JP3807226B2 - Lean NOx catalyst for diesel engines - Google Patents

Lean NOx catalyst for diesel engines Download PDF

Info

Publication number
JP3807226B2
JP3807226B2 JP2000376198A JP2000376198A JP3807226B2 JP 3807226 B2 JP3807226 B2 JP 3807226B2 JP 2000376198 A JP2000376198 A JP 2000376198A JP 2000376198 A JP2000376198 A JP 2000376198A JP 3807226 B2 JP3807226 B2 JP 3807226B2
Authority
JP
Japan
Prior art keywords
nox
catalyst
molar ratio
lean
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000376198A
Other languages
Japanese (ja)
Other versions
JP2002177779A (en
Inventor
信之 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000376198A priority Critical patent/JP3807226B2/en
Publication of JP2002177779A publication Critical patent/JP2002177779A/en
Application granted granted Critical
Publication of JP3807226B2 publication Critical patent/JP3807226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンの排ガスに含まれるNOxの吸蔵・還元を行ってNOxを浄化するリーンNOx触媒に関する。
【0002】
【従来の技術】
リーン燃焼エンジンからの排ガスに含まれるNOxを浄化するリーンNOx触媒として、貴金属触媒およびNOx吸蔵材を用いてこのNOxの吸蔵・還元を行うものがある。一般にこのNOx吸蔵材としては、主にバリウム等のアルカリ土類金属が用いられる。また、特開平11−76827号公報には、貴金属触媒を担持した外側触媒層と、アルカリ金属を担持した内側触媒層と、からなる活性触媒層を担体に担持させた排ガス浄化装置が開示されている。
【0003】
【発明が解決しようとする課題】
ところで、リーンNOx触媒による排ガス浄化条件は、ガソリンエンジンとディーゼルエンジンとの間に次のような違いがある。
(1)触媒入口における排ガス温度は、ガソリンエンジンでは通常300〜450℃程度であるのに対して、ディーゼルエンジンでは中心となる温度域が200〜300℃程度と、ガソリンエンジンに比べて低い。
(2)ガソリンエンジンに比べてディーゼルエンジンでは、燃料に含まれる高級ハイドロカーボン(HC)の割合が高い。
(3)燃料組成の違いにより、ガソリンエンジンに比べてディーゼルエンジンでは、排ガスに含まれる硫黄の濃度が高い。
このような違いがあるため、ガソリンエンジン用あるいはガソリンエンジン・ディーゼルエンジン共用として提案された従来のリーンNOx触媒をディーゼルエンジン用として使用すると、上記(1)、(2)に起因するNOx吸蔵能力の低下や、上記(3)から要求されるNOx吸蔵材の硫黄被毒回復性の不足等により、十分なNOx浄化性能が得られない場合があった。
【0004】
本発明の目的は、ディーゼルエンジン用として特に適したリーンNOx触媒を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載のディーゼルエンジン用リーンNOx触媒は、貴金属触媒およびNOx吸蔵材を用いてディーゼルエンジンの排ガスに含まれるNOxを浄化するリーンNOx触媒であって、
担体容積1リットル当たり上記NOx吸蔵材0.05〜2.0molが担持されており、該NOx吸蔵材はリチウムカリウム、及びバリウムを含有し、かつリチウムとカリウムとのモル比(Li/K)が2〜3であり、かつリチウムとバリウムとのモル比(Li/ Ba)が2〜3であることを特徴とする。
【0006】
本発明のリーンNOx触媒において、担体容積1リットル当たりに担持されるNOx吸蔵材のモル数(以下、「mol/L」という。)は0.05〜2.0mol/Lの範囲であり、0.1〜1.0mol/Lとすることが好ましく、より好ましくは0.1〜0.6mol/Lである。NOx吸蔵材の担持量が0.05mol/L未満では十分なNOx吸蔵量を確保することができない。一方、NOx吸蔵材の担持量が多すぎると貴金属触媒の活性が低下する。
【0007】
上記NOx吸蔵材は少なくともリチウムとカリウムとバリウムとを含有する。このNOx吸蔵材は、その他にナトリウム、セシウム等のアルカリ金属;ストロンチウム、マグネシウム、カルシウム等のアルカリ土類金属、ランタン、イットリウム等の希土類元素から選択された一種または二種以上等を含有することができる。
【0008】
上記NOx吸蔵材に含まれるリチウムとカリウムとのモル比(Li/K)は2〜3である。モル比(Li/K)が1.4未満では、低温におけるNOx吸蔵性能向上や、硫黄被毒回復性向上等の、本願発明の効果を十分に発揮することができない。
【0009】
また、リチウムとバリウムとのモル比(Li/Ba)は2〜3である。モル比(Li/Ba)が1未満では、低温におけるNOx吸蔵性能向上や、硫黄被毒回復性向上等の、本願発明の効果を十分に発揮することができない。
【0010】
本発明のリーンNOx触媒における貴金属触媒としては、従来公知のものを用いればよい。例えば、白金族金属から選択される一種または二種以上の金属を使用することができる。また、この貴金属触媒は、HC、COおよびNOxを浄化する三元触媒であることが好ましい。
上記NOx吸蔵材および上記貴金属触媒は、従来公知の方法によりアルミナ等の担体に担持されて本発明のリーンNOx触媒を構成する。このリーンNOx触媒の形状は、ペレット型、モノリス型等のいずれでもよい。
【0011】
【発明の実施の形態】
以下、実施例により本発明を更に具体的に説明する。
(1)触媒の作製
担体としてのアルミナ粉末を、ジニトロジアミン白金硝酸塩水溶に投入し、2時間攪拌した。その後、アルミナ粉末を濾別して120℃で乾燥させ、450℃で2時間焼成することにより、担体120g当たり2gの白金(貴金属触媒)が担持されたPt担持アルミナ粉末を得た。
次に、アルカリ金属および/またはアルカリ土類金属を下記表1に示すモル比および量で含有するNOx吸蔵材水溶液を調整した。このNOx吸蔵材水溶液は、基本的に各元素の酢酸塩を用いて調整した。担体換算で120gの上記Pt担持アルミナ粉末に上記NOx吸蔵材水溶液を加え、150℃に加熱したホットプレート上で蒸発乾固させた後、500℃×2時間焼成して触媒粉末を得た。この各触媒粉末をφ1mm×1mmのペレット形状に成形してペレット型触媒を作製した。
なお、上記担体120gは、隔壁厚さ305μm、セル数300個/インチのハニカム形状に成形されたモノリス型担体の容積1リットルにほぼ相当する。
【0012】
【表1】

Figure 0003807226
【0013】
(2)NOx吸蔵能力の評価
(2−1)低温におけるNOx吸蔵能力
得られたペレット型触媒のNOx吸蔵能力を下記の方法で評価した。
表2に示すリーン雰囲気組成のガスをペレット型触媒に供給し、触媒通過ガス中のNOx濃度が安定するまでNOxを吸蔵(吸着)させた。その後、供給ガスを表2に示すリッチ雰囲気組成に切り換え(リッチスパイク)、再びリーン雰囲気組成のガスに戻して触媒通過ガス中のNOx濃度が安定するまでのNOx吸蔵量(mmol/g)を測定した(図1)。触媒使用量、供給ガス温度およびリッチスパイク時間は以下の通りである。NOx吸蔵量の測定結果を図2および図3に示す。
〔測定条件〕
ペレット型触媒使用量:1g
供給ガス温度 :250℃および300℃の二条件
リッチスパイク時間 :5秒間
【0014】
【表2】
Figure 0003807226
【0015】
図2、3から判るように、供給ガス温度(測定温度)250℃および300℃のいずれにおいても、リチウムとカリウムとをモル比(Li/K)で含有するNOx吸蔵材を用いた実例3の触媒は、NOx吸蔵材としてリチウムのみを用いた比較例7、およびカリウムのみを用いた比較例8に比べて、NOx吸蔵量が大幅に向上した。また、モル比(Li/K)及びモル比(Li/Ba)が本発明範囲NOx吸蔵材を用いた実例1の触媒では、実例3よりもさらにNOx吸蔵量が増加した。
【0016】
一方、実例3のNOx吸蔵材組成においてカリウムに代えてストロンチウムを用いた比較例5の触媒では、実例3ほどのNOx吸蔵量は得られなかった。また、リチウムとバリウムとのモル比(Li/Ba)は本発明範囲だがカリウムを含まないNOx吸蔵材を用いた比較例3、4の触媒も、実例1および3に比べてNOx吸蔵量が低下した。さらに、リチウム、カリウムおよびバリウムを含有するがそのモル比(Li/K)および(Li/Ba)が本発明範囲から外れた比較例1も、実および3に比べてNOx吸蔵量が少なかった。
【0017】
なお、この比較例1で用いたNOx吸蔵材組成によると、供給ガス温度400℃(ガソリンエンジン用リーンNOx触媒の中心的な使用温度域に相当する)では良好なNOx吸蔵性能が得られる。しかしこの比較例1の触媒は、供給ガス温度300℃では実例1および3に比べてNOx吸蔵低能が低く、250℃ではその差がさらに拡がっていることから判るように、低温(ディーゼルエンジン用リーンNOx触媒の使用温度域)におけるNOx吸蔵性能に劣る。
【0018】
(2−2)NOx吸蔵材組成の検討
〔1〕Li/K比の検討
NOx吸蔵材として0.1mol/LのBaを含む系につき、LiとKとのモル比(Li/K)がNOx吸蔵性能に及ぼす影響を検討した。実例1、2、3および比較例1、7のペレット型触媒を用い、供給ガス温度250℃で上記(2−1)と同様にNOx吸蔵量を測定した。その結果を図4に示す。
図4からわかるように、Li割合〔Li/(K+Li)〕が58〜91モル%の範囲で、NOx吸蔵量mmol/gが0.040以上と良好な結果が得られた。ここで、Li割合58モル%はモル比(Li/K)約1.4に相当し、Li割合91モル%はモル比(Li/K)約10に相当する。NOx吸蔵量は、実例1〔モル比(Li/K)=2〕および実例2〔モル比(Li/K)=3〕付近が最も良好であった。
なお、供給ガス温度を300℃とした場合にも、Li/K比とNOx吸蔵量との関係は同様の傾向であった。
【0019】
〔2〕Li/Ba比の検討
NOx吸蔵材として0.1mol/LのKを含む系につき、LiとBaとのモル比(Li/Ba)がNOx吸蔵性能に及ぼす影響を検討した。実例1、2および比較例2、4のペレット型触媒を用い、供給ガス温度250℃で上記(2−1)と同様にNOx吸蔵量を測定した。その結果を図5に示す。
図5からわかるように、Li割合〔Li/(Ba+Li)〕が50〜100モル%の範囲で、NOx吸蔵量mmol/gが0.040以上と良好な結果が得られた。ここで、Li割合50モル%はモル比(Li/Ba)1に相当する。また、Li割合100モル%の場合はBaを含まずLiとKのみからなるNOx吸蔵材となる。NOx吸蔵量は、実例2〔モル比(Li/Ba)=3〕付近が最も良好であり、実例1〔モル比(Li/Ba)=2〕および実例3(Baを含まない)でも十分な性能を示した。
なお、供給ガス温度を300℃とした場合にも、Li/Ba比とNOx吸蔵量との関係は同様の傾向であった。
【0020】
(3)硫黄被毒回復性能の評価
例1および比較例1のペレット型触媒につき、下記の方法により硫黄被毒回復性能を評価した。
まず、表3に示すリーン雰囲気組成およびリッチ雰囲気組成のガスを下記条件で供給することにより、ペレット型触媒を硫黄被毒させた。この硫黄被毒したペレット型触媒につき、供給ガス温度200℃、250℃および300℃の三条件で上記(2−1)と同様にNOx吸蔵量を測定した。
〔硫黄被毒条件〕
ペレット型触媒使用量:2.5g
リーン/リッチ時間:55秒間/5秒間
耐久温度×時間 :400℃×3時間および600℃×3時間の二条件
【0021】
次いで、これらの硫黄被毒された触媒に表3に示すリッチ雰囲気(被毒回復時)のガスを600℃×5分間供給して硫黄被毒を回復させた。その後、硫黄被毒回復後のペレット型触媒につき、供給ガス温度(反応温度)200℃、250℃および300℃の三条件で上記(2−1)と同様にNOx吸蔵量を測定した。
硫黄被毒前、硫黄被毒後および硫黄被毒回復後のNOx吸蔵量を図6〜8に示す。なお、図中の「初期」は硫黄被毒前の触媒、「400℃耐」は耐久温度400℃で硫黄被毒させた触媒、「600℃耐」は耐久温度600℃で硫黄被毒させた触媒、「400℃耐S脱」は耐久温度400℃で硫黄被毒させた後に上記条件で被毒回復させた触媒、「600℃耐S脱」は耐久温度600℃で硫黄被毒させた後に上記条件で被毒回復させた触媒、を用いて測定されたNOx吸蔵量をそれぞれ示す。
【0022】
【表3】
Figure 0003807226
【0023】
図6〜8に示すように、実例1のリーンNOx触媒は、400℃被毒後のNOx吸蔵性能は比較例1と同程度であるが、他の条件では比較例1に勝るNOx吸蔵性能を示す。特に、400℃で被毒させた後の硫黄被毒回復性に優れる。
本発明範囲のNOx吸蔵材組成とすることにより硫黄被毒回復性が向上する理由は必ずしも明らかではないが、比較例1に対して実例1のNOx吸蔵材はリチウムの割合が高いため硫黄の脱離性が高く、上記被毒回復条件においてより多くの硫黄を除去できるためではないかと推察される。
【0024】
なお、従来のガソリンエンジン用リーンNOx触媒として、バリウム、カリウム等に加えてリチウムを担持させたものも知られている。しかし、このリチウムは主に担体(アルミナ等)を改質するために使用されるものであって、NOx吸蔵性能や硫黄被毒回復性の向上を目的として用いられているわけではない。また、ガソリンエンジン用リーンNOx触媒の使用温度域(300〜450℃程度)におけるリチウムのNOx吸蔵性能は低く、実質的にNOx吸蔵材としては機能していないものと推察される。
【0025】
【発明の効果】
請求項1記載のリーンNOx触媒は、リチウムとカリウムとを所定のモル比(Li/K)で含有するNOx吸蔵材を備えることにより、低温(ディーゼルエンジン用リーンNOx触媒の使用温度域)におけるNOx吸蔵性能に優れ、また硫黄被毒回復性が良好である。また、請求項1記載のリーンNOx触媒は、リチウムおよびカリウムに加えて、さらにバリウムを所定のモル比(Li/Ba)で含有することから、低温におけるNOx吸蔵性能が良好である。
【図面の簡単な説明】
【図1】 NOx吸蔵量の概念を示す説明図である。
【図2】 実例および比較例の触媒の、供給ガス温度250℃におけるNOx吸蔵量を示す特性図である。
【図3】 実例および比較例の触媒の、供給ガス温度300℃におけるNOx吸蔵量を示す特性図である。
【図4】 LiとKとのモル比(Li/K)と、供給ガス温度250℃におけるNOx吸蔵量との関係を示す特性図である。
【図5】 LiとBaとのモル比(Li/Ba)と、供給ガス温度250℃におけるNOx吸蔵量との関係を示す特性図である。
【図6】 硫黄被毒前、硫黄被毒後および硫黄被毒回復後の、供給ガス温度200℃におけるNOx吸蔵量を示す特性図である。
【図7】 硫黄被毒前、硫黄被毒後および硫黄被毒回復後の、供給ガス温度250℃におけるNOx吸蔵量を示す特性図である。
【図8】 硫黄被毒前、硫黄被毒後および硫黄被毒回復後の、供給ガス温度300℃におけるNOx吸蔵量を示す特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lean NOx catalyst that purifies NOx by storing and reducing NOx contained in exhaust gas from a diesel engine.
[0002]
[Prior art]
As a lean NOx catalyst that purifies NOx contained in exhaust gas from a lean combustion engine, there is a catalyst that stores and reduces this NOx using a noble metal catalyst and a NOx storage material. In general, alkaline earth metals such as barium are mainly used as the NOx storage material. Japanese Patent Application Laid-Open No. 11-76827 discloses an exhaust gas purification apparatus in which an active catalyst layer comprising an outer catalyst layer supporting a noble metal catalyst and an inner catalyst layer supporting an alkali metal is supported on a carrier. Yes.
[0003]
[Problems to be solved by the invention]
By the way, the exhaust gas purification conditions by the lean NOx catalyst have the following differences between the gasoline engine and the diesel engine.
(1) The exhaust gas temperature at the catalyst inlet is usually about 300 to 450 ° C. in a gasoline engine, whereas the central temperature range in a diesel engine is about 200 to 300 ° C., which is lower than that of a gasoline engine.
(2) Compared to gasoline engines, diesel engines have a higher proportion of high-grade hydrocarbons (HC) contained in fuel.
(3) Due to the difference in fuel composition, the concentration of sulfur contained in exhaust gas is higher in diesel engines than in gasoline engines.
Because of these differences, if the conventional lean NOx catalyst proposed for gasoline engines or for gasoline engines and diesel engines is used for diesel engines, the NOx occlusion capacity resulting from the above (1) and (2) In some cases, sufficient NOx purification performance may not be obtained due to a decrease or a lack of sulfur poisoning recoverability of the NOx storage material required from (3) above.
[0004]
An object of the present invention is to provide a lean NOx catalyst particularly suitable for use in a diesel engine.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, the lean NOx catalyst for diesel engine according to claim 1 is a lean NOx catalyst that purifies NOx contained in exhaust gas of a diesel engine using a noble metal catalyst and a NOx storage material,
The NOx storage material 0.05 to 2.0 mol is supported per liter of the carrier volume, the NOx storage material contains lithium , potassium , and barium , and the molar ratio of lithium to potassium (Li / K). Is 2 to 3, and the molar ratio of lithium to barium (Li / Ba) is 2 to 3.
[0006]
In the lean NOx catalyst of the present invention, the number of moles of NOx occlusion material supported per liter of the carrier volume (hereinafter referred to as “mol / L”) is in the range of 0.05 to 2.0 mol / L. It is preferable to set it as 0.1-1.0 mol / L, More preferably, it is 0.1-0.6 mol / L. If the loading amount of the NOx occlusion material is less than 0.05 mol / L, a sufficient NOx occlusion amount cannot be ensured. On the other hand, if the amount of NOx occlusion material is too large, the activity of the noble metal catalyst is reduced.
[0007]
The NOx storage material containing at least lithium and potassium and barium. The NOx occlusion material may contain one or more selected from alkali metals such as sodium and cesium; alkaline earth metals such as strontium, magnesium and calcium; and rare earth elements such as lanthanum and yttrium. it can.
[0008]
The molar ratio of lithium and potassium contained in the NOx-absorbing material (Li / K) is Ru 2-3 der. When the molar ratio (Li / K) is less than 1.4, the effects of the present invention such as improvement in NOx occlusion performance at low temperatures and improvement in sulfur poisoning recovery cannot be exhibited sufficiently.
[0009]
The molar ratio of lithium and barium (Li / Ba) is Ru 2-3 der. When the molar ratio (Li / Ba) is less than 1, the effects of the present invention such as improvement in NOx occlusion performance at low temperatures and improvement in sulfur poisoning recovery cannot be exhibited sufficiently.
[0010]
A conventionally known catalyst may be used as the noble metal catalyst in the lean NOx catalyst of the present invention. For example, one or more metals selected from platinum group metals can be used. The noble metal catalyst is preferably a three-way catalyst that purifies HC, CO, and NOx.
The NOx storage material and the noble metal catalyst are supported on a carrier such as alumina by a conventionally known method to constitute the lean NOx catalyst of the present invention. The shape of the lean NOx catalyst may be either a pellet type or a monolith type.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to examples.
(1) Preparation of catalyst Alumina powder as a carrier was put into dinitrodiamine platinum nitrate aqueous solution and stirred for 2 hours. Thereafter, the alumina powder was filtered off, dried at 120 ° C., and calcined at 450 ° C. for 2 hours to obtain Pt-supported alumina powder on which 2 g of platinum (noble metal catalyst) was supported per 120 g of support.
Next, a NOx occlusion material aqueous solution containing alkali metal and / or alkaline earth metal in the molar ratio and amount shown in Table 1 below was prepared. This NOx occlusion material aqueous solution was basically prepared using the acetate of each element. The NOx occlusion material aqueous solution was added to 120 g of the above-mentioned Pt-supported alumina powder in terms of carrier, evaporated and dried on a hot plate heated to 150 ° C., and then calcined at 500 ° C. for 2 hours to obtain a catalyst powder. Each catalyst powder was formed into a pellet shape of φ1 mm × 1 mm to prepare a pellet type catalyst.
The carrier 120g substantially corresponds to a volume of 1 liter of a monolith type carrier formed into a honeycomb shape having a partition wall thickness of 305 μm and a cell number of 300 / inch.
[0012]
[Table 1]
Figure 0003807226
[0013]
(2) Evaluation of NOx storage capacity (2-1) NOx storage capacity at low temperature The NOx storage capacity of the obtained pellet type catalyst was evaluated by the following method.
A gas having a lean atmosphere composition shown in Table 2 was supplied to the pellet type catalyst, and NOx was occluded (adsorbed) until the NOx concentration in the catalyst passing gas was stabilized. Thereafter, the supply gas is switched to the rich atmosphere composition shown in Table 2 (rich spike), and the NOx occlusion amount (mmol / g) until the NOx concentration in the gas passing through the catalyst is stabilized by returning to the lean atmosphere composition again. (FIG. 1). The amount of catalyst used, the supply gas temperature, and the rich spike time are as follows. The measurement results of the NOx occlusion amount are shown in FIGS.
〔Measurement condition〕
Amount of pellet-type catalyst used: 1 g
Supply gas temperature: Two conditions of 250 ° C and 300 ° C Rich spike time: 5 seconds
[Table 2]
Figure 0003807226
[0015]
As can be seen from Figure 2, the feed gas temperature (measurement temperature) in any of 250 ° C. and 300 ° C. Also, experiments with the NOx storage material containing lithium and potassium in a molar ratio (Li / K) 3 The catalyst of Example 3 significantly improved the NOx storage amount compared to Comparative Example 7 using only lithium as the NOx storage material and Comparative Example 8 using only potassium. Further, the molar ratio (Li / K) and the molar ratio (Li / Ba) of Experiment Example 1 using the NOx-absorbing material of the present invention ranges catalyst, further NOx occlusion amount than Experiment Example 3 is increased.
[0016]
On the other hand, in Comparative Example 5 using strontium in place of the potassium in the NOx-absorbing material composition of the experimental example 3 catalyst, NOx occlusion amount of the more experimental example 3 was obtained. The molar ratio of lithium and barium (Li / Ba) is the catalyst of Comparative Example 3 and 4 but the present invention ranges using NOx-absorbing material that does not contain potassium also, NOx occlusion amount in comparison with the experimental examples 1 and 3 Decreased. Furthermore, the lithium, but containing potassium and barium molar ratio (Li / K) and (Li / Ba) is also Comparative Example 1 which deviates from the range of the present invention, NOx occlusion amount in comparison with the experimental examples 1 and 3 are There were few.
[0017]
Note that, according to the NOx storage material composition used in Comparative Example 1, good NOx storage performance is obtained at a supply gas temperature of 400 ° C. (corresponding to a central operating temperature range of a lean NOx catalyst for gasoline engines). However the catalyst of Comparative Example 1, the feed gas temperature 300 ° C. Experiment Example 1 and the NOx storage morons is lower than that of 3, as can be seen from the further spread is the difference in 250 ° C., the low temperature (diesel engine The NOx occlusion performance in the use temperature range of the lean NOx catalyst is inferior.
[0018]
(2-2) Examination of NOx storage material composition
[1] Examination of Li / K ratio For a system containing 0.1 mol / L of Ba as a NOx occlusion material, the influence of the molar ratio of Li and K (Li / K) on NOx occlusion performance was examined. The pellets catalyst of Experimental Examples 1, 2, 3 and Comparative Examples 1 and 7, was measured NOx storage amount in the same manner as in the above (2-1) at a feed gas temperature 250 ° C.. The result is shown in FIG.
As can be seen from FIG. 4, a good result was obtained in which the Li ratio [Li / (K + Li)] was in the range of 58 to 91 mol% and the NOx occlusion amount mmol / g was 0.040 or more. Here, the Li ratio of 58 mol% corresponds to a molar ratio (Li / K) of about 1.4, and the Li ratio of 91 mol% corresponds to a molar ratio (Li / K) of about 10. NOx storage amount is near the experiment Example 1 [molar ratio (Li / K) = 2] and Experiment Example 2 [molar ratio (Li / K) = 3] was the most satisfactory.
Even when the supply gas temperature was 300 ° C., the relationship between the Li / K ratio and the NOx occlusion amount had the same tendency.
[0019]
[2] Examination of Li / Ba ratio The effect of the molar ratio of Li and Ba (Li / Ba) on the NOx occlusion performance was examined for a system containing 0.1 mol / L of K as the NOx occlusion material. The pellets catalyst of Experimental Examples 1 and 2 and Comparative Examples 2 and 4 were measured NOx storage amount in the same manner as in the above (2-1) at a feed gas temperature 250 ° C.. The result is shown in FIG.
As can be seen from FIG. 5, when the Li ratio [Li / (Ba + Li)] was in the range of 50 to 100 mol%, the NOx occlusion amount mmol / g was 0.040 or more, and good results were obtained. Here, the Li ratio of 50 mol% corresponds to a molar ratio (Li / Ba) of 1. Further, in the case where the Li ratio is 100 mol%, the NOx occlusion material consisting only of Li and K does not contain Ba. NOx occlusion amount is Experiment Example 2 [molar ratio (Li / Ba) = 3] around is best, experimental example 1 [molar ratio (Li / Ba) = 2] and experimental examples 3 and (Ba But not).
Even when the supply gas temperature was 300 ° C., the relationship between the Li / Ba ratio and the NOx occlusion amount had the same tendency.
[0020]
(3) sulfur Evaluation of poisoning recovery performance of Experimental Example 1 and Comparative Example 1 per pellet catalyst was evaluated sulfur poisoning recovery performance by the following methods.
First, the pellet type catalyst was poisoned with sulfur by supplying a gas having a lean atmosphere composition and a rich atmosphere composition shown in Table 3 under the following conditions. With respect to this sulfur poisoned pellet type catalyst, the NOx occlusion amount was measured in the same manner as in (2-1) above under three conditions of the supply gas temperature of 200 ° C, 250 ° C and 300 ° C.
[Sulfur poisoning conditions]
Amount of pellet-type catalyst used: 2.5 g
Lean / rich time: 55 seconds / 5 seconds Endurance temperature x time: Two conditions of 400 ° C. × 3 hours and 600 ° C. × 3 hours
Subsequently, the sulfur poisoning was recovered by supplying a gas having a rich atmosphere (at the time of recovery from poisoning) shown in Table 3 to these sulfur poisoned catalysts at 600 ° C. for 5 minutes. Thereafter, the NOx occlusion amount was measured for the pellet type catalyst after recovery from sulfur poisoning in the same manner as in (2-1) above under three conditions of supply gas temperature (reaction temperature) of 200 ° C., 250 ° C. and 300 ° C.
The NOx occlusion amounts before sulfur poisoning, after sulfur poisoning, and after sulfur poisoning recovery are shown in FIGS. “Initial” in the figure is a catalyst before sulfur poisoning, “400 ° C. resistance” is a sulfur poisoned catalyst at a durability temperature of 400 ° C., and “600 ° C. resistance” is sulfur poisoning at a durability temperature of 600 ° C. The catalyst, “400 ° C. resistance to S desulfurization” is a catalyst poisoned and recovered under the above conditions after being poisoned with sulfur at a durable temperature of 400 ° C .; The NOx occlusion amount measured using the catalyst that has been poisoned and recovered under the above conditions is shown.
[0022]
[Table 3]
Figure 0003807226
[0023]
As shown in Figures 6-8, the lean NOx catalyst of Experiment Example 1, 400 ° C. Although the NOx storage performance after poisoning are comparable to Comparative Example 1, the NOx storage over Comparative Example 1 in other conditions Show performance. In particular, the sulfur poisoning recoverability after being poisoned at 400 ° C. is excellent.
Although not entirely clear why improved sulfur poisoning recovery by the NOx-absorbing material composition of the present invention range, NOx-absorbing material of Experiment Example 1 for Comparative Example 1 is sulfur the proportion of lithium is high It is presumed that this is because of the high detachability of the gas, and more sulfur can be removed under the above poisoning recovery conditions.
[0024]
In addition, as a conventional lean NOx catalyst for gasoline engines, a catalyst in which lithium is supported in addition to barium, potassium and the like is also known. However, this lithium is mainly used for modifying a carrier (alumina or the like), and is not used for the purpose of improving NOx occlusion performance or sulfur poisoning recovery. Further, it is presumed that the NOx occlusion performance of lithium in the operating temperature range (about 300 to 450 ° C.) of the lean NOx catalyst for gasoline engines is low and does not substantially function as a NOx occlusion material.
[0025]
【The invention's effect】
The lean NOx catalyst according to claim 1 is provided with a NOx occlusion material containing lithium and potassium at a predetermined molar ratio (Li / K), so that the NOx at a low temperature (the operating temperature range of the lean NOx catalyst for diesel engines). Excellent occlusion performance and good sulfur poisoning recovery. In addition, the lean NOx catalyst according to claim 1 contains barium in a predetermined molar ratio (Li / Ba) in addition to lithium and potassium, so that the NOx occlusion performance at a low temperature is good.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a concept of NOx occlusion amount.
[Figure 2] in the Experimental Examples and Comparative Examples of the catalyst is a characteristic diagram showing an NOx storage amount in the feed gas temperature 250 ° C..
[Figure 3] of Experimental Examples and Comparative Examples of the catalyst is a characteristic diagram showing an NOx storage amount in the feed gas temperature 300 ° C..
FIG. 4 is a characteristic diagram showing the relationship between the molar ratio of Li to K (Li / K) and the NOx occlusion amount at a supply gas temperature of 250 ° C.
FIG. 5 is a characteristic diagram showing the relationship between the molar ratio of Li and Ba (Li / Ba) and the NOx occlusion amount at a supply gas temperature of 250 ° C.
FIG. 6 is a characteristic diagram showing the NOx occlusion amount at a supply gas temperature of 200 ° C. before sulfur poisoning, after sulfur poisoning, and after sulfur poisoning recovery.
FIG. 7 is a characteristic diagram showing the NOx occlusion amount at a supply gas temperature of 250 ° C. before sulfur poisoning, after sulfur poisoning, and after sulfur poisoning recovery.
FIG. 8 is a characteristic diagram showing the NOx occlusion amount at a supply gas temperature of 300 ° C. before sulfur poisoning, after sulfur poisoning, and after sulfur poisoning recovery.

Claims (1)

貴金属触媒およびNOx吸蔵材を用いてディーゼルエンジンの排ガスに含まれるNOxを浄化するリーンNOx触媒であって、
担体容積1リットル当たり上記NOx吸蔵材0.05〜2.0molが担持されており、該NOx吸蔵材はリチウムカリウム、及びバリウムを含有し、
かつリチウムとカリウムとのモル比(Li/K)が2〜3であり、
かつリチウムとバリウムとのモル比(Li/Ba)が2〜3であることを特徴とするディーゼルエンジン用リーンNOx触媒。
A lean NOx catalyst that purifies NOx contained in exhaust gas of a diesel engine using a noble metal catalyst and a NOx storage material,
0.05 to 2.0 mol of the NOx storage material is supported per liter of the carrier volume, and the NOx storage material contains lithium , potassium , and barium .
And Ri molar ratio of lithium and potassium (Li / K) is 2-3 der,
A lean NOx catalyst for a diesel engine , wherein the molar ratio of lithium to barium (Li / Ba) is 2 to 3 .
JP2000376198A 2000-12-11 2000-12-11 Lean NOx catalyst for diesel engines Expired - Fee Related JP3807226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376198A JP3807226B2 (en) 2000-12-11 2000-12-11 Lean NOx catalyst for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376198A JP3807226B2 (en) 2000-12-11 2000-12-11 Lean NOx catalyst for diesel engines

Publications (2)

Publication Number Publication Date
JP2002177779A JP2002177779A (en) 2002-06-25
JP3807226B2 true JP3807226B2 (en) 2006-08-09

Family

ID=18845097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376198A Expired - Fee Related JP3807226B2 (en) 2000-12-11 2000-12-11 Lean NOx catalyst for diesel engines

Country Status (1)

Country Link
JP (1) JP3807226B2 (en)

Also Published As

Publication number Publication date
JP2002177779A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP4092441B2 (en) Exhaust gas purification catalyst
EP2322274B1 (en) Exhaust gas purifying catalyst and method for producing the same
JP3688974B2 (en) Exhaust gas purification catalyst
JPH0760117A (en) Exhaust gas purifying catalyst
JP6869976B2 (en) Three-way catalyst for purifying gasoline engine exhaust gas
JP2003320252A (en) Exhaust gas treatment catalyst and production of the same
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JPH10286462A (en) Catalyst of purifying exhaust gas
JPH08117601A (en) Exhaust gas purification catalyst and method for purifying exhaust gas
KR20100037164A (en) Exhaust gas purifying catalyst
JP3568728B2 (en) Oxygen storage cerium-based composite oxide
JP3704701B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP3430823B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH11169670A (en) Nox occlusion-reduction type ternary catalyst and apparatus for cleaning exhaust gas using same
JP3807226B2 (en) Lean NOx catalyst for diesel engines
JP2003245523A (en) Exhaust gas cleaning system
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JPH04215845A (en) Catalyst for purifying exhaust gas
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH03196841A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees