JP4769065B2 - Zn-Al alloy having excellent elongation and method for producing the same - Google Patents

Zn-Al alloy having excellent elongation and method for producing the same Download PDF

Info

Publication number
JP4769065B2
JP4769065B2 JP2005333280A JP2005333280A JP4769065B2 JP 4769065 B2 JP4769065 B2 JP 4769065B2 JP 2005333280 A JP2005333280 A JP 2005333280A JP 2005333280 A JP2005333280 A JP 2005333280A JP 4769065 B2 JP4769065 B2 JP 4769065B2
Authority
JP
Japan
Prior art keywords
phase
alloy
elongation
less
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005333280A
Other languages
Japanese (ja)
Other versions
JP2007138242A (en
Inventor
敏晃 ▲高▼木
浩一 槙井
誠矢 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005333280A priority Critical patent/JP4769065B2/en
Priority to US11/581,032 priority patent/US20070107813A1/en
Priority to TW095140284A priority patent/TW200722530A/en
Priority to IT002110A priority patent/ITMI20062110A1/en
Priority to CNB2006101447910A priority patent/CN100453668C/en
Publication of JP2007138242A publication Critical patent/JP2007138242A/en
Application granted granted Critical
Publication of JP4769065B2 publication Critical patent/JP4769065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、室温での超塑性特性を活かした、建築用ダンパーなどの免震・制震デバイス用、自動車などの衝撃吸収部材、減衰性能を持つばね用材料、精密成形部品用、シール部材用、ガスケット部材用、また、室温での超塑性特性や変形性能が必要な箔材、薄膜形成用ターゲット材などの各種用途に使用できる、伸びに優れたZn−Al合金及びその製造方法に関するものである。   The present invention makes use of room temperature superplastic properties for building isolation and vibration control devices such as building dampers, shock absorbers for automobiles, spring materials with damping performance, precision molded parts, and seal members In addition, it relates to a Zn-Al alloy excellent in elongation that can be used for various uses such as a gasket material, a foil material that requires superplastic characteristics and deformation performance at room temperature, and a target material for forming a thin film, and a method for producing the same. is there.

近年、小型軽量のデバイスを提供できる制震用の金属として、毒性があるPbに代替でき、室温で超塑性を示し、毒性がない、Zn−Al合金が注目されている。   In recent years, Zn-Al alloys that can replace Pb that is toxic, show superplasticity at room temperature, and are not toxic as a metal for vibration control that can provide a small and lightweight device have attracted attention.

上記の様なZn−Al合金に関連して、ナノ結晶のZn−22%Al合金は373K(約100℃)で歪み速度1×10-4-1の変形にも追随できる超塑性が認められたことが報告されている(例えば、非特許文献1参照)。しかしながら、室温ではこのような超塑性は実現されていないため、室温での伸びが要求される建築用免震デバイスとして実際上使用することができない。 In relation to the Zn—Al alloy as described above, the nanocrystalline Zn-22% Al alloy has superplasticity that can follow deformation at a strain rate of 1 × 10 −4 S −1 at 373 K (about 100 ° C.). (For example, refer nonpatent literature 1). However, since such superplasticity is not realized at room temperature, it cannot be practically used as a building-based seismic isolation device that requires elongation at room temperature.

また、Zn−22%Al−2%Cu合金を、均熱化に水冷し、その後に冷間加工してα相内部にβ相が析出した組織を得て、室温超塑性を発現させたことが開示されている(非特許文献2参照)。ここで示されている伸びは135%であり、最大で160%の伸びが得られることが示されている。しかし、この文献には、温間加工した場合に、室温でこのような伸びを有することは示されていない。また冷間加工の場合であっても、Pbダンパーの代替として、より優れた室温超塑性(免震性能や制震性能)が望まれていることから、更なる伸びの向上(例えば、180%以上の伸び)が必要である。   In addition, the Zn-22% Al-2% Cu alloy was water-cooled for soaking, and then cold worked to obtain a structure in which the β phase was precipitated inside the α phase, thereby exhibiting room temperature superplasticity. Is disclosed (see Non-Patent Document 2). The elongation shown here is 135%, indicating that a maximum elongation of 160% is obtained. However, this document does not show such elongation at room temperature when warm worked. Even in the case of cold working, as room temperature superplasticity (seismic isolation performance and seismic performance) is desired as an alternative to Pb dampers, further improvement in elongation (for example, 180%) (Elongation above) is necessary.

また、実験的な微小な試料を用いて、室温で超塑性を発現するZn−22%Al合金が得られた旨報告されている(非特許文献3参照)。具体的には、金属組織の初期粒径が1〜15μmである円柱形のZn−22%Al合金を、5GPaという高圧下で強捻り変形(冷間変形)することによって、最終組織が、最微細部である中心部で0.1μm〜0.5μmとなったことが開示されている。   Further, it has been reported that a Zn-22% Al alloy that exhibits superplasticity at room temperature was obtained using an experimental minute sample (see Non-Patent Document 3). Specifically, a cylindrical Zn-22% Al alloy having an initial grain size of 1 to 15 μm is subjected to torsional deformation (cold deformation) under a high pressure of 5 GPa, so that the final structure is It is disclosed that the thickness is 0.1 μm to 0.5 μm at the center which is a fine part.

しかし上記方法では、中心部は超塑性を示す可能性のある微細組織であっても、中心から離れた外周部の粒状組織は粗大で超塑性現象を示さないといった、外周部と中心部で著しく異なる組織しか得られない。また、このような強捻り変形が適用できるサイズは、直径15mm程度で厚さ0.3mmと非常に小さいものに限定されるため、免震デバイスのような大荷重を受ける部材では、部材全体を上記微細組織とすることは困難であり、結果として部材全体が超塑性を発揮するものは得られない。   However, in the above method, even if the central part is a microstructure that may show superplasticity, the granular structure in the outer peripheral part away from the center is coarse and does not show superplasticity. Only different organizations can be obtained. In addition, since the size to which such torsional deformation can be applied is limited to a very small size of about 15 mm in diameter and 0.3 mm in thickness, a member that receives a heavy load such as a seismic isolation device is It is difficult to obtain the above-mentioned fine structure, and as a result, a material in which the entire member exhibits superplasticity cannot be obtained.

これに対して、本発明者らは、上記のようなZn−Al合金について、その特性改善という観点からかねてより研究を進めており、その研究の一環として、均一で安定した超微細組織を有し、室温でも超塑性と言える伸びを発現できる建築部材レベルのZn−Al合金を提案している(特許文献1参照)。   In contrast, the present inventors have been further researching the above-described Zn-Al alloys from the viewpoint of improving the characteristics, and as part of the research, have a uniform and stable ultrafine structure. In addition, a Zn-Al alloy at a building member level capable of expressing elongation that can be said to be superplastic even at room temperature has been proposed (see Patent Document 1).

この技術の開発によって、室温で優れた超塑性を示す実用サイズのZn−Al合金を実現できた。ただ、上記開発した合金では、歪速度が1×10-3-1程度における低速での変形能(以下「静的変形能」と呼ぶことがある)は優れており、室温で良好な超塑性を示す。しかし、歪速度が10-1-1程度と比較的高速での変形能(以下「動的変形能」と呼ぶことがある)が安定して得られない場合があった。また、こうした現象は、鋳塊が大型になるにつれて顕著であった。 Development of this technology has realized a practical size Zn-Al alloy that exhibits excellent superplasticity at room temperature. However, the above-developed alloy has excellent deformability at low speed (hereinafter sometimes referred to as “static deformability”) at a strain rate of about 1 × 10 −3 S −1, and is excellent at room temperature. Shows plasticity. However, there are cases in which a deformability at a relatively high speed (hereinafter, referred to as “dynamic deformability”) at a strain rate of about 10 −1 S −1 cannot be obtained stably. Moreover, such a phenomenon became more remarkable as the ingot became larger.

これに対して、上記動的変形能を向上させるために、特許文献1として提案した技術における超微細組織の制御に加えて、粗大なAl系介在物およびAlのマクロ偏析やミクロ偏析の低減を図ることを提案している(特許文献2参照)。   On the other hand, in order to improve the dynamic deformability, in addition to the control of the ultrafine structure in the technology proposed as Patent Document 1, coarse Al inclusions and Al macrosegregation and microsegregation are reduced. It is proposed to plan (see Patent Document 2).

また、更に、上記超微細組織の制御を平均結晶粒径が0.05μm以下と厳密に行わなくとも、この合金の製造過程において、不可避的に生成する合金組織中のポアについて、平均粒径0.5mm以上のポアを存在させないようにして、優れた動的変形能を得ることも提案している(特許文献3参照)。
特開平11−222643号公報(全文) 特開2004−162103号公報(全文) 特開2005−194541号公報(全文) R.S.Mishraら,The observation of tensile superplasticity in nanocrystalline materials: Nanostruct Mater.Vol. 9,No.1/8 p473-476(1997) G. Toress-Villasenorら,「A reinvestigation of the mechanical history on superplasticity of Zn-22Al-2Cu at roomtemperature」(Material. Science. Forum Vol. 243/245 ,P553(1997) ) M. Furukawa ら,「Fabrication of submicrometer-grained Zn-22%Al by torsion straining」J. Mater. Res. Vol. 11,No.9 P2128(1996)
Furthermore, even if the control of the ultrafine structure is not strictly performed with an average crystal grain size of 0.05 μm or less, the average grain size of the pores in the alloy structure inevitably generated in the manufacturing process of this alloy is 0 It has also been proposed to obtain excellent dynamic deformability by preventing the presence of pores of 5 mm or more (see Patent Document 3).
Japanese Patent Laid-Open No. 11-222643 (full text) JP 2004-162103 A (full text) Japanese Patent Laying-Open No. 2005-194541 (full text) RSMishra et al., The observation of tensile superplasticity in nanocrystalline materials: Nanostruct Mater.Vol. 9, No. 1/8 p473-476 (1997) G. Toress-Villasenor et al., “A reinvestigation of the mechanical history on superplasticity of Zn-22Al-2Cu at roomtemperature” (Material. Science. Forum Vol. 243/245, P553 (1997)) M. Furukawa et al., "Fabrication of submicrometer-grained Zn-22% Al by torsion straining" J. Mater. Res. Vol. 11, No. 9 P2128 (1996)

ただ、これらZn−Al合金においても解決すべき課題が残されている。それは、室温にて優れた超塑性特性を示すZn−Al合金も、低温になると、特に伸びが低下して、超塑性特性が低下してしまう点である。このため、寒冷地など低温で使用される建築用ダンパーなどには不向きであるという問題が新たに生じた。   However, problems to be solved still remain in these Zn-Al alloys. That is, the Zn-Al alloy exhibiting excellent superplastic properties at room temperature also has a particularly low elongation at low temperatures, resulting in a decrease in superplastic properties. For this reason, the problem that it is unsuitable for the damper for construction used at low temperature, such as a cold region, arose newly.

また、この問題とは別に、建築用ダンパーなどの大型化に伴い、Zn−Al合金鋳塊も必然的に大型化されるが、この大型化されたZn−Al合金において、特に、中心部と表層部との、硬度などの特性が不均一になるという問題が新たに生じた。   In addition to this problem, with the increase in size of building dampers and the like, the Zn-Al alloy ingot is inevitably increased in size, but in this enlarged Zn-Al alloy, A new problem has arisen that the surface layer portion has non-uniform characteristics such as hardness.

本発明はこれらの課題を解決するためになされたものであって、その目的は、伸びに優れたZn−Al合金およびその製造方法を提供することである。   The present invention has been made to solve these problems, and an object thereof is to provide a Zn—Al alloy excellent in elongation and a method for producing the same.

この目的を達成するために、本発明の伸びに優れたZn−Al合金の要旨は、Zn:68〜88質量%を含み、残部Alおよび不可避不純物からなるZn−Al合金であって、平均結晶粒径が5μm以下のα相またはα’相中にβ相が微細分散するとともに、Alのマクロ偏析が3.0%未満である組織を有し、中心部における組織中のラメラ状組織の体積分率が30%以下であり、中心部と表層部との互いの平均硬度差が15%以下であることとする。   In order to achieve this object, the gist of the Zn-Al alloy excellent in elongation of the present invention is Zn-Al alloy containing Zn: 68 to 88% by mass, the balance being Al and inevitable impurities, and an average crystal The β phase is finely dispersed in the α phase or the α ′ phase having a particle size of 5 μm or less, and the Al macrosegregation is less than 3.0%, and the volume of the lamellar structure in the structure in the center The fraction is 30% or less, and the average hardness difference between the center portion and the surface layer portion is 15% or less.

また、目的を達成するために、本発明の伸びに優れたZn−Al合金の製造方法の要旨は、Zn:68〜88質量%を含み、残部Alおよび不可避不純物からなるZn−Al合金溶湯を鋳型に注入して連続鋳造にて製造するに際して、注入溶湯と外部雰囲気とを遮断しつつ鋳込む工程、鋳込み後の鋳型冷却過程において、425〜375℃の温度範囲を1.0℃/秒以上、2℃/秒以下の平均冷却速度で冷却するとともに、275〜250℃の温度範囲を0.08℃/秒以上、0.9℃/秒以下の平均冷却速度で冷却する工程、350℃以上、390℃未満で加熱保持した後に、0.5℃/秒以上、6℃/秒以下の平均冷却速度で水冷急冷する再加熱工程、275℃以下および押出比4以上の温間加工する工程、を含むこととする。 In addition, in order to achieve the object, the gist of the Zn-Al alloy production method excellent in elongation of the present invention includes Zn: 68 to 88 mass%, and a molten Zn-Al alloy comprising the balance Al and inevitable impurities. When manufacturing by continuous casting after pouring into the mold, the temperature range of 425-375 ° C is 1.0 ° C / second or more in the casting process while shutting off the molten molten metal and the external atmosphere, and in the mold cooling process after casting. Cooling at an average cooling rate of 2 ° C./second or less , and cooling at a temperature range of 275 to 250 ° C. at an average cooling rate of 0.08 ° C./second or more and 0.9 ° C./second or less , 350 ° C. or more A reheating step of quenching with water at an average cooling rate of 0.5 ° C./second or more and 6 ° C./second or less, and a warm working step of 275 ° C. or less and an extrusion ratio of 4 or more after holding at 390 ° C. Is included.

Zn−Al合金が超塑性を示すためには、α相またはα′相中に、β相が分散析出した組織(以下、β分散α相ともいう)である必要がある。β分散α相は、βが析出していないα相とは全く異なり、結晶粒の移動による塑性変形によって200%以上の伸びを示すことができる。   In order for a Zn-Al alloy to exhibit superplasticity, it must have a structure in which a β phase is dispersed and precipitated in an α phase or an α ′ phase (hereinafter also referred to as a β dispersed α phase). The β-dispersed α phase is completely different from the α phase in which β is not precipitated, and can exhibit an elongation of 200% or more by plastic deformation due to the movement of crystal grains.

このため、Zn−Al合金インゴットは、通常、再加熱して、急冷し、β相をα相内で析出させたままとして、超塑性を発揮し得るβ分散のα組織を得る。この急冷の際に、冷却速度が低いと、βが拡散したラメラ状組織が生成し、加工処理での加工率が低い場合には、α相やβ相の微細化が不十分となり、室温での伸びが100〜140%程度に低くなる。   For this reason, the Zn—Al alloy ingot is usually reheated and rapidly cooled to obtain a β-dispersed α structure capable of exhibiting superplasticity with the β phase remaining precipitated in the α phase. During this rapid cooling, if the cooling rate is low, a lamellar structure in which β is diffused is generated, and if the processing rate in the processing is low, the α phase and β phase are not sufficiently refined, and at room temperature. Elongation of about 100 to 140%.

以上は、前記した特許文献3にも開示されている。しかし、この特許文献3には、ラメラ組織の形成と室温での伸び低下との関係の認識はあるものの、中心部におけるラメラ組織の形成と、伸び低下との関係の認識は無い。   The above is also disclosed in Patent Document 3 described above. However, although this Patent Document 3 recognizes the relationship between the formation of a lamellar structure and a decrease in elongation at room temperature, there is no recognition of the relationship between the formation of a lamellar tissue in the center and a decrease in elongation.

本発明では、低温での伸び低下の原因となる、特に、中心部におけるラメラ組織の形成を抑制し、低温や室温を含めた伸びに優れたZn−Al合金とする。また、この中心部におけるラメラ組織の形成抑制は、大型化されたZn−Al合金において、中心部と表面部との特性が不均一になるという問題の解消にもつながる。このため、均一性に優れたZn−Al合金も得ることができる。   In the present invention, the formation of a lamellar structure at the center, which causes a decrease in elongation at low temperatures, is suppressed, and a Zn—Al alloy excellent in elongation including low temperatures and room temperature is obtained. In addition, the suppression of the formation of the lamellar structure in the central part also leads to the solution of the problem that the characteristics of the central part and the surface part become non-uniform in the enlarged Zn-Al alloy. For this reason, the Zn-Al alloy excellent in uniformity can also be obtained.

(前提としての組織)
まず、本発明のZn−Al合金の組織の前提について説明する。本発明では、前記した通り、また、前記した特許文献1〜3と同様に、Zn−Al合金が超塑性を示すために、前提として、α相またはα′相中にβ相が分散析出した組織(β分散α相)とする。βが析出していないα相では超塑性は示さないが、β分散α相は、結晶粒の移動による塑性変形によって、室温で200%以上の伸びを示すことができる。
(Organization as a premise)
First, the premise of the structure of the Zn—Al alloy of the present invention will be described. In the present invention, as described above and in the same manner as in Patent Documents 1 to 3, the Zn-Al alloy exhibits superplasticity. As a premise, the β phase is dispersed and precipitated in the α phase or the α ′ phase. Let it be a structure (β-dispersed α-phase). The α phase in which β is not precipitated does not exhibit superplasticity, but the β-dispersed α phase can exhibit an elongation of 200% or more at room temperature due to plastic deformation caused by the movement of crystal grains.

ここで、α相は、主成分がAlの面心立方格子の結晶、α′相は、主成分がZnの面心立方格子の結晶、β相は、Znが主成分である六方稠密格子の結晶と定義される。   Here, the α phase is a face centered cubic lattice crystal whose main component is Al, the α ′ phase is a face centered cubic lattice crystal whose main component is Zn, and the β phase is a hexagonal close-packed lattice whose main component is Zn. Defined as crystal.

なお、Zn含有量により、金属組織は大きく異なる。上記超塑性を示す金属組織は、後述する好ましい製造方法を前提にすると、Znを68〜88質量%を含むZn−Al合金によって得られる。このZn−Al合金の場合には、マクロ的にはα単相組織であり、各α相またはα′相中にβ相が微細分散した組織を有している。   Note that the metal structure varies greatly depending on the Zn content. The metal structure exhibiting superplasticity is obtained by a Zn—Al alloy containing 68 to 88% by mass of Zn on the premise of a preferable manufacturing method described later. In the case of this Zn—Al alloy, it is an α single phase structure macroscopically, and has a structure in which the β phase is finely dispersed in each α phase or α ′ phase.

これに対し、Zn含有量が88質量%を越えた場合、各α相またはα′相中にβ相が微細分散しない、マクロ的にはα+βの2相の混合組織となり、超塑性は示さない組織となる。尚、「マクロなα相」「マクロなβ相」とは、倍率:1000倍程度の顕微鏡観察で認識することができる組織を言う。これに対し、本発明のβ分散α相において微細析出しているβ相は、約5000倍以上の顕微鏡観察で確認できる組織である。このため、本発明のα相において微細析出しているβ相は、上記マクロなβ相と明確に区別できる。   On the other hand, when the Zn content exceeds 88% by mass, the β phase is not finely dispersed in each α phase or α ′ phase, and it becomes a mixed structure of two phases of α + β macroscopically and does not show superplasticity. Become an organization. “Macro α phase” and “macro β phase” refer to a structure that can be recognized by microscopic observation at a magnification of about 1000 times. In contrast, the β phase finely precipitated in the β-dispersed α phase of the present invention is a structure that can be confirmed by microscopic observation of about 5000 times or more. For this reason, the β phase finely precipitated in the α phase of the present invention can be clearly distinguished from the macro β phase.

Zn含有量が88質量%を越えたZn−Al合金の場合、α+βの2相の混合組織の内のマクロなβ相は、常温回復現象にて65%程度の延性を発揮するだけである。一方、Znを68〜88質量%を含むZn−Al合金の場合、β分散α相が200%以上の伸びを発揮して、β相の粒界面に応力集中が起こるのを回避できるため、全体として160%超の伸びが示される。   In the case of a Zn—Al alloy having a Zn content exceeding 88 mass%, the macro β phase in the α + β two-phase mixed structure only exhibits a ductility of about 65% in the normal temperature recovery phenomenon. On the other hand, in the case of a Zn-Al alloy containing 68 to 88% by mass of Zn, the β-dispersed α phase exhibits an elongation of 200% or more, and it is possible to avoid stress concentration from occurring at the grain interface of the β phase. Shows an elongation of more than 160%.

これに対し、Zn含有量が88質量%を越えたZn−Al合金のような、内部にβの析出がないα相とβ相の2相組織(α+β)では、α相、β相それぞれの延性が発現されるだけであり、超塑性を発現できない。また、マクロなβ相は、常温回復現象(転位の回復)が起き、変形抵抗は安定するが、伸びは65%程度である。よって、βの析出がないα相とβ相の2相組織(α+β)では、全体としての伸びが68%程度にとどまる。   On the other hand, in a two-phase structure (α + β) of α phase and β phase in which there is no precipitation of β inside, such as a Zn-Al alloy whose Zn content exceeds 88 mass%, each of α phase and β phase Only ductility is expressed, and superplasticity cannot be expressed. In the macro β phase, a normal temperature recovery phenomenon (dislocation recovery) occurs and the deformation resistance is stabilized, but the elongation is about 65%. Therefore, in the two-phase structure (α + β) of α phase and β phase in which β is not precipitated, the overall elongation is only about 68%.

なお、この様なβが析出していないα相やマクロなβ相は、組織中に存在しない方が好ましいが、超塑性を発揮し得るβ分散α相を有する組織であれば、この超塑性を阻害しない範囲で、マクロなβ相が混在していてもよい。   In addition, it is preferable that the α phase in which β is not precipitated or the macro β phase is not present in the structure. However, if the structure has a β-dispersed α phase capable of exerting superplasticity, the superplasticity As long as it does not hinder, a macro β-phase may be mixed.

(平均結晶粒径)
これら主相となるα相またはα’相や、α相またはα’相に析出したβ相は、その平均結晶粒径が5μm以下とし、特に、3.5μm以下であることが好ましい。α相またはα′相や、これに析出したβ相は、微細であるほど超塑性を発揮し易くなる。一方、平均結晶粒径が5μmを越えた場合、室温で伸び160%超の室温超塑性(静的変形能)を発揮することが困難となる。
(Average crystal grain size)
The α phase or α ′ phase serving as the main phase and the β phase precipitated in the α phase or α ′ phase have an average crystal grain size of 5 μm or less, and particularly preferably 3.5 μm or less. As the α phase or α ′ phase and the β phase precipitated on the α phase or α ′ phase become finer, it becomes easier to exhibit superplasticity. On the other hand, when the average crystal grain size exceeds 5 μm, it becomes difficult to exhibit room temperature superplasticity (static deformability) with an elongation exceeding 160% at room temperature.

(ラメラ状組織)
本発明では、低温や室温での伸びを向上させるために、中心部のラメラ状組織の体積分率を30%以下として、中心部のラメラ状組織を抑制する。中心部は、Zn−Al合金インゴットを、再加熱して急冷する際に、表層部に比して、必然的に冷却速度が低くなる。このため、βが拡散したラメラ状組織が生成しやすい。従来、ラメラ状組織が生成しやすく、低温を含めて伸びが低下していたのは、この理由による。
(Lamellar tissue)
In the present invention, in order to improve elongation at a low temperature or room temperature, the volume fraction of the lamellar tissue at the center is set to 30% or less to suppress the lamellar tissue at the center. When the Zn—Al alloy ingot is reheated and rapidly cooled, the center portion inevitably has a lower cooling rate than the surface layer portion. For this reason, the lamellar structure | tissue which (beta) diffused is easy to produce | generate. Conventionally, a lamellar structure is easily generated, and the elongation has been reduced including low temperature for this reason.

また、中心部のラメラ状組織生成は、中心部と表層部との組織および特性の不均一さを生じる。このため、中心部と表面部との特性、特に硬度が不均一になるという問題を生じる。このため、中心部のラメラ状組織の30%以下への抑制は、硬度など、板厚方向の均一性を向上させる。したがって、中心部と表層部との互いの平均硬度差を15%以下に均一化させることが可能となる。一方、表層部の側は、中心部のラメラ状組織の体積分率を30%以下に抑制すれば、必然的にラメラ状組織の体積分率を30%以下に抑制できる。   In addition, the generation of a lamellar structure in the central part causes unevenness in the structure and characteristics of the central part and the surface layer part. For this reason, the characteristic of the center part and the surface part, especially the problem that hardness becomes non-uniform | heterogenous arises. For this reason, suppression to 30% or less of the lamellar structure | tissue of a center part improves the uniformity of thickness direction, such as hardness. Therefore, the average hardness difference between the center portion and the surface layer portion can be made uniform to 15% or less. On the other hand, if the volume fraction of the lamellar tissue at the center is suppressed to 30% or less on the surface layer side, the volume fraction of the lamellar tissue can inevitably be suppressed to 30% or less.

ここで、本発明で言う中心部とは、Zn−Al合金の中心位置からの距離が、中心位置と最外部の距離の10%以内の部分を指す。この中心位置とは、合金が例えば丸棒材であれば、横断面における径方向の中心を指す。合金が角棒材であれば、横断面における対角線の交点を指し、合金がその他形状であれば一般に断面の重心位置を指す。また、合金が板材の場合は、その板厚中心である。同様に、本発明で言う表層部とは、表層からの距離が、中心位置と最外部の距離の10%以内の部分を指す。   Here, the center portion referred to in the present invention refers to a portion where the distance from the center position of the Zn—Al alloy is within 10% of the distance between the center position and the outermost portion. This center position refers to the center in the radial direction in the cross section if the alloy is, for example, a round bar. If the alloy is a square bar, it indicates the intersection of diagonal lines in the cross section, and if the alloy is in other shapes, it generally indicates the position of the center of gravity of the cross section. Moreover, when an alloy is a board | plate material, it is the board thickness center. Similarly, the surface layer portion referred to in the present invention refers to a portion whose distance from the surface layer is within 10% of the distance between the center position and the outermost portion.

ラメラ状組織は、前記した通り、3000倍以上のSEM(走査型電子顕微鏡)観察で、β分散α相中に、数〜数十ミクロンサイズの層状構造をした組織として観察できる。このため、粒状のα相またはα′相とは、明確に識別できる。図1に、3000倍のSEMによる、後述する実施例表2における比較例8(中心部のラメラ状組織の体積分率が25%)の組織を示す。図1において、○印で囲んで例示している層状構造をした組織がラメラ状組織である。これに対して、その周囲の白色の粒状の組織が亜鉛のβ相、黒色の粒状の組織がアルミのα相またはα′相である。   As described above, the lamellar structure can be observed as a structure having a layered structure of several to several tens of microns in the β-dispersed α phase by SEM (scanning electron microscope) observation of 3000 times or more. For this reason, it can be clearly distinguished from the granular α phase or α ′ phase. FIG. 1 shows the structure of Comparative Example 8 (the volume fraction of the lamellar tissue at the center is 25%) in Example Table 2 to be described later, using an SEM of 3000 times. In FIG. 1, a structure having a layered structure exemplified by circles is a lamellar structure. On the other hand, the surrounding white granular structure is the zinc β phase, and the black granular structure is the aluminum α phase or α ′ phase.

中心部のラメラ状組織の体積分率は、Zn−Al合金の中心部において、SEMにより3000倍の反射電子像にて、約35μm×約25μmの大きさの各10視野の組織観察を行なう。そして、上記のとおり明確に識別されるラメラ状組織をトレースまたは画像処理し、各視野内のラメラ状組織の体積分率を測定し、10視野で平均化する。   The volume fraction of the lamellar structure in the central part is observed in the structure of 10 visual fields each having a size of about 35 μm × about 25 μm in a 3000-fold backscattered electron image by SEM in the central part of the Zn—Al alloy. Then, the lamellar tissue clearly identified as described above is traced or image-processed, the volume fraction of the lamellar tissue in each visual field is measured, and averaged over 10 visual fields.

(Alのマクロ偏析)
Alのマクロ偏析は、Zn−Al合金鋳塊のトップとボトムおよび、厚み方向で起こる偏析である。本発明では、Zn−Al合金の動的変形能を良好にするため、Alのマクロ偏析が3.0%未満であることとする。このAlのマクロ偏析は、得られたZn−Al合金温間加工材における、鋳塊時のトップ部とボトム部とを各々切断し、これらの切断面(断面)における中心部と表層部との計4箇所から、試験片を採取し、夫々の部位におけるAl含有量(濃度)を測定する。そして、Zn−Al合金のAl含有量(平均)からのズレが最大値のものをマクロ偏析とし、Zn−Al合金のAl含有量(平均)との差(Al含有量最大値−Al含有量)を、Alのマクロ偏析として求める。このAlのマクロ偏析が3.0%以上となった場合、室温および低温での動的変形能が低下する。
(Al macrosegregation)
Macro segregation of Al is segregation that occurs in the top and bottom of the Zn-Al alloy ingot and in the thickness direction. In the present invention, in order to improve the dynamic deformability of the Zn—Al alloy, the Al macrosegregation is less than 3.0%. This macro segregation of Al cuts the top part and the bottom part at the time of ingot in the obtained Zn-Al alloy warm work material, respectively, and the center part and surface layer part in these cut surfaces (cross section) Test specimens are collected from a total of four locations, and the Al content (concentration) at each site is measured. And the thing with the largest deviation from Al content (average) of Zn-Al alloy is made macro-segregation, and the difference from Al content (average) of Zn-Al alloy (Al content maximum value-Al content ) As macro segregation of Al. When the macrosegregation of Al is 3.0% or more, the dynamic deformability at room temperature and low temperature decreases.

(Al系介在物)
Zn−Al合金の動的変形能を良好にするには、Zn−Al合金における、粗大な介在物の低減を図ることが好ましい。この粗大な介在物は、Al2 3 などのAl系介在物が主体だが、これには限定されずに、粗大な介在物全部を規制する。これら粗大な介在物は、破壊の起点となって、動的変形能ばかりか静的変形能を低下させる。したがって、これらの特性を低下させないためには、組織中の、介在物の最大径を円相当直径で50μm以下とすることが好ましい。
(Al inclusions)
In order to improve the dynamic deformability of the Zn—Al alloy, it is preferable to reduce coarse inclusions in the Zn—Al alloy. The coarse inclusions are mainly Al inclusions such as Al 2 O 3 , but the coarse inclusions are not limited to this and restrict all coarse inclusions. These coarse inclusions become the starting point of fracture and reduce not only the dynamic deformability but also the static deformability. Therefore, in order not to deteriorate these characteristics, it is preferable that the maximum diameter of inclusions in the tissue is 50 μm or less in terms of the equivalent circle diameter.

(ポア)
Zn−Al合金の動的変形能を良好にするには、円相当直径で0.5mm以上のポア (空孔) が存在しないことが好ましい。このポアも破壊の起点となって、動的変形能ばかりか静的変形能を低下させる。したがって、これらの特性を低下させないためには、組織中のポアを円相当直径で0.5mm未満とすることが好ましい。
(Pore)
In order to improve the dynamic deformability of the Zn—Al alloy, it is preferable that pores (voids) having an equivalent circle diameter of 0.5 mm or more do not exist. This pore also serves as a starting point for destruction and reduces not only the dynamic deformability but also the static deformability. Therefore, in order not to deteriorate these characteristics, it is preferable that the pores in the tissue have a circle equivalent diameter of less than 0.5 mm.

(化学成分組成)
本発明のZn−Al合金の化学成分組成について説明する。本発明のZn−Al合金の成分組成は、Zn含有量が68〜88質量%で、残部がAlおよび不可避不純物である。前記した通り、Zn含有量により、合金の金属組織は大きく異なる。上記超塑性を示す金属組織は、後述する好ましい製造方法を前提にすると、上記組成のZn−Al合金によって得られる。このZn−Al合金の場合には、マクロ的にはα単相組織であり、各α相またはα′相中にβ相が微細分散した組織を有している。そして、このβ分散α相が200%以上の伸びを発揮して、β相の粒界面に応力集中が起こるのを回避できるため、全体として160%超の伸びが示される。
(Chemical composition)
The chemical component composition of the Zn—Al alloy of the present invention will be described. The composition of the Zn—Al alloy of the present invention is such that the Zn content is 68 to 88% by mass, and the balance is Al and inevitable impurities. As described above, the metal structure of the alloy varies greatly depending on the Zn content. The metal structure exhibiting superplasticity is obtained by a Zn—Al alloy having the above composition on the premise of a preferable production method described later. In the case of this Zn—Al alloy, it is an α single phase structure macroscopically, and has a structure in which the β phase is finely dispersed in each α phase or α ′ phase. This β-dispersed α-phase exhibits an elongation of 200% or more, and it is possible to avoid stress concentration at the β-phase grain interface, so that an overall elongation of more than 160% is shown.

これに対し、Zn含有量が88質量%を越えた場合、前記した通り、各α相またはα′相中にβ相が微細分散しない、マクロ的にはα+βの2相の混合組織(α+β)となる。このα+βの2相の混合組織の内のマクロなβ相は、常温回復現象(転位の回復)が起き、変形抵抗は安定するが、常温回復現象にて65%程度の延性を発揮するだけである。したがって、このα+βの2相の混合組織は、α相、β相それぞれの延性が発現されるだけであり、全体としての伸びが68%程度にとどまる、超塑性は示さない組織となる。   On the other hand, when the Zn content exceeds 88% by mass, as described above, the β phase is not finely dispersed in each α phase or α ′ phase, and in a macroscopic manner, a mixed structure of two phases of α + β (α + β) It becomes. The macro β phase in this α + β two-phase mixed structure undergoes a normal temperature recovery phenomenon (recovery of dislocations) and the deformation resistance is stabilized, but only exhibits a ductility of about 65% in the normal temperature recovery phenomenon. is there. Therefore, this α + β two-phase mixed structure is such that only the ductility of each of the α phase and β phase is manifested, and the overall elongation is only about 68% and does not exhibit superplasticity.

一方、上記範囲では、Znの含有量が小さくなるにつれて、β析出量が減少し、結晶粒の移動による塑性変形が起こっても、伸びが低下する傾向にある。そして、Znの含有量が68質量%未満では、本発明の条件で処理しても100%を超える伸びを発現できない。   On the other hand, in the above range, as the Zn content decreases, the amount of β precipitation decreases, and even if plastic deformation occurs due to the movement of crystal grains, the elongation tends to decrease. And if content of Zn is less than 68 mass%, even if it processes on the conditions of this invention, the elongation exceeding 100% cannot be expressed.

本発明のZn−Al合金は、上記要件を満たせば、ヒステリシスの安定性を損なわない範囲で、定常応力が加工量、歪み速度によってあまり変化しないように、強化元素であるCu、Si、Mn、Mgを含有していてもよい。また、伸びの向上のために、結晶微細化に有効なZr、Ti、Bを含有してもよい。   As long as the Zn-Al alloy of the present invention satisfies the above requirements, the strengthening elements such as Cu, Si, Mn, Mg may be contained. Moreover, Zr, Ti, and B effective for crystal refinement may be contained in order to improve elongation.

(製造方法)
上記要件を満たし、伸びに優れた本発明Zn−Al合金を効率良く得るための、好ましい製造方法について、以下に説明する。
(Production method)
A preferable production method for efficiently obtaining the Zn-Al alloy of the present invention satisfying the above requirements and excellent in elongation will be described below.

好ましい製造方法は、上記組成のZn−Al合金溶湯を鋳型に注入して製造するに際して、注入溶湯と外部雰囲気とを遮断しつつ鋳込む工程、鋳込み後の鋳型冷却工程、再加熱工程、温間加工工程の主要工程からなる。   A preferred production method is that when a molten Zn-Al alloy having the above composition is poured into a mold, the casting process is performed while shutting off the molten molten metal and the external atmosphere, the casting mold cooling process after casting, the reheating process, Consists of the main processing steps.

(鋳込工程)
Zn−Al合金溶湯を鋳型に注入して製造するに際して、注入溶湯と外部雰囲気とを遮断することが好ましい。注入溶湯と外部雰囲気とを遮断しつつ鋳込むことで、酸素との結合を抑制できるので、結果としてAl2 O3 などの酸化物系介在物の粗大化を抑制することができる。この結果、Al系などの介在物の最大径を円相当直径で50μm以下に抑えることができる。具体的な遮断方法としては、鋳込み時の周囲雰囲気を真空雰囲気やArガス雰囲気とすること(Arシール)や、注入ノズルを溶湯に浸漬(ノズル浸漬)することが有効である。
(Casting process)
When the molten Zn—Al alloy is injected into the mold and manufactured, it is preferable to block the injected molten metal from the external atmosphere. By casting while blocking the injected molten metal and the external atmosphere, the bond with oxygen can be suppressed, and as a result, coarsening of oxide inclusions such as Al2 O3 can be suppressed. As a result, the maximum diameter of inclusions such as Al can be reduced to a circle equivalent diameter of 50 μm or less. As a specific blocking method, it is effective to set the ambient atmosphere during casting to a vacuum atmosphere or an Ar gas atmosphere (Ar seal), or to immerse the injection nozzle in the molten metal (nozzle immersion).

(鋳込後の鋳型冷却過程1)
鋳込後の鋳型冷却過程では、先ず、425〜375℃の温度範囲を1.0℃/秒以上の平均冷却速度で冷却する。鋳込み後の鋳型冷却過程で、固液2相領域に相当する425〜375℃の温度範囲を、1.0℃/秒以上の平均冷却速度で冷却することによって、マクロ偏析の原因となる粗大凝固組織の生成を抑制できる。即ち、上記の温度範囲を比較的速い冷却速度で冷却することによって、Alの晶出物が粗大化し、これによって粗大凝固組織の生成が抑制される。
(Mold cooling process 1 after casting)
In the mold cooling process after casting, first, the temperature range of 425 to 375 ° C. is cooled at an average cooling rate of 1.0 ° C./second or more. Coarse solidification that causes macro segregation by cooling the temperature range of 425-375 ° C corresponding to the solid-liquid two-phase region at an average cooling rate of 1.0 ° C / second or more in the mold cooling process after casting. Tissue generation can be suppressed. That is, by cooling the above temperature range at a relatively high cooling rate, the Al crystallization is coarsened, thereby suppressing the formation of a coarse solidified structure.

(鋳込後の鋳型冷却過程2)
鋳込後の鋳型冷却過程では、次いで、275〜250℃の温度範囲を0.08℃/秒以上の平均冷却速度で冷却する。鋳込み後の鋳型冷却過程で、α+βの2相領域に相当する275〜250℃の温度範囲を0.08℃/秒以上の平均冷却速度で冷却することによって、粗大β相の析出を抑制でき、α相内の粗大β相を主な原因とするミクロ偏析を抑制できる。即ち、上記の温度範囲を比較的速い速度で冷却することによって、ZnやAlの析出物の粗大化を抑制し、これによって粗大β相の生成を抑制して、微細分散したβ相を得ることができる。
(Mold cooling process 2 after casting)
In the mold cooling process after casting, the temperature range of 275 to 250 ° C. is then cooled at an average cooling rate of 0.08 ° C./second or more. In the mold cooling process after casting, by cooling the temperature range of 275 to 250 ° C. corresponding to the α + β two-phase region at an average cooling rate of 0.08 ° C./second or more, precipitation of the coarse β phase can be suppressed, Microsegregation caused mainly by the coarse β phase in the α phase can be suppressed. That is, by cooling the above temperature range at a relatively fast rate, the coarsening of Zn and Al precipitates is suppressed, thereby suppressing the formation of coarse β phase and obtaining a finely dispersed β phase. Can do.

(再加熱工程)
再加熱工程では、上記鋳型冷却によって、室温あるいは250℃以下の温度まで冷却された鋳塊を、再加熱し、350℃以上で加熱保持した後に急冷する。上記の通り、鋳型内冷却過程で冷却速度を速めることによって、粗大凝固組織の生成をある程度抑制できるが、粗大凝固組織の生成をより抑えるためには、上記鋳型冷却後に、再加熱を行い、均質化を図ることが有効である。
(Reheating process)
In the reheating step, the ingot cooled to room temperature or a temperature of 250 ° C. or lower by the above mold cooling is reheated, heated and held at 350 ° C. or higher, and then rapidly cooled. As described above, by increasing the cooling rate in the mold cooling process, the formation of coarsely solidified structure can be suppressed to some extent, but in order to further suppress the formation of coarsely solidified structure, reheating is performed after the mold is cooled and homogeneous It is effective to make it easier.

この均質化を十分に図るには、均熱温度を350℃以上とするのが良い。但し、390℃以上になると、鋳塊が溶解する恐れがあるので、390℃未満とすることが好ましい。   In order to achieve sufficient homogenization, the soaking temperature is preferably 350 ° C. or higher. However, if the temperature is 390 ° C. or higher, the ingot may be dissolved.

また、再加熱時の上記温度での保持時間は、例えば50kg以下の小型インゴットの場合には、1時間程度で十分に均質化されるが、例えば150kg級或はそれ以上の大型インゴットになると、合金全体を350℃以上とするのに8時間以上の長時間を要する。これは、β粒子がαマトリックスに再固溶するときに吸熱量が大き過ぎて、外部からの熱をインゴットが吸収してしまうためであり、大型インゴットの場合、雰囲気加熱を長時間化せざるを得なくなる。こうしたことから、高周波加熱を行うことも考えられる。高周波加熱では強制的に加熱するので、長時間の加熱を必要としなくてもよいが、大型インゴットの場合には工業的にコストアップの要因となる。   Further, the holding time at the above-mentioned temperature at the time of reheating is sufficiently homogenized in about 1 hour in the case of a small ingot of 50 kg or less, for example, when a large ingot of 150 kg class or more, for example, It takes a long time of 8 hours or more to bring the entire alloy to 350 ° C. or higher. This is because when the β particles are re-dissolved in the α matrix, the endotherm is too large and the ingot absorbs heat from the outside. In the case of a large ingot, the atmosphere heating must be prolonged. No longer get. For these reasons, high-frequency heating can be considered. Since high-frequency heating is forcibly heated, it may not be necessary to heat for a long time. However, in the case of a large ingot, it is an industrial cost increase factor.

上記350℃以上で加熱保持した後には、0.5℃/秒以上の平均冷却速度で急冷する。再加熱時に350℃以上に保持することによって、β相をα相内に閉じ込めてミクロ偏析を防止し、冷却後に超塑性を発揮し得るβ分散のα組織の合金を得るには、再加熱後(均熱後)に、0.5℃/秒以上の平均冷却速度で急冷する必要がある。急冷は、室温まで行う他、後述する温間加工温度まで急冷してもよい。   After the heating and holding at 350 ° C. or higher, rapid cooling is performed at an average cooling rate of 0.5 ° C./second or higher. By maintaining the temperature at 350 ° C. or higher during reheating, the β phase is confined in the α phase to prevent microsegregation, and a β-dispersed α structure alloy that can exhibit superplasticity after cooling is obtained after reheating. It is necessary to rapidly cool (after soaking) at an average cooling rate of 0.5 ° C./second or more. The rapid cooling may be performed to room temperature or may be performed to a warm processing temperature described later.

この急冷により、α′から安定なαへの移行を抑え、マクロレベルで2相分離する程度までβが拡散するのを抑制できる。その結果、β相をα相内で析出させたままとすることができ、超塑性を発揮し得るβ分散のα組織が得られる。上記0.5℃/秒以上の平均冷却速度の急冷を得るためには、水冷することが好ましい。炉冷や空冷では、0.5℃/秒以上の平均冷却速度を得ることが困難で、βが拡散してラメラ状組織となる。この段階でラメラ組織が形成されると、下記加工処理での加工率が低い場合にはα相やβ相の微細化が不十分となり易く、室温での伸びが100〜140%程度にとどまり、160%超の伸びを確実に達成できない。   By this rapid cooling, the transition from α ′ to stable α can be suppressed, and β can be prevented from diffusing to the extent of two-phase separation at the macro level. As a result, the β phase can be kept precipitated in the α phase, and a β-dispersed α structure capable of exhibiting superplasticity can be obtained. In order to obtain rapid cooling at an average cooling rate of 0.5 ° C./second or higher, water cooling is preferable. In furnace cooling or air cooling, it is difficult to obtain an average cooling rate of 0.5 ° C./second or more, and β diffuses to form a lamellar structure. When a lamellar structure is formed at this stage, if the processing rate in the following processing is low, the α phase and β phase are likely to be insufficiently refined, and the elongation at room temperature is only about 100 to 140%. An elongation of over 160% cannot be reliably achieved.

(分塊加工工程)
分塊加工は、上記再加熱(均熱)急冷後に、275℃以下の温度で選択的に行う。本発明製造方法では、工程効率上、分塊加工を行なわずに、温間加工する方法が推奨される。また、分塊加工を行なわずとも、従来の分塊加工により行なっていた組織制御は、温間加工により達成できる。
(Bundling process)
The lump processing is selectively performed at a temperature of 275 ° C. or less after the reheating (soaking) and rapid cooling. In the production method of the present invention, a method of performing warm processing without performing lump processing is recommended in terms of process efficiency. Moreover, the structure control performed by the conventional block processing can be achieved by warm processing without performing the block processing.

分塊加工を行なう場合、加工温度が275℃を超えると組織が変態し、形成したβ分散α相が、再度、αまたはα′相とβの2相組織になる恐れがある。この点、好ましくは200℃以下で分塊加工を行うのがよい。一方、加工温度が低すぎると、加工割れが生じる可能性があるので、100℃以上で分塊加工を行うことが推奨される。また、分塊加工後の冷却速度を約3℃/秒以上で冷却することが好ましい。その理由は、再加熱後の冷却と同じく得られたβ分散α相を固定するためであり、具体的には水冷することが好ましい。   In the case of performing block processing, when the processing temperature exceeds 275 ° C., the structure is transformed, and the formed β-dispersed α phase may become a two-phase structure of α or α ′ phase and β again. In this respect, it is preferable to perform the lump processing at 200 ° C. or less. On the other hand, if the processing temperature is too low, there is a possibility that processing cracks will occur, so it is recommended to perform the lump processing at 100 ° C. or higher. Moreover, it is preferable to cool at a cooling rate of about 3 ° C./second or more after the chunk processing. The reason is to fix the β-dispersed α-phase obtained in the same manner as the cooling after reheating, and specifically, it is preferable to cool with water.

(温間加工工程)
温間加工は、分塊加工無しで上記再加熱(均熱)および急冷後に、あるいは上記分塊加工後に、行なう。この温間加工の手段は、鍛造、押出、伸線加工などが挙げられるが、生産効率的にも、押出加工が好ましい。
(Warm processing process)
Warm processing is performed after the reheating (soaking) and rapid cooling without the lump processing, or after the lump processing. Examples of the warm working means include forging, extrusion, wire drawing, and the like, but extrusion is also preferred in terms of production efficiency.

押出加工の条件は、275℃以下の温度で、かつ押出し比4以上で温間加工することが好ましい。温間加工温度が275℃を超えると、組織が変態し、形成したβ分散α相が、再度、αまたはα′相とβとの2相組織になる恐れがある。この点、好ましくは200℃以下で温間加工を行うのがよい。一方、温間加工温度が低すぎると加工割れが生じる可能性があるので、100℃以上で温間加工を行うことが推奨される。   Extrusion conditions are preferably warm processing at a temperature of 275 ° C. or lower and an extrusion ratio of 4 or higher. When the warm processing temperature exceeds 275 ° C., the structure is transformed, and the formed β-dispersed α phase may become a two-phase structure of α or α ′ phase and β again. In this respect, it is preferable to perform warm working at 200 ° C. or lower. On the other hand, if the warm working temperature is too low, processing cracks may occur, so it is recommended to perform warm working at 100 ° C. or higher.

温間加工での押出比は、物理的外力を与えて室温で超塑性と言える伸びを発現させるために4以上とする。即ち、分塊加工無しの場合、上記均熱後、急冷した段階で、β分散α相は得られており、α相やα´相は10〜2μm程度、α相内やα´相内のβ相は0.05〜0.1μm程度となっている。この様な組織は、約100〜150℃の高温域では超塑性といえる180%以上の伸びを示すが、室温ではそのような伸びを示さない。   The extrusion ratio in the warm working is set to 4 or more in order to give a physical external force and develop an elongation that can be said to be superplastic at room temperature. That is, in the case of no lump processing, the β-dispersed α phase is obtained at the stage of rapid cooling after the soaking, the α phase and the α ′ phase are about 10 to 2 μm, the α phase and the α ′ phase are within the phase. The β phase is about 0.05 to 0.1 μm. Such a structure exhibits an elongation of 180% or more, which can be said to be superplastic, at a high temperature range of about 100 to 150 ° C., but does not exhibit such an elongation at room temperature.

このため、室温で超塑性と言えるような伸びを発現させるには、上記均熱、急冷後に、温間で物理的外力(歪み量)を与えて、αまたはα′結晶粒、更にはα中またはα′中に存在するβ相を微細化するとともに、ポアを潰す必要がある。そこで、上記均熱、急冷後に、押出比4以上で温間加工する。温間加工での押出比が4未満では、歪み量が小さ過ぎて、上記均熱後急冷した組織と同様に、高温域では超塑性といえる伸びを示すが、室温では超塑性と言える伸びが発現しない。   For this reason, in order to develop elongation that can be said to be superplastic at room temperature, after applying the above-mentioned soaking and quenching, a physical external force (amount of strain) is given warmly, α or α ′ crystal grains, and further in α Alternatively, it is necessary to refine the β phase present in α ′ and to crush the pores. Therefore, after the soaking and quenching, warm working is performed at an extrusion ratio of 4 or more. When the extrusion ratio in warm processing is less than 4, the amount of strain is too small and, like the above-described structure that has been rapidly cooled after soaking, it exhibits elongation that can be said to be superplastic at high temperatures, but it can be said to be superplastic at room temperature. Not expressed.

温間加工後は約3℃/秒以上で室温まで冷却すればよい。具体的には水冷を行なうことが好ましい。これは、前記再加熱後の冷却と同様に、得られたβ分散α相を固定するためであり、このときの冷却速度が遅いと、β分散α相が粗大化し、室温での超塑性は発現しなくなる。   What is necessary is just to cool to room temperature at about 3 degree-C / sec or more after warm processing. Specifically, it is preferable to perform water cooling. This is to fix the obtained β-dispersed α-phase in the same manner as the cooling after the reheating. When the cooling rate at this time is slow, the β-dispersed α-phase becomes coarse, and the superplasticity at room temperature is It will not develop.

尚、本発明では、この温間加工によって組織の超微細化を図ることができるので、更に冷間加工を行なっても良いが、殊更行なう必要はない。   In the present invention, since the microstructure can be refined by this warm working, further cold working may be performed, but it is not necessary to perform further.

(接合)
本発明のZn−Al合金は、硬さが軟鋼とほぼ同等またはそれよりやや柔らかいので、ボルト締め、リベット締め等の一般的な接合技術にも使用でき、建築構造物等との接合を容易に行うことができる。但し、はんだ付けのように熱を加
えて接合する場合には、加熱温度を250℃以下、好ましくは100℃以下に抑える必要がある。上述のように250℃以上では組織が変態するおそれがあり、また100℃以上に加熱した後、急冷しなければ、せっかく得られた微細組織が粗大化し、室温で160%を超える伸びを確保することが困難となる場合があるからである。
(Joining)
The Zn-Al alloy of the present invention has a hardness almost equal to or slightly softer than that of mild steel, so it can be used for general joining techniques such as bolting and riveting, and can be easily joined to building structures. It can be carried out. However, when joining by applying heat like soldering, it is necessary to suppress the heating temperature to 250 ° C. or lower, preferably 100 ° C. or lower. As described above, the structure may be transformed at 250 ° C. or higher, and if it is not rapidly cooled after heating to 100 ° C. or higher, the fine structure obtained is coarsened and the elongation exceeding 160% is secured at room temperature. This may be difficult.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. Included in the range.

(Zn−Al合金の製造)
表1に示す組成のZn−Al合金溶湯(いずれもFe、Cu、Si、Mn、Mg、Zr、Ti、Bのトータル不純物量は0.5質量%以下)を、径φ142にて連続鋳造を行ない、表1に示す冷却速度で鋳造し、Zn−Al合金インゴット(インゴットサイズ:180kg)を得た。
(Production of Zn-Al alloy)
Continuous casting of a Zn-Al alloy melt having the composition shown in Table 1 (all of which Fe, Cu, Si, Mn, Mg, Zr, Ti, and B have a total impurity content of 0.5 mass% or less) with a diameter of φ142. This was cast at a cooling rate shown in Table 1 to obtain a Zn-Al alloy ingot (ingot size: 180 kg).

尚、インゴットの冷却速度は、各インゴットの底面から300mmの位置(断面中心位置)に熱電対を設置して鋳塊内部温度の経時変化(冷却カーブ)を測定して求めた。そして、固液2相域(425〜375℃)の平均冷却速度(平均冷却速度1)と、β析出開始点温度(275〜250℃)の平均冷却速度(平均冷却速度2)を、上記冷却カーブから算出した。   The cooling rate of the ingot was determined by measuring a change over time (cooling curve) of the ingot internal temperature by installing a thermocouple at a position 300 mm (cross-sectional center position) from the bottom of each ingot. The average cooling rate (average cooling rate 1) in the solid-liquid two-phase region (425 to 375 ° C.) and the average cooling rate (average cooling rate 2) of the β precipitation start point temperature (275 to 250 ° C.) are Calculated from the curve.

また、インゴットシール(外部雰囲気との遮断)は、インゴットチャージのときには鋳型内部とトユを事前にArシールした。また、連続鋳造の際には、ノズルを溶湯内に浸漬させることによってシールした。   In addition, the ingot seal (interruption from the external atmosphere) was previously sealed with Ar inside the mold and the tou at the time of ingot charging. Further, during continuous casting, sealing was performed by immersing the nozzle in the molten metal.

得られたZn−Al合金のインゴットを、表1に示す温度まで大気炉で再加熱(均熱)し、この温度で8時間保持した。この保持時間は、大気炉でインゴット表面に熱電対を接触させて、インゴット温度が所定の加熱温度に達してからの時間である。   The obtained Zn-Al alloy ingot was reheated (soaked) in an atmospheric furnace to the temperature shown in Table 1, and held at this temperature for 8 hours. This holding time is the time after the thermocouple is brought into contact with the ingot surface in an atmospheric furnace and the ingot temperature reaches a predetermined heating temperature.

この再加熱後、インゴットを炉から取り出した直後に、温間加工である等温押出加工温度まで、表1に示す平均冷却速度で水冷した。その後、表1に示す温間加工温度で、等温押出し、その後表1に示す平均冷却速度で水冷して、φ60、またはφ36の棒材を得た。   After this reheating, immediately after taking out the ingot from the furnace, it was water-cooled at an average cooling rate shown in Table 1 up to the isothermal extrusion temperature which is warm working. Thereafter, isothermal extrusion was performed at the warm working temperature shown in Table 1, and then water-cooled at an average cooling rate shown in Table 1 to obtain a rod of φ60 or φ36.

この様にして得られたZn−Al合金棒材の組織、室温特性、低温特性を下記の方法で各々評価した。この結果を表2に示す。ここで、Zn−Al合金棒材の中心部とは、前記した通り、棒材の中心位置からの距離が、中心位置と最外部の距離の10%以内の部分を指す。この中心位置とは、丸棒材横断面における径方向の中心を指す。また、棒材の表層部とは、前記した通り、棒材表層からの距離が、中心位置と最外部の距離の10%以内の部分を指す。   The structure, room temperature characteristics and low temperature characteristics of the thus obtained Zn—Al alloy bar were evaluated by the following methods. The results are shown in Table 2. Here, as described above, the center portion of the Zn—Al alloy rod means a portion where the distance from the center position of the rod is within 10% of the distance between the center position and the outermost portion. This center position refers to the center in the radial direction in the round bar cross section. Further, as described above, the surface layer portion of the bar refers to a portion whose distance from the bar surface is within 10% of the distance between the center position and the outermost part.

(組織判別、α平均結晶粒径)
上記得られたZn−Al合金棒材に対して、金属組織を電子顕微鏡で観察し、超塑性を発揮し得るβ分散α相か否かを判別し、また、α(α′含む)の平均結晶粒径を測定した。中心部から試料を採取し、バフ研磨した合金試料のSEM(scanning electron microscope)観察を倍率:5000倍で行い、顕微鏡写真を3枚撮影して、β分散α相か否かを判別し、また、α相の円相当直径を調べ、これを結晶粒径として、3視野における平均値を求めた。
(Structure discrimination, α average crystal grain size)
With respect to the obtained Zn-Al alloy bar, the metal structure is observed with an electron microscope to determine whether it is a β-dispersed α-phase capable of exhibiting superplasticity, and the average of α (including α ′) The crystal grain size was measured. A sample is taken from the center, and an SEM (scanning electron microscope) observation of the buffed alloy sample is performed at a magnification of 5000 times, and three micrographs are taken to determine whether it is a β-dispersed α phase, The equivalent circle diameter of the α phase was examined, and this was used as the crystal grain size to determine the average value in three fields of view.

(ラメラ状組織体積分率)
中心部のラメラ状組織の体積分率は、Zn−Al合金の中心部において、SEMにより3000倍の反射電子像にて、約35μm×約25μmの大きさの各10視野の組織観察を行なう。そして、識別されるラメラ状組織をトレースする。画像処理ソフトとして、MEDIACYBERNETICS社製のImage-ProPlus を用いて、各視野内のラメラ状組織の体積分率を測定し、10視野で平均化した。
(Lamellar tissue volume fraction)
The volume fraction of the lamellar structure in the central part is observed in the structure of 10 visual fields each having a size of about 35 μm × about 25 μm in a 3000-fold backscattered electron image by SEM in the central part of the Zn—Al alloy. The identified lamellar tissue is then traced. As image processing software, Image-ProPlus manufactured by MEDIACYBERNETICS was used to measure the volume fraction of lamellar tissue in each visual field and averaged over 10 visual fields.

(介在物)
Al系などの介在物の最大径は、各例とも7μm以下であった。介在物の最大径は、上記得られたZn−Al合金棒材(表面を上記バフ研磨後のもの)のトップから押出方向に100mmの位置を、倍率:1000倍の光学顕微鏡で観察し、顕微鏡写真を3枚撮影し、観察(識別)される介在物の中で最大の粒径(円相当直径)のものを介在物の最大粒径と判断した。
(Inclusions)
The maximum diameter of inclusions such as Al was 7 μm or less in each example. The maximum diameter of the inclusions was observed at a position of 100 mm in the extrusion direction from the top of the obtained Zn-Al alloy rod (the surface after the buffing) with an optical microscope with a magnification of 1000 times. Three photographs were taken, and the inclusions with the largest particle size (equivalent circle diameter) among the observed (identified) inclusions were judged as the maximum particle size of the inclusions.

(マクロ偏析)
上記得られたZn−Al押出材の鋳塊時のトップ部とボトム部とを各々切断し、これらの切断面(断面)における中心部と表層部との計4箇所から、試験片を採取し、夫々の部位におけるAl含有量(濃度)を測定する。そして、Zn−Al合金のAl含有量(平均)からのズレが最大値のものをマクロ偏析とし、Zn−Al合金のAl含有量(平均)との差(Al含有量最大値−Al含有量)を、Alのマクロ偏析として求めた。
(Macro-segregation)
The top part and the bottom part at the time of ingot of the obtained Zn-Al extruded material are cut respectively, and test pieces are collected from a total of four places including the center part and the surface layer part in these cut surfaces (cross sections). Then, the Al content (concentration) in each part is measured. And the thing with the largest deviation from Al content (average) of Zn-Al alloy is made macro-segregation, and the difference from Al content (average) of Zn-Al alloy (Al content maximum value-Al content ) Was determined as macrosegregation of Al.

(ポア)
直径0.5mm以上のポアは各例とも存在しなかった。このポアの測定は、採取したサンプル(50mm角材)を10時間再加熱後にHIP処理してポアを完全に除去した。この後に、直径0.5mmのドリル穴を標準試料片の中央にあけたものを用意し、この試料のUT検査(超音波探傷検査)を行って、この0.5mmの穴を検出できるUTノイズレベルを調べた。そして、上記ノイズレベル以上のノイズが発生したものについて、直径0.5mm以上のポアが存在するとした。
(Pore)
There was no pore having a diameter of 0.5 mm or more in each example. For the measurement of the pores, the collected sample (50 mm square) was reheated for 10 hours and then subjected to HIP treatment to completely remove the pores. After this, prepare a drill hole with a diameter of 0.5 mm in the center of the standard sample piece, and perform UT inspection (ultrasonic flaw detection) on this sample to detect this 0.5 mm hole. I checked the level. Then, pores having a diameter of 0.5 mm or more exist for those in which noise of the above noise level or more is generated.

(引張試験)
上記得られたZn−Al合金棒材の室温引張特性、低温引張特性を各々評価した。上記Zn−Al棒材から、平行部径φ14mmのJIS4号の丸棒試験片を採取し、ゲージ長さ50mmとし、クロスヘッド速度を50mm/分(歪速度で1.67×10-2/s:動的変形能)で引張試験を行い、引張強度TSと、破断するときの伸び(破断伸び)、しぼりを測定し、各合金の動的特性(高速変形のときの引張強度TSと破断伸び)を評価した。これを室温は25℃、低温は−10℃で行なった。しぼりは、破断後の試験片の破断部断面積から求めた。
(Tensile test)
Room temperature tensile properties and low temperature tensile properties of the obtained Zn-Al alloy bar were evaluated. A JIS No. 4 round bar test piece having a parallel part diameter of 14 mm was taken from the Zn-Al bar, the gauge length was 50 mm, and the crosshead speed was 50 mm / min (distortion speed 1.67 × 10 −2 / s). : Dynamic deformability) tensile test, tensile strength TS, elongation at break (breaking elongation) and squeezing are measured, and each alloy's dynamic characteristics (tensile strength TS and breaking elongation at high speed deformation) ) Was evaluated. This was performed at a room temperature of 25 ° C. and a low temperature of −10 ° C. The squeezing was determined from the cross-sectional area of the fracture portion of the test piece after fracture.

表1および表2から明らかな通り、発明例1〜6は、本発明で規定する化学成分組成を有し、好ましい製造条件範囲内で製造されている。このため、平均結晶粒径が5μm以下のα相またはα’相中にβ相が微細分散するとともに、Alのマクロ偏析が、合金における最大Al含有量と、合金のAl含有量との差が3.0%未満である組織を有し、中心部における組織中のラメラ状組織の体積分率が30%以下である。このため、室温だけでなく、低温での伸び(超塑性特性や変形性能)に優れ、中心部と表層部との互いの平均硬度差が15%以下と、均一性にも優れている。   As is apparent from Tables 1 and 2, Invention Examples 1 to 6 have the chemical component composition defined in the present invention, and are manufactured within a preferable manufacturing condition range. For this reason, the β phase is finely dispersed in the α phase or α ′ phase having an average crystal grain size of 5 μm or less, and the macro segregation of Al is caused by the difference between the maximum Al content in the alloy and the Al content in the alloy. It has a tissue that is less than 3.0%, and the volume fraction of the lamellar tissue in the tissue at the center is 30% or less. For this reason, it is excellent not only at room temperature but also at low temperatures (superplastic characteristics and deformation performance), and the average hardness difference between the center portion and the surface layer portion is 15% or less, and the uniformity is also excellent.

これに対して、比較例7〜11は、化学成分組成、好ましい製造条件のいずれかが範囲からはずれる。このため、β相分散α相の組織、α相の平均結晶粒径、Alのマクロ偏析、中心部における組織中のラメラ状組織の体積分率が、本発明規定を満足しない。このため、室温での伸び、低温での伸び、中心部と表層部との硬度差、のいずれかが、発明例に比して著しく劣っている。   On the other hand, in Comparative Examples 7 to 11, either the chemical component composition or the preferable production conditions are out of the range. For this reason, the structure of the β phase dispersed α phase, the average crystal grain size of the α phase, the macro segregation of Al, and the volume fraction of the lamellar structure in the structure at the center do not satisfy the provisions of the present invention. For this reason, any of the elongation at room temperature, the elongation at low temperature, and the hardness difference between the center portion and the surface layer portion is remarkably inferior to the inventive examples.

比較例7はZn含有量が多過ぎる。このため、好ましい製造条件範囲内で製造されているにもかかわらず、室温での伸び、低温での伸びが、発明例に比して著しく劣っている。   Comparative Example 7 has too much Zn content. For this reason, despite being manufactured within the range of preferable manufacturing conditions, the elongation at room temperature and the elongation at low temperature are remarkably inferior to those of the inventive examples.

比較例8は、鋳込み後の鋳型冷却過程における、425〜375℃の温度範囲平均冷却速度と、275〜250℃の温度範囲の平均冷却速度とが、いずれも小さ過ぎる。このため、中心部におけるラメラ状組織の体積分率が大きくなり、室温での伸び、低温での伸びが、発明例に比して著しく劣っている。   In Comparative Example 8, both the temperature range average cooling rate of 425 to 375 ° C. and the average cooling rate of the temperature range of 275 to 250 ° C. in the mold cooling process after casting are both too small. For this reason, the volume fraction of the lamellar structure | tissue in a center part becomes large, and elongation at room temperature and elongation at low temperature are remarkably inferior compared with the invention example.

比較例9は、再加熱温度が低過ぎる。このため、中心部におけるラメラ状組織の体積分率が大きくなり、室温での伸び、低温での伸び、中心部と表層部との硬度差が、発明例に比して著しく劣っている。   In Comparative Example 9, the reheating temperature is too low. For this reason, the volume fraction of the lamellar structure | tissue in a center part becomes large, and the elongation at room temperature, the elongation at low temperature, and the hardness difference of a center part and a surface layer part are remarkably inferior compared with the invention example.

比較例10は、再加熱後の平均冷却速度が小さ過ぎる。このため、中心部におけるラメラ状組織の体積分率が大きくなり、室温での伸び、低温での伸び、中心部と表層部との硬度差が、発明例に比して著しく劣っている。   In Comparative Example 10, the average cooling rate after reheating is too small. For this reason, the volume fraction of the lamellar structure | tissue in a center part becomes large, and the elongation at room temperature, the elongation at low temperature, and the hardness difference of a center part and a surface layer part are remarkably inferior compared with the invention example.

比較例11は、温間加工の際の押出比(歪み量)が小さ過ぎる。このため、室温での伸び、低温での伸びが、発明例に比して著しく劣っている。   In Comparative Example 11, the extrusion ratio (distortion amount) at the time of warm working is too small. For this reason, the elongation at room temperature and the elongation at low temperature are remarkably inferior to those of the inventive examples.

以上の結果から、本発明で規定する化学成分組成、組織の規定、およびこの組織を得るための好ましい製造条件の、室温だけでなく低温での伸び、均一性に対する意義が裏付けられる。   The above results support the significance of the chemical component composition, the structure definition, and the preferred production conditions for obtaining this structure for the elongation and uniformity at low temperature as well as room temperature.

Figure 0004769065
Figure 0004769065

Figure 0004769065
Figure 0004769065

以上説明したように、本発明によれば、伸びに優れたZn−Al合金およびその製造方法を提供できる。この結果、本発明Zn−Al合金は、室温および低温での超塑性特性を活かした、建築用ダンパーなどの免震・制震デバイス用、自動車などの衝撃吸収部材、減衰性能を持つばね用材料、精密成形部品用、シール部材用、ガスケット部材用、また、室温での超塑性特性や変形性能が必要な箔材、薄膜形成用ターゲット材などの各種用途に使用できる。   As described above, according to the present invention, a Zn—Al alloy excellent in elongation and a method for producing the same can be provided. As a result, the Zn-Al alloy of the present invention utilizes the superplastic properties at room temperature and low temperature, is used for seismic isolation / seismic devices such as building dampers, shock absorbing members for automobiles, etc., and spring materials with damping performance It can be used for various applications such as precision molded parts, seal members, gasket members, foil materials that require superplastic properties and deformation performance at room temperature, and target materials for thin film formation.

比較例Zn−Al合金の組織を示す、図面代用写真である。It is a drawing substitute photograph which shows the structure | tissue of the comparative example Zn-Al alloy.

Claims (4)

Zn:68〜88質量%を含み、残部Alおよび不可避不純物からなるZn−Al合金であって、平均結晶粒径が5μm以下のα相またはα’相中にβ相が微細分散するとともに、Alのマクロ偏析が3.0%未満である組織を有し、中心部における組織中のラメラ状組織の体積分率が30%以下であり、中心部と表層部との互いの平均硬度差が15%以下であることを特徴とする伸びに優れたZn−Al合金。   Zn: Zn—Al alloy containing 68 to 88% by mass, the balance being Al and unavoidable impurities, the β phase being finely dispersed in the α phase or α ′ phase having an average crystal grain size of 5 μm or less, and Al And the volume fraction of the lamellar structure in the structure at the center is 30% or less, and the average hardness difference between the center and the surface layer is 15%. % Zn-Al alloy excellent in elongation characterized by being not more than%. 前記ラメラ状組織同士の間隔が1000nm以下である請求項1に記載の伸びに優れたZn−Al合金。   The Zn-Al alloy excellent in elongation according to claim 1, wherein the interval between the lamellar structures is 1000 nm or less. 前記組織中の、介在物の最大径が円相当直径で50μm以下であるとともに、円相当直径で0.5mm以上のポアが存在しない請求項1または2に記載の伸びに優れたZn−Al合金。   The Zn-Al alloy excellent in elongation according to claim 1 or 2, wherein the maximum diameter of inclusions in the structure is not more than 50 µm in terms of equivalent circle diameter and there is no pore having an equivalent circle diameter of 0.5 mm or more. . Zn:68〜88質量%を含み、残部Alおよび不可避不純物からなるZn−Al合金溶湯を鋳型に注入して連続鋳造にて製造するに際して、注入溶湯と外部雰囲気とを遮断しつつ鋳込む工程、鋳込み後の鋳型冷却過程において、425〜375℃の温度範囲を1.0℃/秒以上、2℃/秒以下の平均冷却速度で冷却するとともに、275〜250℃の温度範囲を0.08℃/秒以上、0.9℃/秒以下の平均冷却速度で冷却する工程、350℃以上、390℃未満で加熱保持した後に、0.5℃/秒以上、6℃/秒以下の平均冷却速度で水冷急冷する再加熱工程、275℃以下および押出比4以上の温間加工する工程、を含むことを特徴とする伸びに優れたZn−Al合金の製造方法。 Zn: a step of casting while containing molten aluminum and unavoidable impurities in a mold and injecting a molten Zn-Al alloy into the mold by continuous casting , while shutting off the molten molten metal and the external atmosphere, In the mold cooling process after casting, the temperature range of 425 to 375 ° C. is cooled at an average cooling rate of 1.0 ° C./second or more and 2 ° C./second or less , and the temperature range of 275 to 250 ° C. is 0.08 ° C. Cooling at an average cooling rate of not less than 0.9 ° C / second and not more than 0.9 ° C / second , after holding at 350 ° C to less than 390 ° C , and then having an average cooling rate of not less than 0.5 ° C / second and not more than 6 ° C / second A process for producing a Zn—Al alloy excellent in elongation, comprising a reheating step of water- cooling and quenching at 275 ° C. and a warm working step of 275 ° C. or less and an extrusion ratio of 4 or more.
JP2005333280A 2005-11-17 2005-11-17 Zn-Al alloy having excellent elongation and method for producing the same Expired - Fee Related JP4769065B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005333280A JP4769065B2 (en) 2005-11-17 2005-11-17 Zn-Al alloy having excellent elongation and method for producing the same
US11/581,032 US20070107813A1 (en) 2005-11-17 2006-10-16 Zn-Al alloy excellent in elongation and method for producing the same
TW095140284A TW200722530A (en) 2005-11-17 2006-10-31 Zn-Al alloy excellent in elongation and method for producing the same
IT002110A ITMI20062110A1 (en) 2005-11-17 2006-11-03 ZN-Q1 ALLOY WITH EXCELLENT EXTENSION AND ITS PRODUCTION METHOD
CNB2006101447910A CN100453668C (en) 2005-11-17 2006-11-14 Zn-al alloy excellent in elongation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333280A JP4769065B2 (en) 2005-11-17 2005-11-17 Zn-Al alloy having excellent elongation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007138242A JP2007138242A (en) 2007-06-07
JP4769065B2 true JP4769065B2 (en) 2011-09-07

Family

ID=38039515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333280A Expired - Fee Related JP4769065B2 (en) 2005-11-17 2005-11-17 Zn-Al alloy having excellent elongation and method for producing the same

Country Status (5)

Country Link
US (1) US20070107813A1 (en)
JP (1) JP4769065B2 (en)
CN (1) CN100453668C (en)
IT (1) ITMI20062110A1 (en)
TW (1) TW200722530A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080196796A1 (en) * 2005-06-01 2008-08-21 Koichi Makii Zn-Al Alloy Having Excellent High-Speed Deformation Properties and Process For Producing the Same
CN101935779B (en) * 2010-08-20 2012-03-07 绍兴市天龙锡材有限公司 Zinc aluminum alloy wire for end face gold spraying of metalized film capacitor
JP2012180557A (en) * 2011-03-01 2012-09-20 Kobe Steel Ltd Zinc alloy cast ingot having excellent workability and method for producing the zinc alloy cast ingot
JP5702628B2 (en) * 2011-03-01 2015-04-15 株式会社神戸製鋼所 Zn-Al-Cu alloy rolled material
CN104498773B (en) * 2014-12-19 2017-03-22 宁波博威合金材料股份有限公司 Deformed zinc-based alloy material as well as preparation method and application thereof
CN112159944B (en) * 2020-10-10 2022-07-26 中铝材料应用研究院有限公司 Preparation method of 7000 series aluminum material
CN113234974B (en) * 2021-05-07 2022-07-01 北京工业大学 Method for reducing thermoplastic deformation resistance of Er microalloyed 7000 series aluminum alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674897B2 (en) * 1998-02-06 2005-07-27 株式会社神戸製鋼所 Zn-Al alloy for vibration control and manufacturing method thereof
JP3898844B2 (en) * 1998-09-25 2007-03-28 株式会社神戸製鋼所 Zn-Al alloy member having stable deformation resistance
JP3773893B2 (en) * 2002-11-12 2006-05-10 株式会社神戸製鋼所 Zn-Al alloy having excellent high-speed deformation characteristics and method for producing the same
CN1570169A (en) * 2003-07-11 2005-01-26 马健鹉 Zinc alloy for cast
JP4315797B2 (en) * 2003-12-26 2009-08-19 株式会社神戸製鋼所 Zn-Al alloy having excellent high-speed deformation characteristics and method for producing the same

Also Published As

Publication number Publication date
CN1966749A (en) 2007-05-23
ITMI20062110A1 (en) 2007-05-18
CN100453668C (en) 2009-01-21
US20070107813A1 (en) 2007-05-17
TW200722530A (en) 2007-06-16
JP2007138242A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4769065B2 (en) Zn-Al alloy having excellent elongation and method for producing the same
JP5252583B2 (en) Mg alloy and manufacturing method thereof
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP6860236B2 (en) Magnesium-based alloy wrought material and its manufacturing method
CN113943881B (en) High-temperature-resistant high-strength damping magnesium alloy material and preparation method thereof
Dareini et al. Effect of nano-sized Al2O3 reinforcing particles on uniaxial and high cycle fatigue behaviors of hot-forged AZ31B magnesium alloy
Ma et al. Effect of severe plastic deformation on tensile properties of a cast Al–11 mass% Si alloy
JP6489576B2 (en) Method for producing a magnesium-based alloy extension material
KR101974913B1 (en) Al-Zn-Cu alloy and manufacturing method thereof
WO2006129355A1 (en) Zn-Al ALLOY HAVING EXCELLENT HIGH-SPEED DEFORMATION PROPERTIES AND PROCESS FOR PRODUCING THE SAME
WO2013180122A1 (en) Magnesium alloy, magnesium alloy member and method for manufacturing same, and method for using magnesium alloy
Zhao et al. Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti− 6Al− 2Zr− 1Mo− 1V alloy
US20150315689A1 (en) Heat resistant aluminum base alloy and wrought semifinsihed product fabrication method
Khalifa et al. Elevated temperature mechanical properties of Al alloy AA6063/SiCp MMCs
Wang et al. Analysis of hot deformation behavior and microstructure evolution of as-cast SiC nanoparticles reinforced magnesium matrix composite
CN112813323B (en) Pre-deformation magnesium alloy and processing method thereof
JP3674897B2 (en) Zn-Al alloy for vibration control and manufacturing method thereof
JP2016017183A (en) Magnesium-based alloy malleable material and manufacturing method therefor
LIU et al. Deformation mechanism and softening effect of extruded AZ31 magnesium alloy sheet at moderate temperatures
JP4315797B2 (en) Zn-Al alloy having excellent high-speed deformation characteristics and method for producing the same
JP3773893B2 (en) Zn-Al alloy having excellent high-speed deformation characteristics and method for producing the same
Umezawa et al. Microstructural refinement of an As-Cast Al-12.6 Wt Pct Si alloy by repeated thermomechanical treatment to produce a heavily deformable material
JP2019060026A (en) Magnesium-based alloy extension material and manufacturing method therefor
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP3898844B2 (en) Zn-Al alloy member having stable deformation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Ref document number: 4769065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees