JP3808139B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3808139B2
JP3808139B2 JP23733496A JP23733496A JP3808139B2 JP 3808139 B2 JP3808139 B2 JP 3808139B2 JP 23733496 A JP23733496 A JP 23733496A JP 23733496 A JP23733496 A JP 23733496A JP 3808139 B2 JP3808139 B2 JP 3808139B2
Authority
JP
Japan
Prior art keywords
coating solution
compound
charge transport
layer coating
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23733496A
Other languages
Japanese (ja)
Other versions
JPH1063020A (en
Inventor
鋭司 栗本
実 梅田
孝彰 池上
淳子 増汐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23733496A priority Critical patent/JP3808139B2/en
Publication of JPH1063020A publication Critical patent/JPH1063020A/en
Application granted granted Critical
Publication of JP3808139B2 publication Critical patent/JP3808139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真感光体に関し、詳しくは、特定の電荷輸送材料を使用した、光感度、印字特性、繰り返し使用特性に優れた電子写真感光体に関する。
【0002】
【従来の技術】
有機系の電子写真感光体において、その感度を高めるために電荷発生層と電荷輸送層を積層した機能分離型と呼ばれる感光体が注目され実用化されている。この機能分離型の感光体における静電潜像形成のメカニズムは、感光体を帯電した後、光照射すると、光は電荷発生層により吸収され、光を吸収した電荷発生層は電荷担体を発生し、この電荷担体は電荷輸送層に注入され、帯電によって生じている電界にしたがって電荷輸送層(ないしは感光層)中を移動し、感光体表面の電荷を中和することにより静電潜像を形成するものである。
【0003】
従来から、種々の感光体材料が開発されているが、これらを実用化できる優れた電子写真感光体にするには、感度、受容電位、電位保持性、電位安定性、残留電位、分光特性に代表される電子写真特性、耐摩耗性等の機械的耐久性、熱、光、放電生成物等に対する化学的安定性等、種々の特性が要求される。とりわけ、高感度で繰り返し安定性に優れたものであることが重要であるが、上述したようにある程度の高感度特性は、適切な電荷発生材料と電荷輸送材料の組合せにより達成することが可能である。一方、これに加えて機械的耐久性を合わせ持つことについての検討もなされているが、従来から提案されている電荷発生材料と電荷輸送材料との組合せによっては上記条件の全てを満たすものは得られていなかった。従って、従来から提案されている電荷発生材料と電荷輸送材料を使用して、高感度を維持し、かつ、繰り返し使用による安定性に優れた電子写真感光体の完成が熱望されていた。
【0004】
【発明が解決しようとする課題】
本発明の課題は、高感度を失うことなく繰り返し使用によっても優れた安定性を示す電子写真感光体を提供することである。
【0005】
【課題を解決するための手段】
本発明によれば、以下の発明が提供される。
まず、本発明における、一般式(I)で示される化合物、一般式(II)で示される化合物、一般式(III)で示される化合物、一般式(IV)で示される化合物、一般式(V)で示される化合物、一般式(IV)で示される化合物、一般式(VII)で示される化合物、一般式(VIII)で示される化合物及び一般式(IX)で示される化合物を以下に示す。
【化1】

Figure 0003808139
【化2】
Figure 0003808139
【化3】
Figure 0003808139
【化4】
Figure 0003808139
【化5】
Figure 0003808139
【化6】
Figure 0003808139
【化7】
Figure 0003808139
【化8】
Figure 0003808139
【化9】
Figure 0003808139
【化10】
Figure 0003808139
【化11】
Figure 0003808139
)導電性支持体上に電荷発生材料を主成分とする電荷発生層と少なくとも下記(1)ないし(8)で示される化合物の組から選択される一組を含有する電荷輸送層を積層してなることを特徴とする電子写真感光体。
(1)前記一般式(I)で示される化合物と前記一般式(II)で示される化合物
(2)前記一般式(I)で示される化合物と前記一般式(III)で示される化合物
(3)前記一般式(I)で示される化合物と前記一般式(IV)で示される化合物
(4)前記一般式(I)で示される化合物と前記一般式(V)で示される化合物
(5)前記一般式(I)で示される化合物と前記一般式(VI)で示される化合物
(6)前記一般式(I)で示される化合物と前記一般式(VII)で示される化合物
(7)前記一般式(I)で示される化合物と前記一般式(VIII)で示される化合物
(8)前記一般式(I)で示される化合物と前記一般式(IX)で示される化合物
)導電性支持体上に少なくとも電荷発生材料と下記(1)ないし(8)で示される化合物の組から選択される一組を含有する単層感光層を設けてなることを特徴とする電子写真感光体。
(1)前記一般式(I)で示される化合物と前記一般式(II)で示される化合物
(2)前記一般式(I)で示される化合物と前記一般式(III)で示される化合物
(3)前記一般式(I)で示される化合物と前記一般式(IV)で示される化合物
(4)前記一般式(I)で示される化合物と前記一般式(V)で示される化合物
(5)前記一般式(I)で示される化合物と前記一般式(VI)で示される化合物
(6)前記一般式(I)で示される化合物と前記一般式(VII)で示される化合物
(7)前記一般式(I)で示される化合物と前記一般式(VIII)で示される化合物
(8)前記一般式(I)で示される化合物と前記一般式(IX)で示される化合物。
【0006】
以下に本発明を詳細に説明する。
本発明者らは上記課題に関して検討を重ねた結果、感光層に上記特定の組合せの電荷輸送材料を用いることにより、繰り返し使用によっても画質欠陥の発生が抑制され、しかも優れた電子写真特性をあわせもつ電子写真感光体が得られることを見出し、本発明に至った。
【0007】
図面を用いて、本発明の電子写真感光体を説明すると、図1は、本発明における単層感光体を表わす断面図であり、導電性支持体11上に、感光層15が設けられている。図2、図3は、本発明における積層感光体の構成例を示す断面図であり、電荷発生材料を主成分とする電荷発生層17と、電荷輸送材料を主成分とする電荷輸送層19とが、積層された構成をとっている。
このような単層、または積層感光体において、上述した一般式(I)示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とからなる電荷輸送材料が併用して用いられる。
【0008】
【発明の実施の形態】
以下に発明の実施の形態について述べる。
導電性支持体11としては、体積抵抗1.0×1010Ωcm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチックもしくは紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレス等の板およびそれらを素管化後、切削、超仕上げ、研磨等で表面処理した管等を使用することができる。
【0009】
次に感光層15について説明する。説明の都合上、先ず電荷発生層17と電荷輸送層19が積層された構成の場合から述べる。
電荷発生層17は、電荷発生材料を主成分とする層である。電荷発生材料には、無機および有機材料が用いられ、その代表として、モノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ペリレン系顔料、ペリノン系顔料、キナクリドン系顔料、キノン系縮合多環化合物、スクアリック酸系染料、フタロシアニン系顔料、ナフタロシアニン系顔料、アズレニウム塩系染料、セレン、セレン−テルル、セレン−ヒ素合金、アモルファス・シリコン等が挙げられる。
【0010】
電荷発生材料は、単独であるいは、2種以上混合して用いられる。電荷発生層17は、電荷発生材料を適宜用いられるバインダー樹脂とともに、テトラヒドロフラン、シクロヘキサノン、ジオキサン、2−ブタノン、ジクロルエタン等の適当な溶媒を用いてボールミル、アトライター、サンドミルなどにより分散し、分散液を塗布することにより形成できる。塗布は、浸漬塗工法やスプレーコート、ビードコート法などを用いて行なうことができる。
【0011】
適宜用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、ポリエステル、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリアクリルアミドなどが挙げられ用いられる。適宜用いられるバインダー樹脂の量は、電荷発生材料1重量部に対して0〜2重量部が適当である。
【0012】
電荷発生層17は、また、公知の真空薄膜作製法にても設けることができる。電荷発生層17の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
【0013】
電荷輸送層19は、電荷輸送材料およびバインダー樹脂を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することにより形成できる。また、必要により可塑剤やレべリング剤等を添加することもできる。
【0014】
電荷輸送材料は、上述した一般式(I)で示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とが混合して用いられる。これら化合物の具体例を下記表1および表2ないし表9に挙げる。これら化合物の混合比は、一般式(I)示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とが、5:95〜95:5の範囲にあると良好な結果が得られる。また、これら電荷輸送材料の使用量は、積層感光体では電荷輸送層の全構成材料に対して15ないし75重量%、好ましくは25ないし65重量%である。
【0015】
【表1−(1)】
Figure 0003808139
【0016】
【表1−(2)】
Figure 0003808139
【0017】
【表1−(3)】
Figure 0003808139
【0018】
【表1−(4)】
Figure 0003808139
【0019】
【表1−(5)】
Figure 0003808139
【0020】
【表1−(6)】
Figure 0003808139
【0021】
【表1−(7)】
Figure 0003808139
【0022】
【表1−(8)】
Figure 0003808139
【0023】
【表1−(9)】
Figure 0003808139
【0024】
【表2−(1)】
Figure 0003808139
【0025】
【表2−(2)】
Figure 0003808139
【0026】
【表2−(3)】
Figure 0003808139
【0027】
【表2−(4)】
Figure 0003808139
【0028】
【表2−(5)】
Figure 0003808139
【0029】
【表2−(6)】
Figure 0003808139
【0030】
【表2−(7)】
Figure 0003808139
【0031】
【表2−(8)】
Figure 0003808139
【0032】
【表2−(9)】
Figure 0003808139
【0033】
【表3−(1)】
Figure 0003808139
【0034】
【表3−(2)】
Figure 0003808139
【0035】
【表4−(1)】
Figure 0003808139
【0036】
【表4−(2)】
Figure 0003808139
【0037】
【表4−(3)】
Figure 0003808139
【0038】
【表4−(4)】
Figure 0003808139
【0039】
【表4−(5)】
Figure 0003808139
【0040】
【表4−(6)】
Figure 0003808139
【0041】
【表4−(7)】
Figure 0003808139
【0042】
【表4−(8)】
Figure 0003808139
【0043】
【表4−(9)】
Figure 0003808139
【0044】
【表4−(10)】
Figure 0003808139
【0045】
【表4−(11)】
Figure 0003808139
【0046】
【表4−(12)】
Figure 0003808139
【0047】
【表4−(13)】
Figure 0003808139
【0048】
【表4−(14)】
Figure 0003808139
【0049】
【表4−(15)】
Figure 0003808139
【0050】
【表4−(16)】
Figure 0003808139
【0051】
【表4−(17)】
Figure 0003808139
【0052】
【表4−(18)】
Figure 0003808139
【0053】
【表5−(1)】
Figure 0003808139
【0054】
【表5−(2)】
Figure 0003808139
【0055】
【表5−(3)】
Figure 0003808139
【0056】
【表5−(4)】
Figure 0003808139
【0057】
【表5−(5)】
Figure 0003808139
【0058】
【表5−(6)】
Figure 0003808139
【0059】
【表5−(7)】
Figure 0003808139
【0060】
【表5−(8)】
Figure 0003808139
【0061】
【表5−(9)】
Figure 0003808139
【0062】
【表5−(10)】
Figure 0003808139
【0063】
【表5−(11)】
Figure 0003808139
【0064】
【表5−(12)】
Figure 0003808139
【0065】
【表5−(13)】
Figure 0003808139
【0066】
【表5−(14)】
Figure 0003808139
【0067】
【表5−(15)】
Figure 0003808139
【0068】
【表5−(16)】
Figure 0003808139
【0069】
【表5−(17)】
Figure 0003808139
【0070】
【表5−(18)】
Figure 0003808139
【0071】
【表5−(19)】
Figure 0003808139
【0072】
【表5−(20)】
Figure 0003808139
【0073】
【表5−(21)】
Figure 0003808139
【0074】
【表5−(22)】
Figure 0003808139
【0075】
【表5−(23)】
Figure 0003808139
【0076】
【表5−(24)】
Figure 0003808139
【0077】
【表5−(25)】
Figure 0003808139
【0078】
【表5−(26)】
Figure 0003808139
【0079】
【表5−(27)】
Figure 0003808139
【0080】
【表5−(28)】
Figure 0003808139
【0081】
【表5−(29)】
Figure 0003808139
【0082】
【表5−(30)】
Figure 0003808139
【0083】
【表5−(31)】
Figure 0003808139
【0084】
【表5−(32)】
Figure 0003808139
【0085】
【表5−(33)】
Figure 0003808139
【0086】
【表5−(34)】
Figure 0003808139
【0087】
【表5−(35)】
Figure 0003808139
【0088】
【表5−(36)】
Figure 0003808139
【0089】
【表5−(37)】
Figure 0003808139
【0090】
【表5−(38)】
Figure 0003808139
【0091】
【表5−(39)】
Figure 0003808139
【0092】
【表5−(40)】
Figure 0003808139
【0093】
【表5−(41)】
Figure 0003808139
【0094】
【表5−(42)】
Figure 0003808139
【0095】
【表5−(43)】
Figure 0003808139
【0096】
【表6−(1)】
Figure 0003808139
【0097】
【表6−(2)】
Figure 0003808139
【0098】
【表6−(3)】
Figure 0003808139
【0099】
【表6−(4)】
Figure 0003808139
【0100】
【表7−(1)】
Figure 0003808139
【0101】
【表7−(2)】
Figure 0003808139
【0102】
【表8−(1)】
Figure 0003808139
【0103】
【表8−(2)】
Figure 0003808139
【0104】
【表8−(3)】
Figure 0003808139
【0105】
【表8−(4)】
Figure 0003808139
【0106】
【表9−(1)】
Figure 0003808139
【0107】
【表9−(2)】
Figure 0003808139
【0108】
【表9−(3)】
Figure 0003808139
【0109】
【表9−(4)】
Figure 0003808139
【0110】
また、一般式(I)で示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とからなる電荷輸送材料のほかに、さらに公知の電子輸送性電荷輸送材料および/または正孔輸送性電荷輸送材料を併用してもよい。
【0111】
電荷輸送材料とともに電荷輸送層19に使用されるバインダー樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性、または熱硬化性樹脂が挙げられる。
【0112】
溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、2−ブタノン、モノクロルベンゼン、ジクロルエタン、塩化メチレンなどが用いられる。
【0113】
電荷輸送層19の厚さは、5〜100μmが適当である。
【0114】
本発明において、電荷輸送層19中に可塑剤やレべリング剤を添加してもよい。可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、バインダー樹脂に対して0〜30重量%程度が適当である。レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが使用され、その使用量はバインダー樹脂に対して、0〜1重量%が適当である。
【0115】
次に感光層15が単層構成の場合について述べる。この場合に用いられる材料も多くは電荷発生材料と電荷輸送材料よりなる機能分離型で用いられるものと同じものが挙げられる。
【0116】
即ち、少なくとも電荷発生材料および一般式(I)で示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とからなる電荷輸送材料を、バインダー樹脂とともに適当な溶剤に溶解ないし分散し、これを塗布、乾燥することによって形成できる。また、必要により可塑剤やしべリング剤等を添加することもできる。
バインダー樹脂としては、先に電荷輸送層19で挙げたバインダー樹脂をそのまま用いることができるほかに、電荷発生層17で挙げたバインダー樹脂を混合してもよい。
【0117】
ピリリウム系染料、ビスフェノールA系ポリカーボネートから形成される共晶錯体に一般式(I)で示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とからなる電荷輸送材料を添加した感光層も単層感光層として用いることができる。
【0118】
さらに、一般式(I)で示される化合物と一般式(II)ないし(IX)でそれぞれ示される化合物から選択された少なくとも1種とからなる電荷輸送材料およびバインダー樹脂を主成分としてなり、電荷発生材料を有効成分として含まない単層感光層も青色光〜紫外光に感度を有する感光体として有用である。
【0119】
単層感光層における上記特定の2種類の電荷輸送材料の混合比は、積層感光層の場合と同様、5:95〜95:5の範囲が好ましく、その使用量は単層感光層の全構成材料に対して5ないし75重量%、好ましくは10〜65重量%である。また、単層感光層の膜厚は5〜100μmが適当である。
【0120】
本発明の電子写真感光体には、導電性支持体11と感光層との間に下引き層を設けることができる。下引き層は一般に樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤でもって塗布することを考えると、一般の有機溶剤に対して耐溶解性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂などが挙げられる。
【0121】
また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末を加えてもよい。これらの下引き層は、前述の感光層のごとく適当な溶媒、塗工法を用いて形成することができる。
【0122】
更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用して、例えばゾル−ゲル法等により形成した金属酸化物層も有用である。
【0123】
この他に、本発明の下引き層にはAl23を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物や、SiO、SnO2、TiO2、ITO、CeO2等の無機物を真空薄膜作製法にて設けたものも良好に使用できる。下引き層の膜厚は0〜5μmが適当である。
【0124】
本発明の電子写真感光体には、感光層保護の目的で、保護層が感光層の上に設けられることもある。これに使用される材料としては、ABS樹脂、ACS樹脂、オレフィン〜ビニルモノマー共重合体、塩素化ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルペンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、AS樹脂、AB樹脂、BS樹脂、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。
【0125】
保護層にはその他、耐摩耗性を向上する目的で、ポリテトラフルオロエチレンのようなフッ素樹脂、シリコーン樹脂およびこれら樹脂に酸化チタン、酸化スズ、チタン酸カリウム等の無機材料を分散したもの等を添加することができる。
保護層の形成法としては、通常の塗布法が採用される。なお、保護層の厚さは、0.5〜10μm程度が適当である。また、以上のほかに真空薄膜作製法にて形成したi−C,a−SiCなど公知の材料も保護層として用いることができる。
【0126】
本発明においては、感光層と保護層との間に別の中間層を設けることも可能である。中間層には、一般にバインダー樹脂を主成分として用いる。これら樹脂としては、ポリアミド、アルコール可溶性ナイロン、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。
中間層の形成法としては、前述のごとく通常の塗布法が採用される。なお、中間層の厚さは0.05〜2μm程度が適当である。
【0127】
【実施例】
次に実施例を示すが、実施例は本発明を詳しく説明するものであり、本発明が実施例によって制約されるものではない。なお、実施例中の部はすべて重量部である。
先ず電荷輸送材料として一般式(I)および一般式(II)で示される化合物を併用した場合について、実施例1から8および比較例1から8により説明する。
【0128】
〔実施例1〕
外径70mmのアルミニウムシリンダー上に、下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0129】
Figure 0003808139
【0130】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0131】
〔電荷輸送層塗工液〕
化合物NO.II−1の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0132】
〔比較例1〕
実施例1の電荷輸送層塗工液を下記組成のものに変えた以外は実施例1と同様にして比較例の電子写真感光体を作製した。
【0133】
Figure 0003808139
【0134】
〔実施例2〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0135】
Figure 0003808139
【0136】
Figure 0003808139
【0137】
〔比較例2〕
実施例2の電荷輸送層塗工液において、化合物NO.II−6の化合物を添加しないこと以外は実施例2と同様にして比較例の電子写真感光体を作製した。
【0138】
〔実施例3〕
アルミニウムシリンダー上に、下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0139】
Figure 0003808139
【0140】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0141】
Figure 0003808139
【0142】
〔比較例3〕
実施例3の電荷輸送層塗工液を下記組成のものにした以外は実施例3と同様にして比較例の電子写真感光体を作製した。
【0143】
Figure 0003808139
【0144】
〔実施例4〕
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0145】
Figure 0003808139
【0146】
〔比較例4〕
実施例4の電荷輸送層塗工液を下記組成のものにした以外は実施例4と同様にして比較例の電子写真感光体を作製した。
【0147】
Figure 0003808139
【0148】
〔実施例5〕
実施例2の電荷輸送層塗工液を下記組成のものにした以外は実施例2と同様にして本発明の電子写真感光体を作製した。
【0149】
〔電荷輸送層塗工液〕
化合物NO.II−35の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0150】
〔比較例5〕
実施例5の電荷輸送層塗工液を下記組成のものにした以外は実施例5と同様にして比較例の電子写真感光体を作製した。
【0151】
〔電荷輸送層塗工液〕
化合物NO.II−35の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0152】
〔実施例6〕
実施例3の電荷輸送層塗工液を下記組成のものにした以外は実施例3と同様にして本発明の電子写真感光体を作製した。
【0153】
Figure 0003808139
【0154】
〔比較例6〕
実施例6の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例6と同様にして比較例の電子写真感光体を作製した。
【0155】
〔実施例7〕
アルミニウムシリンダー上に、下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0156】
Figure 0003808139
【0157】
〔比較例7〕
実施例7の電荷輸送層塗工液において、化合物NO.II−48の化合物を添加しないこと以外は実施例7と同様にして比較例の電子写真感光体を作製した。
【0158】
〔実施例8〕
アルミニウムシリンダー上に、下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0159】
Figure 0003808139
【化14】
Figure 0003808139
Figure 0003808139
【0160】
〔比較例8〕
アルミニウムシリンダー上に、下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0161】
Figure 0003808139
【0162】
以上の実施例及び比較例の各感光体を特開昭60−100167号公報に開示されている評価装置を用いて次のような測定を行なった。コロナ放電電圧−6.0kV(または+5.6kV)で帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度6luxの白色光による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2[lux・sec]を測定した。電位保持率=Vo/Vmと定義する。
また、各感光体をリコー製複写機FT−3300(ないしは感光体を正帯電できるように改造したもの)に搭載して連続3万枚の複写を行い、異常画像の有無を目視により判定した。また、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表10に示す。
【0163】
【表10】
Figure 0003808139
【0164】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(III)で示される化合物を併用した場合について、実施例9から16および比較例9から16により説明する。
【0165】
〔実施例9〕
外径70mmのアルミニウムシリンダー上に、下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0166】
Figure 0003808139
【0167】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0168】
〔電荷輸送層塗工液〕
化合物NO.III−8の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0169】
〔比較例9〕
実施例9の電荷輸送層塗工液を下記組成のものに変えた以外は実施例9と同様にして比較例の電子写真感光体を作製した。
【0170】
Figure 0003808139
【0171】
〔実施例10〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0172】
Figure 0003808139
【0173】
Figure 0003808139
【0174】
〔比較例10〕
実施例10の電荷輸送層塗工液において、化合物NO.III−10の化合物を添加しないこと以外は実施例10と同様にして比較例の電子写真感光体を作製した。
【0175】
〔実施例11〕
アルミニウムシリンダー上に、下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0176】
Figure 0003808139
【0177】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0178】
Figure 0003808139
【0179】
〔比較例11〕
実施例11の電荷輸送層塗工液を下記組成のものにした以外は実施例11と同様にして比較例の電子写真感光体を作製した。
【0180】
Figure 0003808139
【0181】
〔実施例12〕
実施例9の電荷輸送層塗工液を下記組成のものにした以外は実施例9と同様にして本発明の電子写真感光体を作製した。
【0182】
Figure 0003808139
【0183】
〔比較例12〕
実施例12の電荷輸送層塗工液を下記組成のものにした以外は実施例12と同様にして比較例の電子写真感光体を作製した。
【0184】
Figure 0003808139
【0185】
〔実施例13〕
実施例10の電荷輸送層塗工液を下記組成のものにした以外は実施例10と同様にして本発明の電子写真感光体を作製した。
【0186】
〔電荷輸送層塗工液〕
化合物NO.III−17の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0187】
〔比較例13〕
実施例13の電荷輸送層塗工液を下記組成のものにした以外は実施例13と同様にして比較例の電子写真感光体を作製した。
【0188】
〔電荷輸送層塗工液〕
化合物NO.III−17の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0189】
〔実施例14〕
実施例11の電荷輸送層塗工液を下記組成のものにした以外は実施例11と同様にして本発明の電子写真感光体を作製した。
【0190】
Figure 0003808139
【0191】
〔比較例14〕
実施例14の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例14と同様にして比較例の電子写真感光体を作製した。
【0192】
〔実施例15〕
アルミニウムシリンダー上に、下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0193】
Figure 0003808139
【0194】
〔比較例15〕
実施例15の電荷輸送層塗工液において、化合物NO.III−20の化合物を添加しないこと以外は実施例15と同様にして比較例の電子写真感光体を作製した。
【0195】
〔実施例16〕
アルミニウムシリンダー上に、下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0196】
Figure 0003808139
【化14】
Figure 0003808139
Figure 0003808139
【0197】
〔比較例16〕
アルミニウムシリンダー上に、下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0198】
Figure 0003808139
【0199】
実施例9から16および比較例9から16で得られた各感光体について、前記と同様の方法で感光体特性を測定した。結果を表11に示す。
【0200】
【表11】
Figure 0003808139
【0201】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(IV)で示される化合物を併用した場合について、実施例17から24および比較例17から24により説明する。
【0202】
〔実施例17〕
外径70mmのアルミニウムシリンダー上に、下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0203】
Figure 0003808139
【0204】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0205】
〔電荷輸送層塗工液〕
化合物NO.IV−2の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0206】
〔比較例17〕
実施例17の電荷輸送層塗工液を下記組成のものに変えた以外は実施例17と同様にして比較例の電子写真感光体を作製した。
【0207】
Figure 0003808139
【0208】
〔実施例18〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0209】
Figure 0003808139
【0210】
Figure 0003808139
【0211】
〔比較例18〕
実施例18の電荷輸送層塗工液において、化合物NO.IV−14の化合物を添加しないこと以外は実施例18と同様にして比較例の電子写真感光体を作製した。
【0212】
〔実施例19〕
アルミニウムシリンダー上に、下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0213】
Figure 0003808139
【0214】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0215】
Figure 0003808139
【0216】
〔比較例19〕
実施例19の電荷輸送層塗工液を下記組成のものにした以外は実施例19と同様にして比較例の電子写真感光体を作製した。
【0217】
Figure 0003808139
【0218】
〔実施例20〕
実施例17の電荷輸送層塗工液を下記組成のものにした以外は実施例17と同様にして本発明の電子写真感光体を作製した。
【0219】
Figure 0003808139
【0220】
〔比較例20〕
実施例20の電荷輸送層塗工液を下記組成のものにした以外は実施例20と同様にして比較例の電子写真感光体を作製した。
【0221】
Figure 0003808139
【0222】
〔実施例21〕
実施例18の電荷輸送層塗工液を下記組成のものにした以外は実施例18と同様にして本発明の電子写真感光体を作製した。
【0223】
〔電荷輸送層塗工液〕
化合物NO.IV−51の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0224】
〔比較例21〕
実施例21の電荷輸送層塗工液を下記組成のものにした以外は実施例21と同様にして比較例の電子写真感光体を作製した。
【0225】
〔電荷輸送層塗工液〕
化合物NO.IV−51の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0226】
〔実施例22〕
実施例19の電荷輸送層塗工液を下記組成のものにした以外は実施例19と同様にして本発明の電子写真感光体を作製した。
【0227】
Figure 0003808139
【0228】
〔比較例22〕
実施例22の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例22と同様にして比較例の電子写真感光体を作製した。
【0229】
〔実施例23〕
アルミニウムシリンダー上に、下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0230】
Figure 0003808139
【0231】
〔比較例23〕
実施例23の電荷輸送層塗工液において、化合物NO.IV−98の化合物を添加しないこと以外は実施例23と同様にして比較例の電子写真感光体を作製した。
【0232】
〔実施例24〕
アルミニウムシリンダー上に、下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0233】
Figure 0003808139
【化14】
Figure 0003808139
Figure 0003808139
【0234】
〔比較例24〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0235】
Figure 0003808139
【0236】
上記実施例17から24および比較例17から24で得られた各感光体について上記と同様の方法で感光体特性を測定した。結果を表12に示す。
【0237】
【表12】
Figure 0003808139
【0238】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(V)で示される化合物を併用した場合について、実施例25から32および比較例25から32により説明する。
【0239】
〔実施例25〕
外径70mmのアルミニウムシリンダー上に下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0240】
Figure 0003808139
【0241】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0242】
〔電荷輸送層塗工液〕
化合物NO.V−9の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0243】
〔比較例25〕
実施例25の電荷輸送層塗工液を下記組成のものに変えた以外は実施例25と同様にして比較例の電子写真感光体を作製した。
【0244】
Figure 0003808139
【0245】
〔実施例26〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0246】
Figure 0003808139
【0247】
Figure 0003808139
【0248】
〔比較例26〕
実施例26の電荷輸送層塗工液において、化合物NO.V−19の化合物を添加しないこと以外は実施例26と同様にして比較例の電子写真感光体を作製した。
【0249】
〔実施例27〕
アルミニウムシリンダー上に下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0250】
Figure 0003808139
【0251】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0252】
Figure 0003808139
【0253】
〔比較例27〕
実施例27の電荷輸送層塗工液を下記組成のものにした以外は実施例27と同様にして比較例の電子写真感光体を作製した。
【0254】
Figure 0003808139
【0255】
〔実施例28〕
実施例25の電荷輸送層塗工液を下記組成のものにした以外は実施例25と同様にして本発明の電子写真感光体を作製した。
【0256】
Figure 0003808139
【0257】
〔比較例28〕
実施例28の電荷輸送層塗工液を下記組成のものにした以外は実施例28と同様にして比較例の電子写真感光体を作製した。
【0258】
Figure 0003808139
【0259】
〔実施例29〕
実施例26の電荷輸送層塗工液を下記組成のものにした以外は実施例26と同様にして本発明の電子写真感光体を作製した。
【0260】
〔電荷輸送層塗工液〕
化合物NO.V−81の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0261】
〔比較例29〕
実施例29の電荷輸送層塗工液を下記組成のものにした以外は実施例29と同様にして比較例の電子写真感光体を作製した。
【0262】
〔電荷輸送層塗工液〕
化合物NO.V−81の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0263】
〔実施例30〕
実施例27の電荷輸送層塗工液を下記組成のものにした以外は実施例27と同様にして本発明の電子写真感光体を作製した。
Figure 0003808139
【0264】
〔比較例30〕
実施例30の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例30と同様にして比較例の電子写真感光体を作製した。
【0265】
〔実施例31〕
アルミニウムシリンダー上に下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0266】
Figure 0003808139
【0267】
〔比較例31〕
実施例31の電荷輸送層塗工液において、化合物NO.V−116の化合物を添加しないこと以外は実施例31と同様にして比較例の電子写真感光体を作製した。
【0268】
〔実施例32〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0269】
Figure 0003808139
【化14】
Figure 0003808139
Figure 0003808139
【0270】
〔比較例32〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0271】
Figure 0003808139
【0272】
上記実施例25から32および比較例25から32で得られた各感光体について上記と同様の方法で感光体特性を測定した。結果を表13に示す。
【0273】
【表13】
Figure 0003808139
【0274】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(VI)で示される化合物を併用した場合について、実施例33から40および比較例33から40により説明する。
【0275】
〔実施例33〕
外径70mmのアルミニウムシリンダー上に下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0276】
Figure 0003808139
【0277】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0278】
〔電荷輸送層塗工液〕
化合物NO.VI−3の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0279】
〔比較例33〕
実施例33の電荷輸送層塗工液を下記組成のものに変えた以外は実施例33と同様にして比較例の電子写真感光体を作製した。
【0280】
Figure 0003808139
【0281】
〔実施例34〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0282】
Figure 0003808139
【0283】
Figure 0003808139
【0284】
〔比較例34〕
実施例34の電荷輸送層塗工液において、化合物NO.VI−6の化合物を添加しないこと以外は実施例34と同様にして比較例の電子写真感光体を作製した。
【0285】
〔実施例35〕
アルミニウムシリンダー上に下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0286】
Figure 0003808139
【0287】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0288】
Figure 0003808139
【0289】
〔比較例35〕
実施例35の電荷輸送層塗工液を下記組成のものにした以外は実施例35と同様にして比較例の電子写真感光体を作製した。
【0290】
Figure 0003808139
【0291】
〔実施例36〕
実施例33の電荷輸送層塗工液を下記組成のものにした以外は実施例33と同様にして本発明の電子写真感光体を作製した。
【0292】
Figure 0003808139
【0293】
〔比較例36〕
実施例36の電荷輸送層塗工液を下記組成のものにした以外は実施例36と同様にして比較例の電子写真感光体を作製した。
【0294】
Figure 0003808139
【0295】
〔実施例37〕
実施例34の電荷輸送層塗工液を下記組成のものにした以外は実施例34と同様にして本発明の電子写真感光体を作製した。
【0296】
〔電荷輸送層塗工液〕
化合物NO.VI−13の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0297】
〔比較例37〕
実施例37の電荷輸送層塗工液を下記組成のものにした以外は実施例37と同様にして比較例の電子写真感光体を作製した。
【0298】
〔電荷輸送層塗工液〕
化合物NO.VI−13の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0299】
〔実施例38〕
実施例35の電荷輸送層塗工液を下記組成のものにした以外は実施例35と同様にして本発明の電子写真感光体を作製した。
【0300】
Figure 0003808139
【0301】
〔比較例38〕
実施例38の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例38と同様にして比較例の電子写真感光体を作製した。
【0302】
〔実施例39〕
アルミニウムシリンダー上に下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0303】
Figure 0003808139
【0304】
〔比較例39〕
実施例39の電荷輸送層塗工液において、化合物NO.VI−9の化合物を添加しないこと以外は実施例39と同様にして比較例の電子写真感光体を作製した。
【0305】
〔実施例40〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0306】
〔感光層塗工液〕下記構造式(化14)の電荷発生材料 3部
【化14】
Figure 0003808139
Figure 0003808139
【0307】
〔比較例40〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0308】
Figure 0003808139
【0309】
上記実施例33から40および比較例33から40で得られた各感光体について上記と同様の方法で感光体特性を測定した。結果を表14に示す。
【0310】
【表14】
Figure 0003808139
【0311】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(VII)で示される化合物を併用した場合について、実施例41から48および比較例41から48により説明する。
【0312】
〔実施例41〕
外径70mmのアルミニウムシリンダー上に下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0313】
Figure 0003808139
【0314】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0315】
〔電荷輸送層塗工液〕
化合物NO.VII−1の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0316】
〔比較例41〕
実施例41の電荷輸送層塗工液を下記組成のものに変えた以外は実施例41と同様にして比較例の電子写真感光体を作製した。
【0317】
Figure 0003808139
【0318】
〔実施例42〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0319】
Figure 0003808139
【0320】
Figure 0003808139
【0321】
〔比較例42〕
実施例42の電荷輸送層塗工液において、化合物NO.VII−3の化合物を添加しないこと以外は実施例42と同様にして比較例の電子写真感光体を作製した。
【0322】
〔実施例43〕
アルミニウムシリンダー上に下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0323】
Figure 0003808139
【0324】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0325】
Figure 0003808139
【0326】
〔比較例43〕
実施例43の電荷輸送層塗工液を下記組成のものにした以外は実施例43と同様にして比較例の電子写真感光体を作製した。
【0327】
Figure 0003808139
【0328】
〔実施例44〕
実施例41の電荷輸送層塗工液を下記組成のものにした以外は実施例41と同様にして本発明の電子写真感光体を作製した。
【0329】
Figure 0003808139
【0330】
〔比較例44〕
実施例44の電荷輸送層塗工液を下記組成のものにした以外は実施例44と同様にして比較例の電子写真感光体を作製した。
【0331】
Figure 0003808139
【0332】
〔実施例45〕
実施例42の電荷輸送層塗工液を下記組成のものにした以外は実施例42と同様にして本発明の電子写真感光体を作製した。
【0333】
〔電荷輸送層塗工液〕
化合物NO.VII−11の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0334】
〔比較例45〕
実施例45の電荷輸送層塗工液を下記組成のものにした以外は実施例45と同様にして比較例の電子写真感光体を作製した。
【0335】
〔電荷輸送層塗工液〕
化合物NO.VII−11の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0336】
〔実施例46〕
実施例43の電荷輸送層塗工液を下記組成のものにした以外は実施例43と同様にして本発明の電子写真感光体を作製した。
【0337】
Figure 0003808139
【0338】
〔比較例46〕
実施例46の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例46と同様にして比較例の電子写真感光体を作製した。
【0339】
〔実施例47〕
アルミニウムシリンダー上に下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0340】
Figure 0003808139
【0341】
〔比較例47〕
実施例47の電荷輸送層塗工液において、化合物NO.VII−2の化合物を添加しないこと以外は実施例47と同様にして比較例の電子写真感光体を作製した。
【0342】
〔実施例48〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0343】
Figure 0003808139
【化14】
Figure 0003808139
Figure 0003808139
【0344】
〔比較例48〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0345】
Figure 0003808139
【0346】
上記実施例41から48および比較例41から48で得られた各感光体について前記と同様の方法で感光体特性を測定した。結果を表15に示す。
【0347】
【表15】
Figure 0003808139
【0348】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(VIII)で示される化合物を併用した場合について、実施例49から56および比較例49から56により説明する。
【0349】
〔実施例49〕
外径70mmのアルミニウムシリンダー上に下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0350】
Figure 0003808139
【0351】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0352】
〔電荷輸送層塗工液〕
化合物NO.VIII−11の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0353】
〔比較例49〕
実施例49の電荷輸送層塗工液を下記組成のものに変えた以外は実施例49と同様にして比較例の電子写真感光体を作製した。
【0354】
Figure 0003808139
【0355】
〔実施例50〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0356】
Figure 0003808139
【0357】
Figure 0003808139
【0358】
〔比較例50〕
実施例50の電荷輸送層塗工液において、化合物NO.VIII−16の化合物を添加しないこと以外は実施例50と同様にして比較例の電子写真感光体を作製した。
【0359】
〔実施例51〕
アルミニウムシリンダー上に下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0360】
Figure 0003808139
【0361】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0362】
Figure 0003808139
【0363】
〔比較例51〕
実施例51の電荷輸送層塗工液を下記組成のものにした以外は実施例51と同様にして比較例の電子写真感光体を作製した。
【0364】
Figure 0003808139
【0365】
〔実施例52〕
実施例49の電荷輸送層塗工液を下記組成のものにした以外は実施例49と同様にして本発明の電子写真感光体を作製した。
【0366】
Figure 0003808139
【0367】
〔比較例52〕
実施例52の電荷輸送層塗工液を下記組成のものにした以外は実施例52と同様にして比較例の電子写真感光体を作製した。
【0368】
Figure 0003808139
【0369】
〔実施例53〕
実施例50の電荷輸送層塗工液を下記組成のものにした以外は実施例50と同様にして本発明の電子写真感光体を作製した。
【0370】
〔電荷輸送層塗工液〕
化合物NO.VIII−14の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0371】
〔比較例53〕
実施例53の電荷輸送層塗工液を下記組成のものにした以外は実施例53と同様にして比較例の電子写真感光体を作製した。
【0372】
〔電荷輸送層塗工液〕
化合物NO.VIII−14の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0373】
〔実施例54〕
実施例51の電荷輸送層塗工液を下記組成のものにした以外は実施例51と同様にして本発明の電子写真感光体を作製した。
【0374】
Figure 0003808139
【0375】
〔比較例54〕
実施例54の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例54と同様にして比較例の電子写真感光体を作製した。
【0376】
〔実施例55〕
アルミニウムシリンダー上に下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0377】
Figure 0003808139
【0378】
〔比較例55〕
実施例55の電荷輸送層塗工液において、化合物NO.VIII−46の化合物を添加しないこと以外は実施例55と同様にして比較例の電子写真感光体を作製した。
【0379】
〔実施例56〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0380】
Figure 0003808139
【化14】
Figure 0003808139
Figure 0003808139
【0381】
〔比較例56〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0382】
Figure 0003808139
【0383】
上記実施例49から56および比較例49から56で得られた各感光体について前記と同様の方法で感光体特性を測定した。結果を表16に示す。
【0384】
【表16】
Figure 0003808139
【0385】
次に電荷輸送材料として一般式(I)で示される化合物と一般式(IX)で示される化合物を併用した場合について、実施例57から64および比較例57から64により説明する。
【0386】
〔実施例57〕
外径70mmのアルミニウムシリンダー上に下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々4μmの下引層、0.2μmの電荷発生層、22μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0387】
Figure 0003808139
【0388】
Figure 0003808139
【化12】
Figure 0003808139
Figure 0003808139
【0389】
〔電荷輸送層塗工液〕
化合物NO.IX−6の化合物 3部
化合物NO.I−2の化合物 6部
ポリカーボネート(帝人化成社製:パンライトK−1300) 10部
テトラヒドロフラン 75部
【0390】
〔比較例57〕
実施例57の電荷輸送層塗工液を下記組成のものに変えた以外は実施例57と同様にして比較例の電子写真感光体を作製した。
【0391】
Figure 0003808139
【0392】
〔実施例58〕
アルミニウムシリンダー表面を陽極酸化処理した後、封孔処理を行った。この上に、下記電荷発生層塗工液、電荷輸送層塗工液を順次塗布・乾燥して各々0.2μmの電荷発生層、20μmの電荷輸送層を形成し本発明の電子写真感光体を作製した。
【0393】
Figure 0003808139
【0394】
Figure 0003808139
【0395】
〔比較例58〕
実施例58の電荷輸送層塗工液において、化合物NO.IX−13の化合物を添加しないこと以外は実施例58と同様にして比較例の電子写真感光体を作製した。
【0396】
〔実施例59〕
アルミニウムシリンダー上に下記組成の下引層塗工液、下記組成の電荷発生層塗工液、下記組成の電荷輸送層塗工液を、順次塗布・乾燥して各々2μmの下引層、0.2μmの電荷発生層、2μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0397】
Figure 0003808139
【0398】
〔電荷発生層塗工液〕
下記構造式(化13)の電荷発生材料 3部
【化13】
Figure 0003808139
ポリエステル(東洋紡社製:バイロン 200) 1部
シクロヘキサノン 150部
4−メチル−2−ペンタノン 100部
【0399】
Figure 0003808139
【0400】
〔比較例59〕
実施例59の電荷輸送層塗工液を下記組成のものにした以外は実施例59と同様にして比較例の電子写真感光体を作製した。
【0401】
Figure 0003808139
【0402】
〔実施例60〕
実施例57の電荷輸送層塗工液を下記組成のものにした以外は実施例57と同様にして本発明の電子写真感光体を作製した。
【0403】
Figure 0003808139
【0404】
〔比較例60〕
実施例60の電荷輸送層塗工液を下記組成のものにした以外は実施例60と同様にして比較例の電子写真感光体を作製した。
【0405】
Figure 0003808139
【0406】
〔実施例61〕
実施例58の電荷輸送層塗工液を下記組成のものにした以外は実施例58と同様にして本発明の電子写真感光体を作製した。
【0407】
〔電荷輸送層塗工液〕
化合物NO.IX−2の化合物 2部
化合物NO.I−44の化合物 7部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0408】
〔比較例61〕
実施例61の電荷輸送層塗工液を下記組成のものにした以外は実施例61と同様にして比較例の電子写真感光体を作製した。
【0409】
〔電荷輸送層塗工液〕
化合物NO.IX−2の化合物 9部
ポリカーボネート(出光石油化学社製:A2700) 10部
塩化メチレン 80部
【0410】
〔実施例62〕
実施例59電荷輸送層塗工液を下記組成のものにした以外は実施例59と同様にして本発明の電子写真感光体を作製した。
【0411】
Figure 0003808139
【0412】
〔比較例62〕
実施例62の電荷輸送層塗工液において、化合物NO.I−47の化合物を添加しないこと以外は実施例62と同様にして比較例の電子写真感光体を作製した。
【0413】
〔実施例63〕
アルミニウムシリンダー上に下記組成の共晶錯体光導電層塗工液を塗布・乾燥し、厚さ25μmの共晶錯体光導電層を形成し本発明の電子写真感光体を作製した。
【0414】
Figure 0003808139
【0415】
〔比較例63〕
実施例63の電荷輸送層塗工液において、化合物NO.IX−21の化合物を添加しないこと以外は実施例63と同様にして比較例の電子写真感光体を作製した。
【0416】
〔実施例64〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し本発明の電子写真感光体を作製した。
【0417】
〔感光層塗工液〕
下記構造式(化14)の電荷発生材料 3部
【化14】
Figure 0003808139
ポリカーボネート
(三菱瓦斯化学社製:ユーピロン S−2000) 21部
化合物NO.IX−3の化合物 8部
化合物NO.I−86の化合物 10部
テトラヒドロフラン 250部
【0418】
〔比較例64〕
アルミニウムシリンダー上に下記組成の感光層塗工液を塗布・乾燥し、厚さ23μmの単層感光層を形成し比較例の電子写真感光体を作製した。
【0419】
Figure 0003808139
【0420】
上記実施例57から64および比較例57から64で得られた各感光体について上記と同様の方法で感光体特性を測定した。結果を表17に示す。
【0421】
【表17】
Figure 0003808139
【0422】
【発明の効果】
以上のように、本発明によれば、感光層に電荷輸送材料して上記特定の2種類の化合物を用いることにより高感度を維持しながら繰り返し使用によっても優れた安定性を有する電子写真感光体が得られる。
【図面の簡単な説明】
【図1】本発明が係る単層感光体の説明図である。
【図2】本発明が係る積層感光体の説明図である。
【図3】本発明が係る積層感光体の説明図である。
【符号の説明】
11 導電性支持体
15 単層感光層
17 電荷発生層
19 電荷輸送層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, and more particularly to an electrophotographic photosensitive member using a specific charge transport material and excellent in photosensitivity, printing characteristics, and repeated use characteristics.
[0002]
[Prior art]
In an organic electrophotographic photosensitive member, a function-separated type photosensitive member in which a charge generation layer and a charge transport layer are laminated has been noticed and put into practical use in order to increase the sensitivity. The mechanism of electrostatic latent image formation in this function-separated type photoreceptor is that when the photoreceptor is charged and then irradiated with light, the light is absorbed by the charge generation layer, and the charge generation layer that has absorbed the light generates charge carriers. This charge carrier is injected into the charge transport layer, moves in the charge transport layer (or photosensitive layer) according to the electric field generated by charging, and forms an electrostatic latent image by neutralizing the charge on the surface of the photoreceptor. To do.
[0003]
Various photoconductor materials have been developed so far, but in order to make them excellent electrophotographic photoconductors that can be put into practical use, sensitivity, receptive potential, potential holding property, potential stability, residual potential, and spectral characteristics are required. Various characteristics such as representative electrophotographic characteristics, mechanical durability such as abrasion resistance, chemical stability against heat, light, discharge products, and the like are required. In particular, it is important to have high sensitivity and excellent repeated stability. However, as described above, a certain degree of high sensitivity characteristics can be achieved by a combination of an appropriate charge generation material and charge transport material. is there. On the other hand, in addition to this, studies have been made on the combination of mechanical durability, but depending on the combination of conventionally proposed charge generation materials and charge transport materials, a material that satisfies all of the above conditions can be obtained. It was not done. Therefore, there has been a strong demand for the completion of an electrophotographic photosensitive member that maintains high sensitivity and is excellent in stability by repeated use by using conventionally proposed charge generation materials and charge transport materials.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrophotographic photosensitive member that exhibits excellent stability even after repeated use without losing high sensitivity.
[0005]
[Means for Solving the Problems]
  According to the present invention, the following inventions are provided.
  First, in the present invention,Compound represented by general formula (I)One thingCompound represented by general formula (II),oneCompound represented by general formula (III),oneCompound represented by general formula (IV),oneCompound represented by general formula (V),oneCompound represented by general formula (IV),oneCompound represented by general formula (VII),oneA compound represented by formula (VIII):BiichiCompound represented by general formula (IX)Is shown below.
[Chemical 1]
Figure 0003808139
[Chemical 2]
Figure 0003808139
[Chemical Formula 3]
Figure 0003808139
[Formula 4]
Figure 0003808139
[Chemical formula 5]
Figure 0003808139
[Chemical 6]
Figure 0003808139
[Chemical 7]
Figure 0003808139
[Chemical 8]
Figure 0003808139
[Chemical 9]
Figure 0003808139
[Chemical Formula 10]
Figure 0003808139
Embedded image
Figure 0003808139
  (I) On the conductive support, a charge generation layer containing a charge generation material as a main component and a charge transport layer containing at least one set selected from the group of compounds represented by the following (1) to (8) are laminated: An electrophotographic photoreceptor characterized by comprising:
  (1) The compound represented by the general formula (I) and the compound represented by the general formula (II)
  (2) The compound represented by the general formula (I) and the compound represented by the general formula (III)
  (3) The compound represented by the general formula (I) and the compound represented by the general formula (IV)
  (4) The compound represented by the general formula (I) and the compound represented by the general formula (V)
  (5) The compound represented by the general formula (I) and the compound represented by the general formula (VI)
  (6) The compound represented by the general formula (I) and the compound represented by the general formula (VII)
  (7) The compound represented by the general formula (I) and the compound represented by the general formula (VIII)
  (8) Compound represented by general formula (I) and compound represented by general formula (IX)
  (B(1) An electrophotographic film comprising a single-layer photosensitive layer containing at least one selected from the group consisting of compounds represented by the following (1) to (8) on a conductive support: Photoconductor.
  (1) The compound represented by the general formula (I) and the compound represented by the general formula (II)
  (2) The compound represented by the general formula (I) and the compound represented by the general formula (III)
  (3) The compound represented by the general formula (I) and the compound represented by the general formula (IV)
  (4) The compound represented by the general formula (I) and the compound represented by the general formula (V)
  (5) The compound represented by the general formula (I) and the compound represented by the general formula (VI)
  (6) The compound represented by the general formula (I) and the compound represented by the general formula (VII)
  (7) The compound represented by the general formula (I) and the compound represented by the general formula (VIII)
  (8) A compound represented by the general formula (I) and a compound represented by the general formula (IX).
[0006]
The present invention is described in detail below.
As a result of repeated studies on the above problems, the present inventors have used the above-mentioned specific combination of charge transport materials for the photosensitive layer, so that the occurrence of image quality defects can be suppressed even after repeated use, and excellent electrophotographic characteristics can be combined. The present inventors have found that an electrophotographic photosensitive member can be obtained, and have reached the present invention.
[0007]
The electrophotographic photosensitive member of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a single-layer photosensitive member in the present invention, and a photosensitive layer 15 is provided on a conductive support 11. . 2 and 3 are cross-sectional views showing examples of the structure of the laminated photoconductor according to the present invention, a charge generation layer 17 mainly composed of a charge generation material, and a charge transport layer 19 mainly composed of a charge transport material. However, it has a laminated structure.
In such a single-layer or multilayer photoreceptor, a charge transport material comprising at least one selected from the compounds represented by the general formula (I) and the compounds represented by the general formulas (II) to (IX). Are used in combination.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the invention will be described below.
The conductive support 11 has a volume resistance of 1.0 × 10TenA material that exhibits conductivity of Ωcm or less, for example, a metal such as aluminum, nickel, chromium, nichrome, copper, silver, gold, platinum, a metal oxide such as tin oxide, indium oxide, or the like by vapor deposition or sputtering. It is possible to use cylindrical plastic or paper coated, or aluminum, aluminum alloy, nickel, stainless steel, etc. and pipes that have been surface treated by cutting, superfinishing, polishing, etc. it can.
[0009]
Next, the photosensitive layer 15 will be described. For convenience of explanation, the case where the charge generation layer 17 and the charge transport layer 19 are laminated will be described first.
The charge generation layer 17 is a layer mainly composed of a charge generation material. Inorganic and organic materials are used as charge generation materials, and representative examples thereof include monoazo pigments, disazo pigments, trisazo pigments, perylene pigments, perinone pigments, quinacridone pigments, quinone condensed polycyclic compounds, squaric acid dyes. Phthalocyanine pigments, naphthalocyanine pigments, azulenium salt dyes, selenium, selenium-tellurium, selenium-arsenic alloys, amorphous silicon, and the like.
[0010]
The charge generation material may be used alone or in combination of two or more. The charge generation layer 17 is dispersed by a ball mill, an attritor, a sand mill, or the like using a suitable solvent such as tetrahydrofuran, cyclohexanone, dioxane, 2-butanone, dichloroethane, or the like, together with a binder resin in which a charge generation material is used as appropriate. It can be formed by coating. The coating can be performed using a dip coating method, a spray coating method, a bead coating method, or the like.
[0011]
Suitable binder resins include polyamide, polyurethane, polyester, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone, polystyrene, and polyacrylamide. The amount of the binder resin used appropriately is suitably 0 to 2 parts by weight with respect to 1 part by weight of the charge generating material.
[0012]
The charge generation layer 17 can also be provided by a known vacuum thin film manufacturing method. The film thickness of the charge generation layer 17 is suitably about 0.01 to 5 μm, preferably 0.1 to 2 μm.
[0013]
The charge transport layer 19 can be formed by dissolving or dispersing a charge transport material and a binder resin in an appropriate solvent, and applying and drying the solution. Moreover, a plasticizer, a leveling agent, etc. can also be added as needed.
[0014]
As the charge transport material, a mixture of the compound represented by the general formula (I) and at least one selected from the compounds represented by the general formulas (II) to (IX) is used. Specific examples of these compounds are listed in Table 1 and Tables 2 to 9. The mixing ratio of these compounds is such that the compound represented by the general formula (I) and at least one selected from the compounds represented by the general formulas (II) to (IX) each fall within the range of 5:95 to 95: 5. Good results can be obtained. The amount of the charge transport material used is 15 to 75% by weight, preferably 25 to 65% by weight, based on the total constituent material of the charge transport layer in the laminated photoconductor.
[0015]
[Table 1- (1)]
Figure 0003808139
[0016]
[Table 1- (2)]
Figure 0003808139
[0017]
[Table 1- (3)]
Figure 0003808139
[0018]
[Table 1- (4)]
Figure 0003808139
[0019]
[Table 1- (5)]
Figure 0003808139
[0020]
[Table 1- (6)]
Figure 0003808139
[0021]
[Table 1- (7)]
Figure 0003808139
[0022]
[Table 1- (8)]
Figure 0003808139
[0023]
[Table 1- (9)]
Figure 0003808139
[0024]
[Table 2- (1)]
Figure 0003808139
[0025]
[Table 2- (2)]
Figure 0003808139
[0026]
[Table 2- (3)]
Figure 0003808139
[0027]
[Table 2- (4)]
Figure 0003808139
[0028]
[Table 2- (5)]
Figure 0003808139
[0029]
[Table 2- (6)]
Figure 0003808139
[0030]
[Table 2- (7)]
Figure 0003808139
[0031]
[Table 2- (8)]
Figure 0003808139
[0032]
[Table 2- (9)]
Figure 0003808139
[0033]
[Table 3- (1)]
Figure 0003808139
[0034]
[Table 3- (2)]
Figure 0003808139
[0035]
[Table 4- (1)]
Figure 0003808139
[0036]
[Table 4- (2)]
Figure 0003808139
[0037]
[Table 4- (3)]
Figure 0003808139
[0038]
[Table 4- (4)]
Figure 0003808139
[0039]
[Table 4- (5)]
Figure 0003808139
[0040]
[Table 4- (6)]
Figure 0003808139
[0041]
[Table 4- (7)]
Figure 0003808139
[0042]
[Table 4- (8)]
Figure 0003808139
[0043]
[Table 4- (9)]
Figure 0003808139
[0044]
[Table 4- (10)]
Figure 0003808139
[0045]
[Table 4- (11)]
Figure 0003808139
[0046]
[Table 4- (12)]
Figure 0003808139
[0047]
[Table 4- (13)]
Figure 0003808139
[0048]
[Table 4- (14)]
Figure 0003808139
[0049]
[Table 4- (15)]
Figure 0003808139
[0050]
[Table 4- (16)]
Figure 0003808139
[0051]
[Table 4- (17)]
Figure 0003808139
[0052]
[Table 4- (18)]
Figure 0003808139
[0053]
[Table 5- (1)]
Figure 0003808139
[0054]
[Table 5- (2)]
Figure 0003808139
[0055]
[Table 5- (3)]
Figure 0003808139
[0056]
[Table 5- (4)]
Figure 0003808139
[0057]
[Table 5- (5)]
Figure 0003808139
[0058]
[Table 5- (6)]
Figure 0003808139
[0059]
[Table 5- (7)]
Figure 0003808139
[0060]
[Table 5- (8)]
Figure 0003808139
[0061]
[Table 5- (9)]
Figure 0003808139
[0062]
[Table 5- (10)]
Figure 0003808139
[0063]
[Table 5- (11)]
Figure 0003808139
[0064]
[Table 5- (12)]
Figure 0003808139
[0065]
[Table 5- (13)]
Figure 0003808139
[0066]
[Table 5- (14)]
Figure 0003808139
[0067]
[Table 5- (15)]
Figure 0003808139
[0068]
[Table 5- (16)]
Figure 0003808139
[0069]
[Table 5- (17)]
Figure 0003808139
[0070]
[Table 5- (18)]
Figure 0003808139
[0071]
[Table 5- (19)]
Figure 0003808139
[0072]
[Table 5- (20)]
Figure 0003808139
[0073]
[Table 5- (21)]
Figure 0003808139
[0074]
[Table 5- (22)]
Figure 0003808139
[0075]
[Table 5- (23)]
Figure 0003808139
[0076]
[Table 5- (24)]
Figure 0003808139
[0077]
[Table 5- (25)]
Figure 0003808139
[0078]
[Table 5- (26)]
Figure 0003808139
[0079]
[Table 5- (27)]
Figure 0003808139
[0080]
[Table 5- (28)]
Figure 0003808139
[0081]
[Table 5- (29)]
Figure 0003808139
[0082]
[Table 5- (30)]
Figure 0003808139
[0083]
[Table 5- (31)]
Figure 0003808139
[0084]
[Table 5- (32)]
Figure 0003808139
[0085]
[Table 5- (33)]
Figure 0003808139
[0086]
[Table 5- (34)]
Figure 0003808139
[0087]
[Table 5- (35)]
Figure 0003808139
[0088]
[Table 5- (36)]
Figure 0003808139
[0089]
[Table 5- (37)]
Figure 0003808139
[0090]
[Table 5- (38)]
Figure 0003808139
[0091]
[Table 5- (39)]
Figure 0003808139
[0092]
[Table 5- (40)]
Figure 0003808139
[0093]
[Table 5- (41)]
Figure 0003808139
[0094]
[Table 5- (42)]
Figure 0003808139
[0095]
[Table 5- (43)]
Figure 0003808139
[0096]
[Table 6- (1)]
Figure 0003808139
[0097]
[Table 6- (2)]
Figure 0003808139
[0098]
[Table 6- (3)]
Figure 0003808139
[0099]
[Table 6- (4)]
Figure 0003808139
[0100]
[Table 7- (1)]
Figure 0003808139
[0101]
[Table 7- (2)]
Figure 0003808139
[0102]
[Table 8- (1)]
Figure 0003808139
[0103]
[Table 8- (2)]
Figure 0003808139
[0104]
[Table 8- (3)]
Figure 0003808139
[0105]
[Table 8- (4)]
Figure 0003808139
[0106]
[Table 9- (1)]
Figure 0003808139
[0107]
[Table 9- (2)]
Figure 0003808139
[0108]
[Table 9- (3)]
Figure 0003808139
[0109]
[Table 9- (4)]
Figure 0003808139
[0110]
In addition to a charge transporting material comprising a compound represented by the general formula (I) and at least one selected from the compounds represented by the general formulas (II) to (IX), a known electron transporting charge may be used. A transport material and / or a hole transport charge transport material may be used in combination.
[0111]
Examples of the binder resin used in the charge transport layer 19 together with the charge transport material include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, and vinyl chloride. -Vinyl acetate copolymer, polyvinyl acetate, polyvinylidene chloride, polyarylate, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, acrylic resin, silicone resin, epoxy resin, melamine resin , A thermoplastic resin such as urethane resin, phenol resin, alkyd resin, or thermosetting resin.
[0112]
As the solvent, tetrahydrofuran, dioxane, toluene, 2-butanone, monochlorobenzene, dichloroethane, methylene chloride and the like are used.
[0113]
The thickness of the charge transport layer 19 is suitably 5 to 100 μm.
[0114]
In the present invention, a plasticizer or a leveling agent may be added to the charge transport layer 19. As the plasticizer, those used as a plasticizer for general resins such as dibutyl phthalate and dioctyl phthalate can be used as they are, and the amount used is suitably about 0 to 30% by weight based on the binder resin. As the leveling agent, silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, and polymers or oligomers having a perfluoroalkyl group in the side chain are used, and the amount used is 0 to 1 weight relative to the binder resin. % Is appropriate.
[0115]
Next, the case where the photosensitive layer 15 has a single layer structure will be described. Many of the materials used in this case are the same as those used in the functional separation type composed of the charge generation material and the charge transport material.
[0116]
That is, at least a charge generating material and a charge transport material consisting of at least one compound selected from the compounds represented by the general formulas (I) and (II) to (IX), together with the binder resin, are suitable. It can be formed by dissolving or dispersing in an appropriate solvent, coating and drying. Further, if necessary, a plasticizer, a ladle agent and the like can be added.
As the binder resin, the binder resin previously mentioned in the charge transport layer 19 can be used as it is, and the binder resin mentioned in the charge generation layer 17 may be mixed.
[0117]
The eutectic complex formed from a pyrylium dye and a bisphenol A polycarbonate comprises a compound represented by general formula (I) and at least one selected from compounds represented by general formulas (II) to (IX). A photosensitive layer to which a charge transport material is added can also be used as a single-layer photosensitive layer.
[0118]
Further, charge generation is carried out mainly comprising a charge transporting material comprising at least one compound selected from the compounds represented by general formula (I) and the compounds represented by general formulas (II) to (IX) and a binder resin. A single-layer photosensitive layer containing no material as an active ingredient is also useful as a photoreceptor having sensitivity to blue light to ultraviolet light.
[0119]
The mixing ratio of the two specific types of charge transport materials in the single-layer photosensitive layer is preferably in the range of 5:95 to 95: 5, as in the case of the laminated photosensitive layer, and the amount used is the total constitution of the single-layer photosensitive layer It is 5 to 75% by weight, preferably 10 to 65% by weight, based on the material. The film thickness of the single-layer photosensitive layer is suitably 5 to 100 μm.
[0120]
In the electrophotographic photoreceptor of the present invention, an undercoat layer can be provided between the conductive support 11 and the photosensitive layer. In general, the undercoat layer is mainly composed of a resin. However, considering that the photosensitive layer is applied with a solvent on these resins, the resin may be a resin having a high resistance to a general organic solvent. desirable. Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate, alcohol-soluble resins such as copolymer nylon and methoxymethylated nylon, polyurethane, melamine resins, alkyd-melamine resins, and epoxy resins. Examples thereof include curable resins that form a three-dimensional network structure.
[0121]
Further, fine powders of metal oxides exemplified by titanium oxide, silica, alumina, zirconium oxide, tin oxide, indium oxide and the like may be added to the undercoat layer in order to prevent moire and reduce residual potential. These undercoat layers can be formed using an appropriate solvent and coating method as in the photosensitive layer described above.
[0122]
Furthermore, a metal oxide layer formed by, for example, a sol-gel method using a silane coupling agent, a titanium coupling agent, a chromium coupling agent, or the like is also useful as the undercoat layer of the present invention.
[0123]
In addition to this, the undercoat layer of the present invention includes Al.2OThreePrepared by anodic oxidation, organic matter such as polyparaxylylene (parylene), SiO, SnO2TiO2, ITO, CeO2A material provided with an inorganic material such as a vacuum thin film can also be used favorably. The thickness of the undercoat layer is suitably from 0 to 5 μm.
[0124]
In the electrophotographic photoreceptor of the present invention, a protective layer may be provided on the photosensitive layer for the purpose of protecting the photosensitive layer. Materials used for this include ABS resin, ACS resin, olefin-vinyl monomer copolymer, chlorinated polyether, allyl resin, phenol resin, polyacetal, polyamide, polyamideimide, polyacrylate, polyallylsulfone, polybutylene, Polybutylene terephthalate, polycarbonate, polyethersulfone, polyethylene, polyethylene terephthalate, polyimide, acrylic resin, polymethylpentene, polypropylene, polyphenylene oxide, polysulfone, AS resin, AB resin, BS resin, polyurethane, polyvinyl chloride, polyvinylidene chloride, Resins such as epoxy resins can be used.
[0125]
In addition to the protective layer, for the purpose of improving wear resistance, fluorine resin such as polytetrafluoroethylene, silicone resin, and those in which inorganic materials such as titanium oxide, tin oxide and potassium titanate are dispersed in these resins, etc. Can be added.
As a method for forming the protective layer, a normal coating method is employed. In addition, about 0.5-10 micrometers is suitable for the thickness of a protective layer. In addition to the above, known materials such as i-C and a-SiC formed by a vacuum thin film manufacturing method can also be used as the protective layer.
[0126]
In the present invention, another intermediate layer can be provided between the photosensitive layer and the protective layer. In the intermediate layer, a binder resin is generally used as a main component. Examples of these resins include polyamide, alcohol-soluble nylon, water-soluble polyvinyl butyral, polyvinyl butyral, and polyvinyl alcohol.
As a method for forming the intermediate layer, a normal coating method is employed as described above. In addition, about 0.05-2 micrometers is suitable for the thickness of an intermediate | middle layer.
[0127]
【Example】
The following examples illustrate the present invention in detail, and the present invention is not limited by the examples. In addition, all the parts in an Example are a weight part.
First, Examples 1 to 8 and Comparative Examples 1 to 8 illustrate cases where the compounds represented by formulas (I) and (II) are used in combination as charge transport materials.
[0128]
[Example 1]
An undercoating layer coating solution, a charge generation layer coating solution, and a charge transporting layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form an undercoating layer of 4 μm and 0.2 μm, respectively. The electrophotographic photosensitive member of the present invention was prepared by forming a charge generation layer of 22 μm and a charge transport layer of 22 μm.
[0129]
Figure 0003808139
[0130]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0131]
[Charge transport layer coating solution]
Compound NO. II-1 Compound 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0132]
[Comparative Example 1]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 was changed to one having the following composition.
[0133]
Figure 0003808139
[0134]
[Example 2]
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0135]
Figure 0003808139
[0136]
Figure 0003808139
[0137]
[Comparative Example 2]
In the charge transport layer coating solution of Example 2, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 2 except that the compound II-6 was not added.
[0138]
Example 3
On an aluminum cylinder, an undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried to form an undercoat layer of 2 μm each. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0139]
Figure 0003808139
[0140]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0141]
Figure 0003808139
[0142]
[Comparative Example 3]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 3 except that the charge transport layer coating solution of Example 3 had the following composition.
[0143]
Figure 0003808139
[0144]
Example 4
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0145]
Figure 0003808139
[0146]
[Comparative Example 4]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 4 except that the charge transport layer coating solution of Example 4 had the following composition.
[0147]
Figure 0003808139
[0148]
Example 5
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 2 except that the charge transport layer coating solution of Example 2 had the following composition.
[0149]
[Charge transport layer coating solution]
Compound NO. II-35 Compound 2 parts
Compound NO. I-44 Compound 7 parts
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0150]
[Comparative Example 5]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 5 except that the charge transport layer coating solution of Example 5 had the following composition.
[0151]
[Charge transport layer coating solution]
Compound NO. Compound II-35 9 parts
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0152]
Example 6
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 3 except that the charge transport layer coating solution of Example 3 had the following composition.
[0153]
Figure 0003808139
[0154]
[Comparative Example 6]
In the charge transport layer coating solution of Example 6, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 6 except that the compound I-47 was not added.
[0155]
Example 7
An eutectic complex photoconductive layer coating solution having the following composition was applied on an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing an electrophotographic photoreceptor of the present invention.
[0156]
Figure 0003808139
[0157]
[Comparative Example 7]
In the charge transport layer coating solution of Example 7, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 7 except that the compound of II-48 was not added.
[0158]
Example 8
On the aluminum cylinder, a photosensitive layer coating solution having the following composition was applied and dried to form a single-layer photosensitive layer having a thickness of 23 μm to produce the electrophotographic photosensitive member of the present invention.
[0159]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0160]
[Comparative Example 8]
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0161]
Figure 0003808139
[0162]
The following measurements were carried out on the photoreceptors of the above examples and comparative examples using an evaluation apparatus disclosed in Japanese Patent Application Laid-Open No. 60-1000016. Potential Vm (V) after 20 seconds of charging with corona discharge voltage -6.0 kV (or +5.6 kV), potential Vo (V) after 20 seconds of dark decay, residual potential after 20 seconds of exposure with white light with intensity 6 lux The exposure amount E1 / 2 [lux · sec] required to attenuate VR (V) and further the potential Vo to 1/2 was measured. The potential holding ratio is defined as Vo / Vm.
Further, each photoconductor was mounted on a Ricoh copier FT-3300 (or the photoconductor was modified so that it could be positively charged), and 30,000 continuous copies were made, and the presence or absence of an abnormal image was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 10.
[0163]
[Table 10]
Figure 0003808139
[0164]
Next, the case where the compound represented by the general formula (I) and the compound represented by the general formula (III) are used in combination as the charge transport material will be described with reference to Examples 9 to 16 and Comparative Examples 9 to 16.
[0165]
Example 9
An undercoating layer coating solution, a charge generation layer coating solution, and a charge transporting layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form an undercoating layer of 4 μm and 0.2 μm, respectively. The electrophotographic photosensitive member of the present invention was prepared by forming a charge generation layer of 22 μm and a charge transport layer of 22 μm.
[0166]
Figure 0003808139
[0167]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0168]
[Charge transport layer coating solution]
Compound NO. III-8 compounds 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0169]
[Comparative Example 9]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 9 except that the charge transport layer coating solution in Example 9 was changed to the one having the following composition.
[0170]
Figure 0003808139
[0171]
Example 10
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0172]
Figure 0003808139
[0173]
Figure 0003808139
[0174]
[Comparative Example 10]
In the charge transport layer coating solution of Example 10, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 10 except that the compound of III-10 was not added.
[0175]
Example 11
On an aluminum cylinder, an undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried to form an undercoat layer of 2 μm each. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0176]
Figure 0003808139
[0177]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0178]
Figure 0003808139
[0179]
[Comparative Example 11]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 11 except that the charge transport layer coating solution of Example 11 had the following composition.
[0180]
Figure 0003808139
[0181]
Example 12
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 9 except that the charge transport layer coating solution of Example 9 had the following composition.
[0182]
Figure 0003808139
[0183]
[Comparative Example 12]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 12 except that the charge transport layer coating solution of Example 12 had the following composition.
[0184]
Figure 0003808139
[0185]
Example 13
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 10 except that the charge transport layer coating solution of Example 10 had the following composition.
[0186]
[Charge transport layer coating solution]
Compound NO. Compound III-17 2 parts
Compound NO. I-44 Compound 7 parts
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0187]
[Comparative Example 13]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 13 except that the charge transport layer coating solution of Example 13 had the following composition.
[0188]
[Charge transport layer coating solution]
Compound NO. 9 parts of compound III-17
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0189]
Example 14
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 11 except that the charge transport layer coating solution of Example 11 had the following composition.
[0190]
Figure 0003808139
[0191]
[Comparative Example 14]
In the charge transport layer coating solution of Example 14, the compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 14 except that the compound I-47 was not added.
[0192]
Example 15
An eutectic complex photoconductive layer coating solution having the following composition was applied on an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing an electrophotographic photoreceptor of the present invention.
[0193]
Figure 0003808139
[0194]
[Comparative Example 15]
In the charge transport layer coating solution of Example 15, the compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 15 except that the compound III-20 was not added.
[0195]
Example 16
On the aluminum cylinder, a photosensitive layer coating solution having the following composition was applied and dried to form a single-layer photosensitive layer having a thickness of 23 μm to produce the electrophotographic photosensitive member of the present invention.
[0196]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0197]
[Comparative Example 16]
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0198]
Figure 0003808139
[0199]
For each of the photoreceptors obtained in Examples 9 to 16 and Comparative Examples 9 to 16, the photoreceptor characteristics were measured by the same method as described above. The results are shown in Table 11.
[0200]
[Table 11]
Figure 0003808139
[0201]
Next, Examples 17 to 24 and Comparative Examples 17 to 24 illustrate the case where the compound represented by the general formula (I) and the compound represented by the general formula (IV) are used in combination as a charge transport material.
[0202]
Example 17
An undercoating layer coating solution, a charge generation layer coating solution, and a charge transporting layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form an undercoating layer of 4 μm and 0.2 μm, respectively. The electrophotographic photosensitive member of the present invention was prepared by forming a charge generation layer of 22 μm and a charge transport layer of 22 μm.
[0203]
Figure 0003808139
[0204]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0205]
[Charge transport layer coating solution]
Compound NO. Compound IV-2 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0206]
[Comparative Example 17]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 17 except that the charge transport layer coating solution of Example 17 was changed to the following composition.
[0207]
Figure 0003808139
[0208]
Example 18
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0209]
Figure 0003808139
[0210]
Figure 0003808139
[0211]
[Comparative Example 18]
In the charge transport layer coating solution of Example 18, the compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 18 except that the compound IV-14 was not added.
[0212]
Example 19
On an aluminum cylinder, an undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried to form an undercoat layer of 2 μm each. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0213]
Figure 0003808139
[0214]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0215]
Figure 0003808139
[0216]
[Comparative Example 19]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 19 except that the charge transport layer coating solution of Example 19 had the following composition.
[0217]
Figure 0003808139
[0218]
Example 20
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 17 except that the charge transport layer coating solution of Example 17 had the following composition.
[0219]
Figure 0003808139
[0220]
[Comparative Example 20]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 20 except that the charge transport layer coating solution of Example 20 had the following composition.
[0221]
Figure 0003808139
[0222]
Example 21
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 18 except that the charge transport layer coating solution of Example 18 had the following composition.
[0223]
[Charge transport layer coating solution]
Compound NO. Compound IV-51 2 parts
Compound NO. Compound 7 of I-44
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0224]
[Comparative Example 21]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 21 except that the charge transport layer coating solution of Example 21 had the following composition.
[0225]
[Charge transport layer coating solution]
Compound NO. Compound IV-51 9 parts
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0226]
[Example 22]
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 19 except that the charge transport layer coating solution of Example 19 had the following composition.
[0227]
Figure 0003808139
[0228]
[Comparative Example 22]
In the charge transport layer coating solution of Example 22, the compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 22 except that the compound I-47 was not added.
[0229]
Example 23
An eutectic complex photoconductive layer coating solution having the following composition was applied on an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing an electrophotographic photoreceptor of the present invention.
[0230]
Figure 0003808139
[0231]
[Comparative Example 23]
In the charge transport layer coating solution of Example 23, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 23 except that the compound of IV-98 was not added.
[0232]
Example 24
On the aluminum cylinder, a photosensitive layer coating solution having the following composition was applied and dried to form a single-layer photosensitive layer having a thickness of 23 μm to produce the electrophotographic photosensitive member of the present invention.
[0233]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0234]
[Comparative Example 24]
A photosensitive layer coating solution having the following composition was coated on an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0235]
Figure 0003808139
[0236]
The photoreceptor characteristics of the photoreceptors obtained in Examples 17 to 24 and Comparative Examples 17 to 24 were measured in the same manner as described above. The results are shown in Table 12.
[0237]
[Table 12]
Figure 0003808139
[0238]
Next, the case where the compound represented by the general formula (I) and the compound represented by the general formula (V) are used in combination as the charge transport material will be described with reference to Examples 25 to 32 and Comparative Examples 25 to 32.
[0239]
Example 25
An undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form a 4 μm undercoat layer and a 0.2 μm undercoat layer, respectively. A charge generation layer and a 22 μm charge transport layer were formed to produce an electrophotographic photoreceptor of the present invention.
[0240]
Figure 0003808139
[0241]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0242]
[Charge transport layer coating solution]
Compound NO. V-9 compound 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0243]
[Comparative Example 25]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 25 except that the charge transport layer coating solution of Example 25 was changed to the following composition.
[0244]
Figure 0003808139
[0245]
Example 26
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0246]
Figure 0003808139
[0247]
Figure 0003808139
[0248]
[Comparative Example 26]
In the charge transport layer coating solution of Example 26, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 26 except that the V-19 compound was not added.
[0249]
Example 27
An undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder, and each 2. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0250]
Figure 0003808139
[0251]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0252]
Figure 0003808139
[0253]
[Comparative Example 27]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 27 except that the charge transport layer coating solution of Example 27 had the following composition.
[0254]
Figure 0003808139
[0255]
Example 28
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 25 except that the charge transport layer coating solution of Example 25 had the following composition.
[0256]
Figure 0003808139
[0257]
[Comparative Example 28]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 28 except that the charge transport layer coating solution of Example 28 had the following composition.
[0258]
Figure 0003808139
[0259]
Example 29
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 26 except that the charge transport layer coating solution of Example 26 had the following composition.
[0260]
[Charge transport layer coating solution]
Compound NO. 2 parts of V-81 compound
Compound NO. Compound 7 of I-44
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0261]
[Comparative Example 29]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 29 except that the charge transport layer coating solution of Example 29 had the following composition.
[0262]
[Charge transport layer coating solution]
Compound NO. 9 parts of V-81 compound
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0263]
Example 30
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 27 except that the charge transport layer coating solution of Example 27 had the following composition.
Figure 0003808139
[0264]
[Comparative Example 30]
In the charge transport layer coating solution of Example 30, the compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 30 except that the compound I-47 was not added.
[0265]
Example 31
An eutectic complex photoconductive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing the electrophotographic photoreceptor of the present invention.
[0266]
Figure 0003808139
[0267]
[Comparative Example 31]
In the charge transport layer coating solution of Example 31, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 31 except that the V-116 compound was not added.
[0268]
[Example 32]
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby producing the electrophotographic photosensitive member of the present invention.
[0269]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0270]
[Comparative Example 32]
A photosensitive layer coating solution having the following composition was coated on an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0271]
Figure 0003808139
[0272]
The photoreceptor characteristics of the photoreceptors obtained in Examples 25 to 32 and Comparative Examples 25 to 32 were measured in the same manner as described above. The results are shown in Table 13.
[0273]
[Table 13]
Figure 0003808139
[0274]
Next, Examples 33 to 40 and Comparative Examples 33 to 40 illustrate the case where the compound represented by the general formula (I) and the compound represented by the general formula (VI) are used in combination as a charge transport material.
[0275]
Example 33
An undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form a 4 μm undercoat layer and a 0.2 μm undercoat layer, respectively. A charge generation layer and a 22 μm charge transport layer were formed to produce an electrophotographic photoreceptor of the present invention.
[0276]
Figure 0003808139
[0277]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0278]
[Charge transport layer coating solution]
Compound NO. Compound of VI-3 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0279]
[Comparative Example 33]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 33 except that the charge transport layer coating solution in Example 33 was changed to the one having the following composition.
[0280]
Figure 0003808139
[0281]
Example 34
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0282]
Figure 0003808139
[0283]
Figure 0003808139
[0284]
[Comparative Example 34]
In the charge transport layer coating solution of Example 34, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 34 except that the compound VI-6 was not added.
[0285]
Example 35
An undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder, and each 2. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0286]
Figure 0003808139
[0287]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0288]
Figure 0003808139
[0289]
[Comparative Example 35]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 35 except that the charge transport layer coating solution of Example 35 had the following composition.
[0290]
Figure 0003808139
[0291]
Example 36
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 33 except that the charge transport layer coating solution of Example 33 had the following composition.
[0292]
Figure 0003808139
[0293]
[Comparative Example 36]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 36 except that the charge transport layer coating solution of Example 36 had the following composition.
[0294]
Figure 0003808139
[0295]
Example 37
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 34 except that the charge transport layer coating solution of Example 34 had the following composition.
[0296]
[Charge transport layer coating solution]
Compound NO. Compound VI-13 2 parts
Compound NO. Compound 7 of I-44
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0297]
[Comparative Example 37]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 37 except that the charge transport layer coating solution of Example 37 had the following composition.
[0298]
[Charge transport layer coating solution]
Compound NO. 9 parts of the compound of VI-13
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0299]
Example 38
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 35 except that the charge transport layer coating solution of Example 35 had the following composition.
[0300]
Figure 0003808139
[0301]
[Comparative Example 38]
In the charge transport layer coating solution of Example 38, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 38 except that the compound I-47 was not added.
[0302]
Example 39
An eutectic complex photoconductive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing the electrophotographic photoreceptor of the present invention.
[0303]
Figure 0003808139
[0304]
[Comparative Example 39]
In the charge transport layer coating solution of Example 39, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 39 except that the compound VI-9 was not added.
[0305]
Example 40
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby producing the electrophotographic photosensitive member of the present invention.
[0306]
[Photosensitive layer coating solution] 3 parts of charge generating material of the following structural formula (Formula 14)
Embedded image
Figure 0003808139
Figure 0003808139
[0307]
[Comparative Example 40]
A photosensitive layer coating solution having the following composition was coated on an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0308]
Figure 0003808139
[0309]
The photoreceptor characteristics of the photoreceptors obtained in Examples 33 to 40 and Comparative Examples 33 to 40 were measured in the same manner as described above. The results are shown in Table 14.
[0310]
[Table 14]
Figure 0003808139
[0311]
Next, the case where the compound represented by the general formula (I) and the compound represented by the general formula (VII) are used in combination as the charge transport material will be described with reference to Examples 41 to 48 and Comparative Examples 41 to 48.
[0312]
Example 41
An undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form a 4 μm undercoat layer and a 0.2 μm undercoat layer, respectively. A charge generation layer and a 22 μm charge transport layer were formed to produce an electrophotographic photoreceptor of the present invention.
[0313]
Figure 0003808139
[0314]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0315]
[Charge transport layer coating solution]
Compound NO. Compound VII-1 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0316]
[Comparative Example 41]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 41 except that the charge transport layer coating solution of Example 41 was changed to the one having the following composition.
[0317]
Figure 0003808139
[0318]
Example 42
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0319]
Figure 0003808139
[0320]
Figure 0003808139
[0321]
[Comparative Example 42]
In the charge transport layer coating solution of Example 42, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 42 except that the compound of VII-3 was not added.
[0322]
Example 43
An undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder, and each 2. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0323]
Figure 0003808139
[0324]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0325]
Figure 0003808139
[0326]
[Comparative Example 43]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 43 except that the charge transport layer coating solution of Example 43 had the following composition.
[0327]
Figure 0003808139
[0328]
Example 44
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 41 except that the charge transport layer coating solution of Example 41 had the following composition.
[0329]
Figure 0003808139
[0330]
[Comparative Example 44]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 44 except that the charge transport layer coating solution of Example 44 had the following composition.
[0331]
Figure 0003808139
[0332]
Example 45
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 42 except that the charge transport layer coating solution of Example 42 had the following composition.
[0333]
[Charge transport layer coating solution]
Compound NO. Compound VII-11 2 parts
Compound NO. Compound 7 of I-44
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0334]
[Comparative Example 45]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 45 except that the charge transport layer coating solution of Example 45 had the following composition.
[0335]
[Charge transport layer coating solution]
Compound NO. 9 parts of the compound of VII-11
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0336]
Example 46
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 43 except that the charge transport layer coating solution of Example 43 had the following composition.
[0337]
Figure 0003808139
[0338]
[Comparative Example 46]
In the charge transport layer coating solution of Example 46, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 46 except that the compound I-47 was not added.
[0339]
Example 47
An eutectic complex photoconductive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing the electrophotographic photoreceptor of the present invention.
[0340]
Figure 0003808139
[0341]
[Comparative Example 47]
In the charge transport layer coating solution of Example 47, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 47 except that the compound of VII-2 was not added.
[0342]
Example 48
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby producing the electrophotographic photosensitive member of the present invention.
[0343]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0344]
[Comparative Example 48]
A photosensitive layer coating solution having the following composition was coated on an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0345]
Figure 0003808139
[0346]
The photoreceptor characteristics of the photoreceptors obtained in Examples 41 to 48 and Comparative Examples 41 to 48 were measured in the same manner as described above. The results are shown in Table 15.
[0347]
[Table 15]
Figure 0003808139
[0348]
Next, the case where the compound represented by the general formula (I) and the compound represented by the general formula (VIII) are used in combination as the charge transport material will be described with reference to Examples 49 to 56 and Comparative Examples 49 to 56.
[0349]
Example 49
An undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form a 4 μm undercoat layer and a 0.2 μm undercoat layer, respectively. A charge generation layer and a 22 μm charge transport layer were formed to produce an electrophotographic photoreceptor of the present invention.
[0350]
Figure 0003808139
[0351]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0352]
[Charge transport layer coating solution]
Compound NO. VIII-11 compound 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0353]
[Comparative Example 49]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 49 except that the charge transport layer coating solution of Example 49 was changed to one having the following composition.
[0354]
Figure 0003808139
[0355]
Example 50
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0356]
Figure 0003808139
[0357]
Figure 0003808139
[0358]
[Comparative Example 50]
In the charge transport layer coating solution of Example 50, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 50 except that the compound of VIII-16 was not added.
[0359]
Example 51
An undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder, and each 2. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0360]
Figure 0003808139
[0361]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0362]
Figure 0003808139
[0363]
[Comparative Example 51]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 51 except that the charge transport layer coating solution of Example 51 had the following composition.
[0364]
Figure 0003808139
[0365]
Example 52
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 49 except that the charge transport layer coating solution of Example 49 had the following composition.
[0366]
Figure 0003808139
[0367]
[Comparative Example 52]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 52 except that the charge transport layer coating solution of Example 52 had the following composition.
[0368]
Figure 0003808139
[0369]
Example 53
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 50 except that the charge transport layer coating solution of Example 50 had the following composition.
[0370]
[Charge transport layer coating solution]
Compound NO. Compound VIII-14 2 parts
Compound NO. Compound 7 of I-44
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0371]
[Comparative Example 53]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 53 except that the charge transport layer coating solution of Example 53 had the following composition.
[0372]
[Charge transport layer coating solution]
Compound NO. 9 parts of the compound of VIII-14
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0373]
Example 54
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 51 except that the charge transport layer coating solution of Example 51 had the following composition.
[0374]
Figure 0003808139
[0375]
[Comparative Example 54]
In the charge transport layer coating solution of Example 54, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 54 except that the compound I-47 was not added.
[0376]
Example 55
An eutectic complex photoconductive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing the electrophotographic photoreceptor of the present invention.
[0377]
Figure 0003808139
[0378]
[Comparative Example 55]
In the charge transport layer coating solution of Example 55, Compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 55 except that the compound of VIII-46 was not added.
[0379]
Example 56
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby producing the electrophotographic photosensitive member of the present invention.
[0380]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0381]
[Comparative Example 56]
A photosensitive layer coating solution having the following composition was coated on an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0382]
Figure 0003808139
[0383]
The photoreceptor characteristics of the photoreceptors obtained in Examples 49 to 56 and Comparative Examples 49 to 56 were measured in the same manner as described above. The results are shown in Table 16.
[0384]
[Table 16]
Figure 0003808139
[0385]
Next, the case where the compound represented by the general formula (I) and the compound represented by the general formula (IX) are used in combination as the charge transport material will be described with reference to Examples 57 to 64 and Comparative Examples 57 to 64.
[0386]
Example 57
An undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder having an outer diameter of 70 mm to form a 4 μm undercoat layer and a 0.2 μm undercoat layer, respectively. A charge generation layer and a 22 μm charge transport layer were formed to produce an electrophotographic photoreceptor of the present invention.
[0387]
Figure 0003808139
[0388]
Figure 0003808139
Embedded image
Figure 0003808139
Figure 0003808139
[0389]
[Charge transport layer coating solution]
Compound NO. IX-6 compound 3 parts
Compound NO. Compound of I-2 6 parts
10 parts of polycarbonate (manufactured by Teijin Chemicals Ltd .: Panlite K-1300)
75 parts of tetrahydrofuran
[0390]
[Comparative Example 57]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 57 except that the charge transport layer coating solution of Example 57 was changed to the one having the following composition.
[0390]
Figure 0003808139
[0392]
Example 58
After anodizing the surface of the aluminum cylinder, sealing treatment was performed. On top of this, the following charge generation layer coating solution and charge transport layer coating solution are sequentially applied and dried to form a 0.2 μm charge generation layer and a 20 μm charge transport layer, respectively. Produced.
[0393]
Figure 0003808139
[0394]
Figure 0003808139
[0395]
[Comparative Example 58]
In the charge transport layer coating solution of Example 58, Compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 58 except that the compound of IX-13 was not added.
[0396]
Example 59
An undercoat layer coating solution having the following composition, a charge generation layer coating solution having the following composition, and a charge transport layer coating solution having the following composition are sequentially applied and dried on an aluminum cylinder, and each 2. A 2 μm charge generation layer and a 2 μm charge transport layer were formed to produce the electrophotographic photoreceptor of the present invention.
[0397]
Figure 0003808139
[0398]
[Charge generation layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 13)
Embedded image
Figure 0003808139
1 part of polyester (Toyobo Co., Ltd .: Byron 200)
150 parts of cyclohexanone
4-methyl-2-pentanone 100 parts
[0399]
Figure 0003808139
[0400]
[Comparative Example 59]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 59 except that the charge transport layer coating solution of Example 59 had the following composition.
[0401]
Figure 0003808139
[0402]
Example 60
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 57 except that the charge transport layer coating solution of Example 57 had the following composition.
[0403]
Figure 0003808139
[0404]
[Comparative Example 60]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 60 except that the charge transport layer coating solution of Example 60 had the following composition.
[0405]
Figure 0003808139
[0406]
Example 61
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 58 except that the charge transport layer coating solution of Example 58 had the following composition.
[0407]
[Charge transport layer coating solution]
Compound NO. Compound IX-2 2 parts
Compound NO. Compound 7 of I-44
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0408]
[Comparative Example 61]
A comparative electrophotographic photosensitive member was produced in the same manner as in Example 61 except that the charge transport layer coating solution of Example 61 had the following composition.
[0409]
[Charge transport layer coating solution]
Compound NO. 9 parts of the compound of IX-2
10 parts of polycarbonate (made by Idemitsu Petrochemical Co., Ltd .: A2700)
80 parts of methylene chloride
[0410]
Example 62
Example 59 An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 59 except that the charge transport layer coating solution had the following composition.
[0411]
Figure 0003808139
[0412]
[Comparative Example 62]
In the charge transport layer coating solution of Example 62, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 62 except that the compound I-47 was not added.
[0413]
Example 63
An eutectic complex photoconductive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a eutectic complex photoconductive layer having a thickness of 25 μm, thereby producing the electrophotographic photoreceptor of the present invention.
[0414]
Figure 0003808139
[0415]
[Comparative Example 63]
In the charge transport layer coating solution of Example 63, compound NO. A comparative electrophotographic photosensitive member was produced in the same manner as in Example 63 except that the compound of IX-21 was not added.
[0416]
[Example 64]
A photosensitive layer coating solution having the following composition was applied onto an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby producing the electrophotographic photosensitive member of the present invention.
[0417]
[Photosensitive layer coating solution]
3 parts of charge generation material of the following structural formula (Formula 14)
Embedded image
Figure 0003808139
Polycarbonate
(Mitsubishi Gas Chemical Co., Ltd .: Iupilon S-2000) 21 parts
Compound NO. Compound IX-3 8 parts
Compound NO. 10 parts of compound I-86
250 parts of tetrahydrofuran
[0418]
[Comparative Example 64]
A photosensitive layer coating solution having the following composition was coated on an aluminum cylinder and dried to form a single-layer photosensitive layer having a thickness of 23 μm, thereby preparing a comparative electrophotographic photosensitive member.
[0419]
Figure 0003808139
[0420]
The photoreceptor characteristics of the photoreceptors obtained in Examples 57 to 64 and Comparative Examples 57 to 64 were measured in the same manner as described above. The results are shown in Table 17.
[0421]
[Table 17]
Figure 0003808139
[0422]
【The invention's effect】
As described above, according to the present invention, an electrophotographic photosensitive member having excellent stability even after repeated use while maintaining high sensitivity by using the above-mentioned two kinds of specific compounds as a charge transport material for the photosensitive layer. Is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a single-layer photoconductor according to the present invention.
FIG. 2 is an explanatory diagram of a laminated photoreceptor according to the present invention.
FIG. 3 is an explanatory diagram of a laminated photoconductor according to the present invention.
[Explanation of symbols]
11 Conductive support
15 Single photosensitive layer
17 Charge generation layer
19 Charge transport layer

Claims (2)

導電性支持体上に電荷発生材料を主成分とする電荷発生層と少なくとも下記(1)ないし(8)で示される化合物の組から選択される一組を含有する電荷輸送層を積層してなることを特徴とする電子写真感光体。
(1)一般式(I)で示される化合物と一般式(II)で示される化合物
(2)一般式(I)で示される化合物と一般式(III)で示される化合物
(3)一般式(I)で示される化合物と一般式(IV)で示される化合物
(4)一般式(I)で示される化合物と一般式(V)で示される化合物
(5)一般式(I)で示される化合物と一般式(VI)で示される化合物
(6)一般式(I)で示される化合物と一般式(VII)で示される化合物
(7)一般式(I)で示される化合物と一般式(VIII)で示される化合物
(8)一般式(I)で示される化合物と一般式(IX)で示される化合物
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
A charge generation layer containing a charge generation material as a main component and a charge transport layer containing at least one set selected from the following combinations (1) to (8) are stacked on a conductive support. An electrophotographic photosensitive member characterized by the above.
(1) first compound represented by the general formula (I) and the compound represented by one general formula (II) (2) compound represented by the first compound represented by the general formula (I) and one general formula (III) (3 ) compound shown by a compound represented by the general formula (I) and one general formula (IV) (4) a compound shown by a compound represented by the general formula (I) and one general formula (V) (5) one general formula compounds represented by (I) a compound shown by a general formula (VI) (6) a compound shown by a compound represented by the general formula (I) and one general formula (VII) (7) one general formula compounds represented by (I) a compound shown by a general formula (VIII) (8) a compound represented by the compound shown by a general formula (I) and one general formula (IX)
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
導電性支持体上に少なくとも電荷発生材料と下記(1)ないし(8)で示される化合物の組から選択される一組を含有する単層感光層を設けてなることを特徴とする電子写真感光体。
(1)一般式(I)で示される化合物と一般式(II)で示される化合物
(2)一般式(I)で示される化合物と一般式(III)で示される化合物
(3)一般式(I)で示される化合物と一般式(IV)で示される化合物
(4)一般式(I)で示される化合物と一般式(V)で示される化合物
(5)一般式(I)で示される化合物と一般式(VI)で示される化合物
(6)一般式(I)で示される化合物と一般式(VII)で示される化合物
(7)一般式(I)で示される化合物と一般式(VIII)で示される化合物
(8)一般式(I)で示される化合物と一般式(IX)で示される化合物。
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
An electrophotographic photosensitive film comprising a single-layer photosensitive layer containing at least one set selected from the group consisting of compounds represented by the following (1) to (8) on a conductive support: body.
(1) first compound represented by the general formula (I) and the compound represented by one general formula (II) (2) compound represented by the first compound represented by the general formula (I) and one general formula (III) (3 ) compound shown by a compound represented by the general formula (I) and one general formula (IV) (4) a compound shown by a compound represented by the general formula (I) and one general formula (V) (5) one general formula compounds represented by (I) a compound shown by a general formula (VI) (6) a compound shown by a compound represented by the general formula (I) and one general formula (VII) (7) one general formula compounds represented by (I) a compound shown by a general formula (VIII) (8) a compound represented by the compound shown by a general formula (I) and one general formula (IX).
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
Figure 0003808139
JP23733496A 1996-08-20 1996-08-20 Electrophotographic photoreceptor Expired - Fee Related JP3808139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23733496A JP3808139B2 (en) 1996-08-20 1996-08-20 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23733496A JP3808139B2 (en) 1996-08-20 1996-08-20 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH1063020A JPH1063020A (en) 1998-03-06
JP3808139B2 true JP3808139B2 (en) 2006-08-09

Family

ID=17013847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23733496A Expired - Fee Related JP3808139B2 (en) 1996-08-20 1996-08-20 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3808139B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257147A (en) * 2006-06-13 2008-10-23 Ricoh Co Ltd Electrophotographic photoreceptor and method of manufacturing the same, and image forming apparatus, image forming method and process cartridge
US8951702B2 (en) 2008-07-18 2015-02-10 Fuji Electric Co., Ltd. Charge transport material that is an ethylene compound, electrophotographic photoreceptor containing the charge transport material, and process for producing the electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPH1063020A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP3708323B2 (en) Electrophotographic photoreceptor
JP3224649B2 (en) Electrophotographic photoreceptor
JP4212784B2 (en) Electrophotographic photosensitive member, method for producing the same, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JPH08272126A (en) Electrophotography photoreceptor
JP3808139B2 (en) Electrophotographic photoreceptor
JP3816163B2 (en) Electrophotographic photoreceptor
JP3917224B2 (en) Electrophotographic photoreceptor
JP3768495B2 (en) Electrophotographic photoreceptor
JP3496085B2 (en) Electrophotographic photoreceptor
JP3721177B2 (en) Electrophotographic photoreceptor
JP3976827B2 (en) Electrophotographic photoreceptor
JP4141489B2 (en) Electrophotographic photoreceptor
JP3745751B2 (en) Electrophotographic photoreceptor
JP3821903B2 (en) Electrophotographic photoreceptor
JP4336701B2 (en) Electrophotographic photoreceptor
JP3883320B2 (en) Photoconductor, organic pigment dispersion and method for producing photoconductor using the same, electrophotographic method, and electrophotographic apparatus
JP4145330B2 (en) Electrophotographic photoreceptor
JP4146913B2 (en) Electrophotographic photoreceptor
JP4199836B2 (en) Electrophotographic photoreceptor
JP4159626B2 (en) Electrophotographic photoreceptor
JP3463083B2 (en) Electrophotographic photoreceptor
JP3705895B2 (en) Electrophotographic photoreceptor
JP3949352B2 (en) Electrophotographic photoreceptor, image forming method, image forming apparatus, and process cartridge
JP3705890B2 (en) Electrophotographic photoreceptor
JP3908433B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees