to combine a conventional warm extrusion and quasi-hydrostatic processing well, and to make an Mg alloy material excellent in formability into a conventional method. The aim is to establish a technology that can be efficiently manufactured as compared to a large-sized Mg alloy material that can be efficiently and easily obtained.
[0010]
[Means for achieving the object]
The method for producing a highly ductile Mg alloy material according to the present invention that has solved the above-mentioned problem is, for example, after warm-working an Mg alloy containing dispersion strengthened particles such as Zr at an extrusion ratio of 15 or more and 70 or less. The main point is that a quasi-isostatic pressure warm working is performed with a warm true strain of 0.5 to 3 inclusive.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As described above, Mg is a dense hexagonal type and has a crystal structure with a small plastic deformability. Therefore, in the present invention, as a means for imparting workability to the Mg alloy, the plastic deformation ability is expressed by increasing the sliding system as a reoriented structure of random orientation by performing quasi-hydrostatic pressure warm working in an intermediate process. However, the basic idea itself is essentially the same as the method disclosed in the above publication.
[0012]
However, in the present invention, in order to easily obtain a large-sized Mg alloy material with fine crystal grains having a random orientation with good industrial productivity, an Mg alloy containing dispersion strengthened particles is selected as the Mg alloy. After the warm working at an extrusion ratio of 15 or more and 70 or less, a true strain of 0.5 or more and 3 or less is given by performing the quasi-isostatic pressure warm working in the second step.
[0013]
The reason why the extrusion ratio in the warm working in the first step is set to 15 or more is that an extrusion ratio of 15 or more must be given at least in order to obtain fine crystal grains of random orientation by the warm working. From the viewpoint of securing random fine crystal grains, the upper limit of the extrusion ratio at the time of warm working in the first step is not particularly limited. However, the larger the extrusion ratio, the smaller the size of the extruded product with respect to the raw material for extrusion, and a large member. Therefore, in order to make it possible to manufacture a large-sized material and increase the degree of freedom in size as a product, the extrusion ratio should be suppressed to 70 or less at the highest. The extrusion ratio in the first step is more preferably 25 or more and 40 or less in order to achieve both the securing of randomly oriented fine crystals and the production of large materials.
[0014]
In this way, by suppressing the extrusion ratio at the time of warm processing performed in the first step to the minimum necessary, processing heat generation at the time of extrusion processing can be suppressed, and a suitable extrusion temperature range is sufficiently secured, and a large size The material can be manufactured.
[0015]
In the present invention, after the first step of warm extrusion, the second step is subjected to quasi-isostatic pressure warm processing to give strain, thereby increasing the elongation rate (ductility), thereby achieving a high level of moldability. Is granted. In this step, in order to provide the level of plastic deformability intended by the present invention, that is, moldability, it is necessary to give a true strain of at least 0.5 or more, and more preferably a cumulative true strain of 1.0. It is desirable to give the above.
[0016]
Although the cold workability increases as the accumulated true strain increases, the ductility improvement effect due to the strain imparted by the quasi-hydrostatic warm working in the second step is used in the Mg alloy used in the present invention as will be clarified also in FIG. Is almost saturated at a cumulative true strain of about 3, and even if the cumulative true strain is increased beyond that, the ductility is hardly improved, and the productivity is reduced only by the infinite increase in the number of quasi-hydrostatic hot working. It will not pass. Therefore, considering the balance of productivity, it is desirable to suppress the cumulative true strain to 3 or less, more practically 2.0 or less.
[0017]
The “warm” temperature in performing the warming and quasi-hydrostatic warming performed in the first step and the second step described above destroys the cast structure of the Mg alloy to be used as well as crystal grains and metals. In order to prevent coarsening of the intermetallic compound, it should be set above the recrystallization temperature of the Mg alloy to be used, and the specific temperature varies slightly depending on the type of Mg alloy, that is, the type and content of the dispersion strengthened element. Typically, it is in the range of 250-360 ° C, more generally 300-350 ° C.
[0018]
As the Mg alloy used in the present invention, for example, a relatively small amount of a dispersion strengthened alloy element such as Zr, Ag, Al, Ga, Mn, Sn, Th, Ti, Zn, Y (0.1 to 1) is used. (Mass%, more preferably about 0.2 to 0.7% by mass).
[0019]
By the way, in the prior art described above, AZ (Mg—Zn—Al) or ZK (Mg—Zn—Zr) Mg alloys are used. Set the extrusion ratio to a high value, for example, about 100 to appropriately proceed with recrystallization in the process, or set the accumulated true strain due to the quasi-hydrostatic hot working in the second process to a very high value, such as 9 or more. It is presumed that it was unavoidable.
[0020]
On the other hand, in the present invention, since the Mg alloy containing the dispersion strengthened particles with reduced solid solution strengthening elements is selected as described above, both the first step and the second step are industrially versatile. We believe that high conditions can be set. Therefore, in the present invention, it is preferable to use a dispersion strengthened binary Mg alloy instead of a solid solution strengthening type, and even if a solid solution strengthening element is added, the recrystallization of Mg is not excessively suppressed. Alloy systems should be avoided.
[0021]
Thus, according to the present invention, an Mg alloy containing dispersion strengthened particles is selected, a relatively low extrusion ratio is employed in the warm working of the first step, and the quasi-hydrostatic warm working of the second step ( Ecap processing) can give a high level of ductility by giving less cumulative true strain than conventional techniques such as 0.5-3, and even with relatively large sizes, An Mg alloy having excellent formability can be produced with a small number of steps and high productivity.
[0022]
The Mg alloy material obtained by the present invention has many features such as 1) light weight and high specific strength, 2) high vibration absorption capability, and 3) good electromagnetic shielding properties. Therefore, taking advantage of these features, it can be effectively used as a material for various parts that require light weight and high rigidity, such as notebook computers, portable MD players, and video integrated cameras.
[0023]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Any of these may be included in the technical scope of the present invention.
[0024]
EXAMPLE A Mg-0.6% Zr ingot was machined into a round bar with a diameter of 60 mm and partly into a round bar with a diameter of 45 mm, and was extruded into a round bar with a diameter of 10 mm at 350 ° C. in the first step (each extruded The ratio is 36 and 20). Moreover, what was directly finished to a diameter of 10 mm by machining without preparing extrusion was also prepared.
[0025]
These alloy materials having a diameter of 10 mm were subjected to quasi-isostatic hot working (90 ° shearing) at 300 ° C. once, twice and four times. The processing strain given at that time is about 1.15 per time. A tensile test piece was cut out from the obtained material, and a tensile test was performed at 300 ° C. within a strain rate range of 3.3 × 10 −5 to 3.3 × 10 −1 .
[0026]
As a result, when the material formed into a round bar having a diameter of 10 mm by machining was subjected to quasi-isostatic pressure warm processing without performing the warm extrusion in the first step, the material was broken during the quasi-hydrostatic pressure warm processing. On the other hand, when the first step was performed at an extrusion ratio of 20 (extrusion from 45 mm to 10 mm in diameter), a material having a diameter of 10 mm was obtained without breaking during the quasi-hydrostatic hot working in the second step. As a result of a tensile test of the material, the elongation at a deformation temperature of 300 ° C. and a deformation speed of 3.3 × 10 −4 was 120%.
[0027]
When the extrusion ratio in the first step was 36 (extruded from a diameter of 60 mm to 10 mm), the results shown in FIGS. 1 and 2 were obtained. That is, FIG. 1 shows the ductility (elongation rate) and tensile strength of a raw extruded material (first process material), and then a material (ecap material) subjected to quasi-isostatic pressure warm processing once in the second process. It is a graph showing the relationship between strain rates, and after performing only one quasi-hydrostatic pressure warm processing, a huge elongation of 420% is developed at a deformation rate of 3.3 × 10 −4 , and only once Ductility has been drastically improved with processing (equivalent strain of about 1.15), that is, with a significantly smaller number of processing than in the prior art.
[0028]
FIG. 2 shows the improvement in ductility (elongation rate) by increasing the number of quasi-hydrostatic hot working (ecap processing) when a tensile test is performed at a deformation temperature of 300 ° C. and a deformation speed of 3.3 × 10 −3. It is the graph which showed the result of having investigated the ductility (elongation rate) improvement allowance per turn. As is clear from FIG. 2, the ductility improvement allowance by the first quasi-hydrostatic pressure hot working is about 90%, whereas the second quasi-hydrostatic temperature is high. Ductility improvement allowance by hot working is about 40%, ductility improvement allowance by the fourth quasi-hydrostatic hot working is about 20%, and ductility improves as the number of repetitions of quasi-hydrostatic hot working (ecap processing) increases. Teenagers will drop significantly. In other words, the ductility improving effect according to the present invention can obtain a high ductility improvement allowance in the first to second or third quasi-hydrostatic pressure warm processing performed after the warm extrusion, and the number of quasi-hydrostatic pressure warm processing times. If the amount is increased more than that, the ductility is hardly improved.
[0029]
Therefore, the number of times of quasi-hydrostatic pressure warm working is about 1 to several times (3 to 4 times), and about 3 or less, more preferably about 2.0 or less is sufficient in terms of true strain. The
[0030]
【The invention's effect】
The present invention is configured as described above, uses a dispersion strengthened Mg alloy, minimizes the extrusion ratio at the time of warm working in the first step, and performs quasi-hydrostatic pressure warm in the second step. By giving an appropriate cumulative true strain by processing, an Mg alloy material having a high level of formability can be produced with high productivity. In particular, in the present invention, by suppressing the extrusion ratio during the warm processing in the first step to a necessary minimum, it becomes possible to produce a large-size easily processable Mg alloy material and to minimize the processing heat generation. Temperature control is facilitated, and in the second step, a high level of ductility can be imparted by one to several quasi-hydrostatic hot working, so that productivity can be greatly increased.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the elongation (ductility) and strain rate of a Mg-0.6% Zr alloy.
FIG. 2 shows the effect of cumulative true strain given by quasi-hydrostatic warm working of Mg-0.6% Zr alloy on the elongation rate and ductility improvement allowance per quasi-hydrostatic warm working (ecap process). It is a graph to show.
FIG. 3 is a conceptual cross-sectional view illustrating a quasi-isostatic pressure warm working (ecap working) method.
[Explanation of symbols]
1 Specimen 2 Die 3 Plunger 4 Pressurizer T 1 , T 2 thermocouple

Claims (2)

分散強化型元素0.1〜1質量%含む2元系のMg合金を、15以上、70以下の押出比で、250℃〜360℃の温度範囲にて温間加工した後、真歪で0.5以上、3以下の、250℃〜360℃の温度範囲にてイーキャップ加工を施すことを特徴とする高延性Mg合金素材の製法。The binary Mg alloys containing dispersion strengthened element 0.1 to 1 wt%, more than 15, 70 in the following extrusion ratio, after processing warm at a temperature range of 250 ° C. to 360 ° C., in true strain A process for producing a highly ductile Mg alloy material, wherein the ecap process is performed in a temperature range of 250 ° C. to 360 ° C. of 0.5 to 3 ° C. 前記分散強化型元素がZrである請求項1に記載の製法。The method according to claim 1, wherein the dispersion strengthened element is Zr.
JP2001353624A 2001-11-19 2001-11-19 Manufacturing method of highly ductile Mg alloy material Expired - Fee Related JP3808757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353624A JP3808757B2 (en) 2001-11-19 2001-11-19 Manufacturing method of highly ductile Mg alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353624A JP3808757B2 (en) 2001-11-19 2001-11-19 Manufacturing method of highly ductile Mg alloy material

Publications (2)

Publication Number Publication Date
JP2003155547A JP2003155547A (en) 2003-05-30
JP3808757B2 true JP3808757B2 (en) 2006-08-16

Family

ID=19165611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353624A Expired - Fee Related JP3808757B2 (en) 2001-11-19 2001-11-19 Manufacturing method of highly ductile Mg alloy material

Country Status (1)

Country Link
JP (1) JP3808757B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306051C (en) * 2003-09-18 2007-03-21 上海交通大学 Preparation process for quasi-crystal particles reinforced magnesium base composite material
DE502004003603D1 (en) * 2004-03-11 2007-06-06 Geesthacht Gkss Forschung Process for the production of profiles from magnesium material by means of extrusion
JP4840751B2 (en) * 2004-06-30 2011-12-21 独立行政法人物質・材料研究機構 High strength magnesium alloy and method for producing the same
JP5290326B2 (en) * 2008-01-14 2013-09-18 コリア インスティチュート オブ インダストリアル テクノロジー Semi-melt extrusion molding apparatus and method
JP6489576B2 (en) * 2014-11-06 2019-03-27 国立研究開発法人物質・材料研究機構 Method for producing a magnesium-based alloy extension material

Also Published As

Publication number Publication date
JP2003155547A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
JPS608300B2 (en) Manufacturing method of metal products
EP2811043B1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP2009280846A (en) Magnesium alloy forged member, and producing method therefor
WO2006129566A1 (en) Method for processing magnesium alloy sheet and magnesium alloy sheet
US10604828B2 (en) Al—Zn alloy comprising precipitates with improved strength and elongation and method of manufacturing the same
CN106756330A (en) The aluminium alloy extrusions and manufacture method of a kind of body of a motor car
JP4332889B2 (en) Method for producing magnesium-based alloy compact
CN110959046A (en) Magnesium-based alloy wrought material and method for producing same
CN104975214B (en) High-plasticity magnesium alloy and preparation method thereof
JP6784700B2 (en) Manufacturing method of titanium and titanium alloy articles
JP4769065B2 (en) Zn-Al alloy having excellent elongation and method for producing the same
JP3808757B2 (en) Manufacturing method of highly ductile Mg alloy material
JP3597747B2 (en) Manufacturing method of screw parts
JP2011099140A (en) Magnesium alloy and method for producing the same
JPH0681089A (en) Method for hot-working magnesium alloy
JP2000271693A (en) Production of magnesium alloy material
JP2010001538A (en) Method for manufacturing magnesium alloy material
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP2000087199A (en) Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product
JP4185549B1 (en) Manufacturing method of extrusion billet and manufacturing method of magnesium alloy material
US20210332462A1 (en) Aluminum alloy and manufacturing method thereof
JP2003268477A (en) HIGH-DUCTILITY Mg ALLOY
WO1997008354A1 (en) Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same
JP2729011B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees