JP3804881B2 - 半導体装置の作製装置および半導体装置の作製方法 - Google Patents

半導体装置の作製装置および半導体装置の作製方法 Download PDF

Info

Publication number
JP3804881B2
JP3804881B2 JP12037897A JP12037897A JP3804881B2 JP 3804881 B2 JP3804881 B2 JP 3804881B2 JP 12037897 A JP12037897 A JP 12037897A JP 12037897 A JP12037897 A JP 12037897A JP 3804881 B2 JP3804881 B2 JP 3804881B2
Authority
JP
Japan
Prior art keywords
aluminum
film
reaction chamber
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12037897A
Other languages
English (en)
Other versions
JPH1070089A (ja
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP12037897A priority Critical patent/JP3804881B2/ja
Publication of JPH1070089A publication Critical patent/JPH1070089A/ja
Application granted granted Critical
Publication of JP3804881B2 publication Critical patent/JP3804881B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本明細書で開示する発明は、アルミニウムまたはアルミニウムを主成分とする電極や配線および薄膜トランジスタの活性層とに対して配線用のコンタクトを形成する技術に関する。
【0002】
【従来の技術】
最近、安価なガラス基板上に薄膜トランジスタ(TFT)を作製する技術が急速に発達してきている。その理由は、アクティブマトリクス型液晶表示装置の需要が高まったことにある。
【0003】
アクティブマトリクス型液晶表示装置は、マトリクス状に配置された数百万個もの各画素のそれぞれにTFTを配置し、各画素電極に出入りする電荷をTFTのスイッチング機能により制御するものである。
【0004】
また、この画素TFTを駆動するための回路TFTを周辺駆動回路に組み込み、液晶と画素TFTとでなる表示用画素部と、回路TFTでなる駆動回路部を同一基板上に形成した集積化回路が一般的となってきている。
【0005】
【発明が解決しようとする課題】
上述したように、アクティブマトリクス型液晶表示装置の集積化回路は数百万個もの画素TFTと数百個以上の回路TFTから構成されているので、当然のことながら、生産歩留りが悪くなるのを避けられない。
【0006】
例えば、1個の画素TFTが動作しなければ、それに接続された画素電極は表示素子としての機能を失うことになる。これはいわゆる点欠陥の原因となる。
ノーマリブラックの液晶表示装置であれば、白色表示した時に点欠陥が黒点として現れ、非常に外観を害する。
【0007】
また、回路TFTが動作しなければ、その回路TFTから駆動電圧を印加される画素TFTは全てスイッチング素子として機能しなくなる。これは、いわゆる線欠陥の原因となり、液晶表示装置として致命的な障害となる。
【0008】
従って、アクティブマトリクス型液晶表示装置は、数百万個ものTFTが長期的に正常に、かつ、安定した動作を維持しうるものでなくてはならない。
しかしながら、点欠陥や線欠陥を完全に排除するのは極めて困難であるのが現状である。その原因の1つとして、コンタクト不良がある。
【0009】
コンタクト不良とは、配線電極とTFTとの電気的な接続箇所(以後、コンタクトと呼ぶ)が、接続不良を起こした時に生じる動作不良のことである。特に、プレーナー型TFTでは配線電極とTFTとが、細い開孔(コンタクトホール)を介して電気的接続を取るため、コンタクト不良は重大な問題となっている。
【0010】
コンタクト不良は半導体素子特性の早期劣化の主原因であり、大電流が流れる場合や高温動作によって特に劣化が加速される。従って、コンタクトの信頼性が半導体素子の信頼性を決めるとまで言われている。
【0011】
一般的に、アクティブマトリクス型液晶表示装置における画素表示領域の場合、ソース電極はそのまま画素表示領域外へ引き出されるためTFTの半導体層とのコンタクトしか存在しない。
【0012】
また、周辺駆動回路の場合は、数十万〜数百万個のコンタクトが存在する。特にゲイト電極のコンタクトがあること、大電流動作に伴う温度上昇があることは、コンタクトに対して画素表示領域以上の信頼性が要求されることを意味する。
【0013】
コンタクト不良の原因は、大別して3つを挙げられる。
第1の原因に、配線電極を形成する導電性膜と、TFTのソース/ドレインを形成する半導体膜とが、オーミック接合により接触していないことが挙げられる。
【0014】
これは、接合面に絶縁性の被膜、例えば金属酸化物等が形成されたりすることによる。また、半導体膜表面近傍の状態(不純物濃度、欠陥準位密度、清浄度等)が、コンタクトの性能を大きく左右する。
【0015】
第2の原因は、配線電極を形成する導電性膜のカバレッジが悪く、コンタクトホール内で断線していることを挙げられる。
この場合、配線電極の成膜方法や成膜条件によって改善を図る必要がある。
【0016】
また、第3の原因は、コンタクトホールの断面形状等に起因する配線電極の断線が挙げられる。コンタクトホールの断面形状は、コンタクト部に覆われた絶縁物(SiN、SiO2 等)のエッチング条件に強く依存する。
【0017】
特に、オーバーエッチングにより形成されるえぐれやブローホール(巣)はカバレッジを著しく悪化させるため重大な問題となっている。その例として、ゲイト電極にえぐれが形成される様子を図14を用いて説明する。
【0018】
図14に示されるのは、プレーナ型薄膜トランジスタのゲイト電極と配線をコンタクトさせるためのコンタクトホール部分の拡大図である。
【0019】
図14(A)において、11はゲイト電極であり、ゲイト電極11は陽極酸化可能な材料からなる金属材料、ここではAl(アルミニウム)を主成分とする材料からなる。なお、ゲイト電極11の下はゲイト絶縁膜や半導体層等が存在するが、図の簡略化のため省略した。
【0020】
12はゲイト電極11を電解溶液中で陽極酸化することによって形成される陽極酸化膜(Al23 を主成分とする)である。
この陽極酸化膜12は非常に緻密で強固な膜であり、加熱処理の際の熱からゲイト電極11を保護してヒロックやウィスカーの発生を抑制する役割を持つ。
【0021】
さらにゲイト電極11の上には、13で示される層間絶縁膜が成膜されている。この層間絶縁膜13としては、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜等の珪化膜を用いることができる。
【0022】
そして、層間絶縁膜13をウェットエッチング法もしくはドライエッチング法によってエッチングして、コンタクトホール14を形成する。このコンタクトホール14を形成するためには、まず珪化膜である層間絶縁膜13をエッチングし、次いで、陽極酸化膜12をエッチングしなければならない。
【0023】
しかし、陽極酸化膜12は非常に緻密で強固な膜であるためエッチングにある程度の時間を要してしまう。そのため、等方性エッチングの際には横方向にもかなりエッチングが進行し、図14(B)に示されるようなえぐれ部分15が形成される。
【0024】
この状態で配線電極16を形成した時の様子を図14(C)に示す。図14(C)のようにえぐれ部分は配線電極16で被覆することができず、断線を引き起こす原因となる。
【0025】
また、陽極酸化膜のエッチング終了時のオーバーエッチングが長いとゲイト電極11のエッチングが少しずつ進行してしまい、ブローホールが形成される場合もある。この場合も配線の断線が問題となる。
【0026】
本明細書で開示する発明の目的は、上記問題を解決して、コンタクト不良によるTFTの動作不良を低減する工程を、良好に行うための装置および方法を提供することにある。
【0027】
【課題を解決するための手段】
上記課題を解決するために、本明細書で開示する主要な構成の一つは、
気密性を有し、独立して雰囲気制御が可能な第1および第2の反応室を少なくとも有し、
前記第1および第2の反応室は、気密性を有して連結されており、
前記第1の反応室では、アルミニウムまたはアルミニウムを主成分とする膜を基板上に形成し、
前記第2の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置である。
【0028】
他の構成の一つは、
気密性を有し、独立して雰囲気制御が可能な第1および第2の反応室を少なくとも有し、
前記第1および第2の反応室は、気密性を有して連結されており、
前記第1の反応室では、アルミニウムに流動性を付与する元素を含むアルミニウムまたはアルミニウムを主成分とする膜を基板上に形成し、
前記第2の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置である。
【0029】
他の構成の一つは、
気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を少なくとも有し、
前記第1、第2および第3の反応室は、気密性を有して連結されており、
前記第1の反応室では、アルミニウムまたはアルミニウムを主成分とする膜を基板上に形成し、
前記第2の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜上に、該膜に流動性を付与する元素を含む膜を形成し、
前記第3の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置である。
【0030】
他の構成の一つは、
気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を少なくとも有し、
前記第1、第2および第3の反応室は、気密性を有して連結されており、
前記第1の反応室では、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を基板上に形成し、
前記第2の反応室では、前記膜上にアルミニウムまたはアルミニウムを主成分とする膜を形成し、
前記第3の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置である。
【0031】
本明細書で開示する他の主要な発明の一つは、
気密性を有し、かつ気密性を有して連結され、独立して雰囲気制御が可能な第1および第2の反応室を用いた半導体装置の作製方法であって、
前記第1の反応室において、アルミニウムまたはアルミニウムを主成分とする膜を基板上に形成し、
前記第2の反応室において、前記アルミニウムまたはアルミニウムを主成分とする膜にエネルギーを付与して、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製方法である。
【0032】
他の構成は、
気密性を有し、かつ気密性を有して連結され、独立して雰囲気制御が可能な第1および第2の反応室を用いた半導体装置の作製方法であって、
前記第1の反応室において、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含むアルミニウム膜を基板上に形成し、
前記第2の反応室において、前記アルミニウム膜にエネルギーを付与して、該アルミニウム膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製方法である。
【0033】
他の構成は、
気密性を有し、かつ気密性を有して連結され、独立して雰囲気制御が可能な第1、第2および第3の反応室を用いた半導体装置の作製方法であって、
前記第1の反応室において、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を基板上に形成し、
前記第2の反応室において、該膜上にアルミニウムまたはアルミニウムを主成分とする膜を形成し、
前記第3の反応室において、前記アルミニウムまたはアルミニウムを主成分とする膜にエネルギーを付与して、その少なくとも一部に流動性を付与せめしることを特徴とする半導体装置の作製方法である。
【0034】
他の構成は、
気密性を有し、かつ気密性を有して連結され、独立して雰囲気制御が可能な第1、第2および第3の反応室を用いた半導体装置の作製方法であって、
前記第1の反応室において、アルミニウムまたはアルミニウムを主成分とする膜を基板上に形成し、
前記第2の反応室において、アルミニウムまたはアルミニウムを主成分とする膜上に、該膜に流動性を付与する元素を含む膜を形成し、
前記第3の反応室において、前記アルミニウムまたはアルミニウムを主成分とする膜にエネルギーを付与し、その少なくとも一部に流動性を付与せめしることを特徴とする半導体装置の作製方法である。
【0035】
他の構成の一つは、
層間絶縁膜に形成されたコンタクトホールを介して半導体装置の少なくとも一部と電気的に接続するアルミニウムまたはアルミニウムを主成分とする膜を形成する成膜工程と、
加熱処理により、前記アルミニウムまたはアルミニウムを主成分とする膜に実質的な流動性をもたらすリフロー工程と、
を有し、
前記成膜工程と前記リフロー工程の実施は、その過程において大気に曝されないことを特徴とする半導体装置の作製方法である。
【0036】
また、上記各構成を有する装置および方法において、第1および第2の反応室、更に第3の反応室は、気密性を有し、独立して雰囲気制御可能な基板搬送室を介して連結されていることを特徴とする。
この構成において、前記第1反応室から前記第2の反応室へ、及び前記第2の反応室から前記第3の反応室へ前記基板を搬送する際に、基板は基板搬送室を経由して搬送される。
【0037】
上記装置および方法の各構成において、各膜は、スパッタ法により形成されることを特徴とする。
【0038】
スパッタ法以外では、蒸着法や、プラズマCVD法、低圧CVD法等を用いることができる。
【0039】
また、上記各構成において、前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素は、12族〜15族に属するものから選ばれた1種または複数種の元素が好ましい。
【0040】
特に、ゲルマニウム(Ge)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、鉛(Pb)、インジウム(In)、アンチモン(Sb)から選ばれた1種または複数種の元素を用いると効果的である。
【0041】
これらの元素は、前記アルミニウムまたはアルミニウムを主成分とする膜に、450 ℃以下の温度で流動性をもたらすことができる。
【0042】
上記各構成において、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与するためには、該膜に対し、ヒータや、紫外光、赤外光等の強光を照射する手段によりエネルギーを付与する。
【0043】
リフロー工程とは、加熱処理により配線電極を構成する金属膜に流動性を持たせることを目的とした工程である。450℃以下の温度によるリフロー工程によって、配線電極を構成するアルミニウムまたはアルミニウムを主成分とする膜は、容易に流動性を示すようになり、コンタクトホール内のえぐれ部分やブローホールを断線することなく被覆できる。
【0044】
【実施例】
〔実施例1〕
本実施例では、成膜−リフロー工程を連続して実施するためのマルチチャンバー型のスパッタ装置を示す。図1は本実施例のマルチチャンバー型のスパッタ装置の構成図であり、図2は図1のA−A’断面構成図である。
【0045】
マルチチャンバー型のスパッタ装置は、搬送室101、ロード室102、アンロード室103、スパッタ室104〜107、加熱室108、徐冷室109からなり、各室103〜109はそれぞれ、ゲイトバルブ110〜117により搬送室101の周囲に連結されている。
【0046】
搬送室101は基板100を搬送するための基板搬送手段118を備えている。基板搬送手段118によって、基板100は基板搬送室101を経由して、各室103〜109に移送される。
【0047】
ロード室102は外部からスパッタ装置内に処理基板を搬入するための室であり、基板はカセットに収納された状態でロード室102に搬入される。
【0048】
また、ロード室102は、処理基板表面に吸着したH2OやN2 等の不純物ガスを除去するための部屋であり、このためロード室103にはArガスやXeガス等によるプラズマクリーニング手段が設けられており、カセットからこのプラズマクリーニング手段に基板を搬送する手段も備えられている。
【0049】
アンロード室103は処理基板をスパッタ装置外部へ搬出するための室である。またアンロード室103には窒素パージ手段が備えられており、成膜・リフロー処理が終了した基板を窒素パージ処理することができるようになっている。
窒素パージ処理後の基板は、アンロード室103に設置されたカセットに順次に収納され、カセットごと基板は装置外部に搬出される。
【0050】
図2に示すように、搬送室101、スパッタ室104、加熱室108にはそれぞれ、ガス導入管121〜123および真空排気ポンプ124〜126が備えられている。ゲイトバルブ110〜117を閉鎖することによって、これらの室毎に独立して雰囲気および圧力の制御が可能となっている。
【0051】
また、他の室102、103やスパッタ室104〜107、除冷室109にも、同様にガス導入管、真空排気ポンプが備えられており、室毎に独立して雰囲気および圧力の制御が可能となっている。
【0052】
更にスパッタ室104内には、図2に示すように、基板200を設置するためのステージ201が設けられている。ステージ201にはヒータが内蔵されており、基板200を所望の温度に制御可能である。
【0053】
また、ステージ201に対向して、ターゲット202がホルダ203に保持されている。ステージ201とホルダ203の間には、電源204により直流または交流の電界が印加され、スパッタを行う。
【0054】
また、スパッタ室104は真空排気ポンプ125によって、到達真空度10-9Torrのオーダに排気可能になっている。このようにスパッタ室104を超高真空にするのは、窒素、酸素、炭素等の不純物が成膜される金属膜に混入するを防ぐためである。
【0055】
10-9Torrのオーダの超高真空を実現するためには、真空排気ポンプ125をターボ分子ポンプ、複合分子ポンプやクライオポンプで構成すればよい。或いは、ターボ分子ポンプ、複合分子ポンプとクライオポンプとを組み合わて構成すればよい。
【0056】
図1における他のスパッタ室105〜107も、スパッタ室104と同一な構造を有しており、ターゲット202を適宜に選択することによって、基板200表面に所望の膜を成膜することができる。
【0057】
加熱室108はリフロー処理を行うための室であり、複数の基板を同時に加熱可能となっている。
図2に示すように、加熱室108には、複数の基板210が配置可能な基板ホルダ211が設けられており、基板ホルダ211はエレベータ212により上下に移動可能とされている。
【0058】
基板210は搬送手段118によって、搬送室101から加熱室108に搬送され、基板ホルダ211に載置される。基板が搬送されるタイミングに合わせて、エレベータ212により基板ホルダ211上方または下方に移動して、基板ホルダ211内に基板219が順次に載置される。
【0059】
基板ホルダ211の周囲を囲んでヒータ213が設けられており、これにより基板210が所定の温度に加熱される。
【0060】
図1に示す徐冷室109は加熱室108と概略同一な構造を有しており、ヒータにより温度制御しながら、少しづつ基板温度を低下させるための室である。
【0061】
このような構成のスパッタ装置により、Tiなどの下地膜、配線電極を構成する材料を主成分とする膜(例えばAlを主成分とする膜)、配線電極を構成する材料に流動性を付与する元素を主成分とする膜等の成膜工程、加熱によるリフロー工程、その後の冷却・徐冷工程、Tiなどのオーミック接触を良好とするための膜の成膜工程などを、同一雰囲気で連続して行うことが可能となる。また、工程の順序も所望のものとすることができる。
【0062】
言い換えれば、これらの各工程を基板を外気に触れさせることなく実施することができる。その結果、リフロー工程の前に積層膜の最上面を酸化または汚染させることがなく、良好なリフロー工程を実施することが可能となる。
【0063】
というのは、リフローを行うための加熱をすると、積層膜の最上面から流動性が高まる場合がある。このような場合に積層膜の上面が他の雰囲気、特に酸化雰囲気に触れて酸化されたり、不純物により汚染されたりしてしまうと、良好なリフローが行えなくなるからである。
【0064】
リフロー前の段階で、積層膜の最上面が酸化しやすいアルミニウムを主成分とする膜である場合、大気に曝さないようにすることは特に重要である。
【0065】
もちろん、積層膜を構成する各膜の界面も酸化、汚染されていないことが、良好なリフローおよび配線の接続を行う上で極めて有利となる。
【0066】
特に、アルミニウムを主成分とする膜と、450℃以下の加熱時にアルミニウムを主成分とする膜に流動性を付与する元素を主成分とする膜との界面は、どちらの膜が上面となる場合であっても、大気に触れないようにしなければならない。
【0067】
そのようにしないと、アルミニウムを主成分とする膜に流動性を付与する元素のアルミニウム膜への拡散が阻害され、リフローが行えなくなる。
【0068】
また加熱室108として、ヒータ213を用いる構成に変えて、チャンバー内に赤外光や紫外光等の強光を照射するランプ等を配置し、RTA(ラピッド・サーマル・アニール)によってリフローを行う構成としてもよい。
【0069】
〔実施例2〕
本実施例では、実施例1で示したマルチチャンバー型のスパッタ装置を用いて、薄膜トランジスタの配線電極の作製に際し、リフローを行なう例を示す。本実施例の薄膜トランジスタ(TFT)の作製工程を図3、図4に示す。
【0070】
まず、図3(A)に示すように、絶縁表面を有したガラス基板301を用意して、下地膜となる酸化窒化珪素(SiOx y で示される)302を2000Åの厚さに成膜する。他にも酸化珪素膜や窒化珪素膜であってもよい。
【0071】
その上に、図示しない500Åの厚さの非晶質珪素膜をプラズマCVD法や減圧熱CVD法により形成し、適当な結晶化方法により結晶化する。この結晶化は加熱によっても、レーザー光の照射によっても良い。また、結晶化の際に結晶化を助長する元素を添加してもよい。
【0072】
次に、前記非晶質珪素膜を結晶化して得られた結晶性珪素膜をパターニングして、活性層を構成する島状の半導体層303を形成する。
【0073】
その上に、後にゲイト絶縁膜として機能する酸化珪素膜304を1500Åの厚さに形成した。この酸化珪素膜304の形成方法は、プラズマCVD法や減圧熱CVD法によれば良い。
【0074】
次に、アルミニウムまたはアルミニウムを主成分とする材料からなる金属薄膜305を4000Åの厚さに形成する。このアルミニウム膜305は、後にゲイト電極として機能する。
【0075】
次に、電解溶液中でアルミニウム膜305を陽極として、陽極酸化を行う。電解溶液としては、3%の酒石酸のエチレングリコール溶液をアンモニア水で中和して、PH=6.92に調整したものを使用した。
また、白金を陰極として化成電流5mA、到達電圧10Vとして処理する。
【0076】
こうして、アルミニウム膜305の表面に図示しない緻密な陽極酸化膜が形成される。この陽極酸化膜はフォトレジストとの密着性を高める効果がある。なお、電圧印加時間を制御することで陽極酸化膜が形成される厚さを制御できる(図3(A))。
【0077】
こうして、図3(A)の状態が得られたら、アルミニウム膜305をパターニングして、後にゲイト電極と陽極酸化膜を構成する図示しないアルミニウム電極を形成する。
【0078】
次に、2度目の陽極酸化を行い、多孔質の陽極酸化膜306を形成する。電解溶液は3%のシュウ酸水溶液とし、白金を陰極として化成電流2〜3mA、到達電圧8Vとして処理する。
【0079】
この時陽極酸化は基板に対して平行な方向に進行して、アルミニウム電極の側面に多孔質の陽極酸化膜306が形成される。電圧印加時間を制御することで多孔質の陽極酸化膜306の長さを制御できる。本実施例では、0.7 μmの長さに調節した。
【0080】
専用の剥離液でフォトレジストを除去した後、さらに3度目の陽極酸化を行い、図3(B)の状態を得る。3回の陽極酸化工程を経て、陽極酸化されずに残存したアルミニウム電極がゲイト電極308となる。
【0081】
3度目の陽極酸化工程では、電解溶液は3%の酒石酸のエチレングリコール溶液をアンモニア水で中和して、PH=6.92に調整したものを使用した。また、白金を陰極として化成電流5〜6mA、到達電圧100Vとして処理した。
【0082】
この際形成される陽極酸化膜307は、非常に緻密かつ強固である。そのため、この緻密な陽極酸化膜307はドーピング工程等の以降の工程で生じるダメージや、加熱処理の熱からゲイト電極308を保護する効果を奏する。
【0083】
次いで、イオンドーピング法により、島状の半導体層303に不純物を注入する。例えば、Nチャネル型TFTを作製するならば、不純物としてP(リン)を用いれば良い。
【0084】
まず、図3(B)の状態で1度目のイオンドーピングを行う。なお、P(リン)の注入は加速電圧60〜90kV、ドーズ量0.2 〜5 ×1015原子/cm2 で行う。
本実施例では、加速電圧80kV、ドーズ量1×1015原子/cm2 とした。
【0085】
すると、ゲイト電極308、多孔質の陽極酸化膜306がマスクとなり、後にソース/ドレインとなる領域309、310が自己整合的に形成される。
【0086】
次に、図3(C)に示す様に、多孔質の陽極酸化膜306を除去した後、2度目のドーピングを行う。なお、2度目のP(リン)の注入は加速電圧60〜90kV、ドーズ量0.1 〜5 ×1014原子/cm2 で行う。
本実施例では、加速電圧80kV、ドーズ量1×1014原子/cm2 とした。
【0087】
すると、ゲイト電極308とその周囲の陽極酸化膜307がマスクとなり、ソース領域309、ドレイン領域310と比較して不純物濃度の低い、低濃度不純物領域311、312が自己整合的に形成される。
【0088】
同時に、ゲイト電極308の直下は不純物が全く注入されないため、TFTのチャネルとして機能するチャネル形成領域313が自己整合的に形成される。また、陽極酸化膜307の膜厚分だけゲイト電圧の印加されないオフセット領域(図示せず)が形成される。
【0089】
一般に、ドレイン領域319側の低濃度不純物領域312はLDD領域と呼ばれ、チャネル形成領域313とドレイン領域310との間に高電界が形成されるのを抑制する効果を持つ。
【0090】
次に、KrFエキシマレーザー光の照射及び熱アニールを行う。レーザー光のエネルギー密度は250 〜300mJ/cm2 とし、熱アニールの温度は300 〜450 ℃で、加熱時間は数時間とする。本実施例では、レーザー光のエネルギー密度は300mJ/cm2 とし、熱アニールは400 ℃で1時間加熱した。
【0091】
この工程により、イオンドーピング工程で損傷を受けた島状の半導体層303の結晶性が改善される。またこの時、350 ℃、1時間の水素化処理を付加することによって、さらに結晶性を改善することができる。
【0092】
次に、図3(D)に示す様に、酸化窒化珪素膜からなる第1の層間絶縁膜314をプラズマCVD法により形成した。この層間絶縁膜314は、酸化珪素膜や窒化珪素膜でもよい。また、多層構造であっても構わない。
【0093】
次に、図4(A)に示すように、ソース電極およびゲイト配線とTFTとを電気的に接続させるためのコンタクトホール321、322を形成する。本実施例では、これらのコンタクトホール321、322の形成をバファードフッ酸を用いたウェットエッチング法により行った。
【0094】
この際、ソースコンタクト部321とゲイトコンタクト部322の開孔を同時に形成した。この手法は、パターニング回数を減らし、工程を簡略化する上で望ましい。
【0095】
まず、ソースコンタクト部321では、第1の層間絶縁膜314、ゲイト絶縁膜304の順にエッチングされて、島状の半導体層303のソース領域309が露出される。
【0096】
他方、ゲイトコンタクト部322では陽極酸化膜307のエッチングレートが小さいためエッチングはまだ進行中である。
また、陽極酸化膜307をフッ酸系のエッチャントでエッチングすると、不均一にエッチングが進むためエッチャントが浸透した箇所からゲイト電極308のエッチングも同時に進行してしまう。
【0097】
従って、陽極酸化膜307のエッチングが終了した時にはソース部ではオーバーエッチングが進み、ゲイト部ではゲイト電極308が浸食されて、図4(A)のようなえぐれ部分を有したコンタクトホール321、322が形成されてしまう。
【0098】
以下、このようなえぐれ部分を有したコンタクトホール321、322に配線を形成する工程を説明する。
【0099】
コンタクトホール321、322を形成した後、図1、図2に示すマルチチャンバー型スパッタ装置を用いて、成膜及びリフローを連続して行う。
【0100】
図1に示す装置において、各スパッタ室104〜107に配置されたターゲットは、次の組成を有する。スパッタ室104はチタン(Ti)、スパッタ室105は銅が2%添加されたアルミニウム(Al)、スパッタ室106はスズ(Sn)、スパッタ室107はチタン(Ti)である。
【0101】
まず、図4(A)に示す状態までの工程が終了した基板を複数枚カセットに収納し、図1に示す装置のロード室102にカセットを搬入する。
【0102】
ロード室102において、カセットから基板を順次取り出して、Arガスによりプラズマクリーニングして、これまでの工程で処理基板表面に吸着したH2OやN2等の不純物ガスを除去した。
【0103】
プラズマクリーニング終了後、基板搬送手段118により基板100は搬送室101を経由して、ロード室102からスパッタ室104に搬送され、スパッタ室104内のステージ201に載置される。スパッタ室104において下地膜のTi膜401を成膜した。
【0104】
スパッタ室104において、基板をステージ201に載置するとゲイトバルブ112を閉め、真空排気ポンプ125により10-9Torrのオーダまで排気する。これにより、不純物ガスの分圧が下がるため、成膜される金属膜内の不純物濃度を下げることができる。
【0105】
真空到達度が10-9Torrのオーダになったら、ガス導入管122より雰囲気ガスを導入し、電源205によりステージ201とホルダ203に直流電力を供給し、スパッタ成膜を行った。ターゲット201にチタン(Ti)を用いた。
【0106】
成膜条件は、以下のようにした。
ターゲット:チタン(Ti)
雰囲気:アルゴン(Ar)
圧力:0.4Pa
電力:DC3000W
温度:室温
【0107】
この結果、下地膜としてのTi膜401が約500Åの膜厚に形成された。チタンは、凹凸に対する被覆性に優れているため、えぐれ部分やブローホールをある程度被覆することができる。
【0108】
このTi膜401はソース領域309において、後に形成される配線の成分であるアルミニウムと、半導体層の成分であるシリコンとが反応してシリサイドを形成するのを防止する効果を持つ。
【0109】
したがって、まずTi膜401で良好なオーミック接触を取っておき、次いで配線電極となるアルミニウムを主成分とする膜を形成した後に、リフロー工程を行うことで、より確実なコンタクトを実現できる。
【0110】
また、この薄く形成された下地膜401により、後に形成するアルミニウム膜の成膜面に対する濡れ性が向上する。その結果アルミニウムを成膜した段階で、微細な径を有するコンタクトホールの入口がアルミニウム膜により塞がれてしまっても、リフローしてアルミニウム膜をコンタクトホール内に埋め込むことが可能となる。下地膜401の材料としては、ポリシリコンやTiが好ましい。
【0111】
次に基板は、搬送手段118によりスパッタ室105に搬送される。スパッタ室105では、銅が2%添加されたアルミニウム(Al)をターゲットとしたスパッタが行われる。銅に代えて、シリコン(Si)やスカンジウム(Sc)を添加したものを用いてもよい。
【0112】
アルミニウムを主成分とする膜402は2000〜6000Åの厚さに形成する。ここでは4000Åの膜厚に形成した。この状態ではえぐれ部分やブローホールを完全には被覆しきれないため、コンタクトホール内で断線している可能性が高い。(図4(B))
【0113】
成膜条件は、以下のようにした。
ターゲット:アルミニウム(Al)(銅2%添加)
雰囲気:アルゴン(Ar)
圧力:0.4Pa
電流:DC4A
温度:室温
【0114】
スパッタ室105においても、スパッタ成膜する前に10-9Torrのオーダまで排気する。
【0115】
次に、スパッタ室106において、アルミニウムを主成分とする膜402の上に、後のリフロー工程においてアルミニウム膜に実質的な流動性をもたらす元素を主成分とする膜を形成する。この膜は12族〜15族に属するものから選ばれた1種または複数主の元素を主成分とする。
【0116】
特に、ゲルマニウム(Ge)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、鉛(Pb)、インジウム(In)、アンチモン(Sb)などが好ましい。ここでは、スズ膜を用いる。
【0117】
搬送手段118によりスパッタ室106に基板が搬送される。スパッタ室106においてスパッタが行われ、スズ膜403が20〜100Å、ここでは50Åの厚さに成膜した。スパッタ室106においても、スパッタ成膜する前に室106を10-9Torrのオーダまで排気する(図4(B))。
【0118】
成膜条件は、以下のようにした。
ターゲット:スズ(Sn)
雰囲気:アルゴン(Ar)
圧力:0.4Pa
電流:DC0.3A
温度:室温
【0119】
アルミニウムを主成分とする膜402を成膜する工程と、スズ膜403を成膜する工程との間を、大気開放せずに連続的に行うことは、本発明においては極めて重要である。アルミニウムを主成分とする膜402の成膜後に大気に触れてしまうと、その上にスズ膜403を形成してもスズのアルミニウム膜内への拡散がうまく行われず、リフローが起こらなくなるからである。理由としては、アルミニウム膜表面が大気に触れることで、自然酸化膜が形成されたり、不純物による汚染が生じ、これらによりスズ膜403の拡散が阻害されてしまうことが考えられる。
【0120】
またこのことは、スズ以外の、アルミニウムに流動性を付与する元素を主成分とする膜を用いた場合も同様である。
【0121】
次にリフロー工程を行う。スズ膜403が形成された基板は、搬送手段118によりスパッタ室106から取り出され、加熱室108に搬送される。
【0122】
このリフロー工程はゲイト電極308の耐熱性を考慮して375 〜450 ℃の温度範囲で行う必要がある(本実施例では、ゲイト電極308が陽極酸化膜307で保護されているため、通常より耐熱性が増している)。
本実施例では、加熱室108内において450 ℃、1時間 、大気圧の加熱処理を行う。その際、処理雰囲気は真空中もしくは窒素中、アルゴン中等の不活性雰囲気が良い。ここでは窒素(N2 )雰囲気にした。
【0123】
この加熱処理により、スズ膜403とアルミニウムを主成分とする膜402との界面において反応が起こり、スズがアルミニウム膜へ拡散し、アルミニウムと銅とスズを組成に持つ合金層が形成される。
【0124】
すると、アルミニウムを主成分とする膜の上層付近はスズを含有した組成を持つようになる。このため、450℃以下の温度で流動性を示すようになり、リフロー工程が進行する。
【0125】
このリフロー工程により、アルミニウム膜402の上層付近は流動性を持ち、えぐれ部分やブローホールのすきまを断線することなく被覆していく。従って、アルミニウムを主成分とする膜402の断線箇所はすべて短絡され、完全にソース領域309またはゲイト電極308と電気的に接続させることができる。
【0126】
スズ膜403を成膜する工程と、加熱によるリフローを行う工程との間を、大気開放せずに連続的に行うことも、本発明においては極めて重要である。
【0127】
また、リフローが行われる膜の表面の状態が、良好なリフローを行う上で極めて重要なことが判明している。
【0128】
本実施例の場合、最上面のスズ膜403の表面が大気に触れてしまうと、アルミニウムを主成分とする膜402の流動性が低下したり、不均質となり、リフローが不十分となって、結果としてコンタクトの不良が生じることがある。
【0129】
リフロー工程終了後、基板は搬送手段118により加熱室108から取り出されて、徐冷室109に搬送され、所定の温度まで徐冷される。
【0130】
その後、搬送手段118により、基板がスパッタ室107に搬送される。スパッタ室107において、チタン(Ti)をターゲットとしたスパッタが行われ、Ti膜404が約500Åの膜厚に形成される。条件は下地膜としてのTi膜401の成膜条件と同じとした。
【0131】
このTi膜404はより上層に形成される配線と電気的な接続を行う場合に、良好なオーミック接続を実現するために有効となる。
【0132】
この後搬送手段118により、スパッタ室107から取り出された基板は、アンロード室103に搬送される。アンロード室103において、基板は窒素パージされた後、カセットに収納される。窒素パージ処理は基板を清浄にするという効果の他、基板温度を下げる効果を持つ。基板温度を下げておくことで、基板が大気に曝された際に、その表面に酸化膜が形成されることが抑制される。
【0133】
全ての基板に対する成膜・リフロー工程が終了した後、カセットに収納された状態で基板をアンロード室103から取り出す。
【0134】
このようにして、実施例1のスパッタ装置において成膜及びリフロー工程が複数の基板に対して連続して処理される。その間、各膜の表面は外気(大気)に触れることが全くなく、各膜の酸化や汚染を防いで、良好な電気的接触を有する成膜・リフローを行うことができた。
【0135】
以上の工程を経た後、図4(C)に示すように、積層された膜401〜404をパターニングしてソース電極416、ゲイト電極417を形成する。次いで、第2の層間絶縁膜418を成膜する。
【0136】
第2の層間絶縁膜418を成膜する前に、まず図示しない窒化珪素膜または酸化窒化珪素膜でソース電極416およびゲイト電極417を覆う。これは、樹脂材料を密着性よく成膜するための緩衝膜に相当する。
【0137】
その上に第2の層間絶縁膜418として樹脂でなる材料を積層する。この樹脂材料は酸化珪素や窒化珪素に比較して低い比誘電率を有するものを選択できるので、後に形成される透明電極と、TFTとの間に形成される容量の影響を低減させることができる。
【0138】
最後に、ITOでなる透明電極419を形成して図4(C)に示すようなTFTが作製される。第2の層間絶縁膜418として用いた樹脂からなる材料は、デバイス上に優れた平坦性を実現できるため均一な電圧を透明電極へかけることが出来る。
【0139】
このように作製されたTFTはコンタクトホールの形状によらず良好なコンタクトを示すため、配線または電極の断線によるTFTの動作不良といった問題の恐れがない。
【0140】
〔実施例3〕
本実施例では、薄膜トランジスタの電極を構成する積層膜の構造を、実施例2とは異ならせてリフローを行った例を示す。
【0141】
実施例2と同様の作製工程により、薄膜トランジスタを作製し、図4(A)のえぐれ部分を有したコンタクトホールが形成された状態とする。
【0142】
次に図1に示すマルチチャンバー型スパッタ装置を用いて、成膜及びリフロー工程を連続して行う。本実施例の工程を図5に示す。
【0143】
実施例3での、図1に示す装置における各スパッタ室に配置されたターゲットは、次の組成を示す。スパッタ室104はチタン(Ti)、スパッタ室105はゲルマニウム(Ge)、スパッタ室106は銅が2%添加されたアルミニウム(Al)、スパッタ室107はチタン(Ti)である。
【0144】
まず、実施例2で説明した図4(A)に示す状態までの工程が終了した基板を複数枚カセットに収納し、図1に示す装置のロード室102に搬入する。
【0145】
搬送手段118により、基板100はカセットから搬送室101を経由して、スパッタ室104に搬送される。
【0146】
スパッタ室104において、チタン(Ti)をターゲットとしたスパッタが行われ、下地膜としてのTi膜501が約500Åの膜厚に形成される。成膜条件は実施例2と同じにした。
【0147】
次に、後のリフロー工程においてアルミニウムを主成分とする膜に実質的な流動性をもたらす元素を主成分とする膜を形成する。この膜を構成する材料は実施例2で示したものを用いることができる。ここではゲルマニウム膜とする。
【0148】
次に基板は、搬送手段118によりスパッタ室105に搬送される。スパッタ室105では、ゲルマニウム(Ge)をターゲットとしたスパッタが行われ、ゲルマニウム膜502を20〜100Å形成する、本実施例ではゲルマニウム膜502を50Å形成した。
【0149】
成膜条件は、以下のようにした。
ターゲット:ゲルマニウム(Ge)
雰囲気:アルゴン(Ar)
圧力:0.4Pa
電流:DC1A
温度:室温
【0150】
次に基板は、搬送手段118によりスパッタ室106に搬送される。スパッタ室106では、銅が2%添加されたアルミニウム(Al)をターゲットとしたスパッタが行われる。銅に代えて、シリコン(Si)やスカンジウム(Sc)を添加したものを用いてもよい。成膜条件は実施例2と同じとした。
【0151】
アルミニウムを主成分とする膜503は、2000〜6000Å、ここでは4000Åの膜厚に形成した。この状態ではえぐれ部分やブローホールを完全には被覆しきれないため、コンタクトホール内で断線している可能性が高い(図5(A))。
【0152】
アルミニウムに実質的な流動性をもたらす元素を主成分とする膜502を成膜する工程と、アルミニウムを主成分とする膜503を成膜する工程とは、実施例2の場合と同様に、大気に開放せずに連続的に行うことが、良好なリフローを行う上では極めて重要である。
【0153】
次にリフロー工程を行なう。アルミニウムを主成分とする膜503が形成された基板は、搬送手段118によりスパッタ室106から取り出され、加熱室108に搬送される。
【0154】
このリフロー工程はゲイト電極308の耐熱性を考慮して375 〜450 ℃の温度範囲で行う必要がある(本実施例では、ゲイト電極308が陽極酸化膜307で保護されているため、通常より耐熱性が増している)。
本実施例では、加熱室108内において400 ℃、1時間、大気圧の加熱処理を行う。その際、処理雰囲気は真空中もしくは窒素中、アルゴン中等の不活性雰囲気が良い。ここでは窒素雰囲気とする。
【0155】
この加熱処理により、ゲルマニウム膜503とアルミニウムを主成分とする膜502との界面において反応が起こり、ゲルマニウムがアルミニウムを主成分とする膜502へ拡散し、アルミニウムと銅とゲルマニウムを組成に持つ合金層が形成される。
【0156】
すると、アルミニウムを主成分とする膜の下層付近はゲルマニウムを含有した組成を持つようになる。このため、400℃以下の温度で流動性を示すようになり、リフロー工程が進行する。
【0157】
このリフロー工程により、アルミニウム膜503の下層付近は流動性を持ち、えぐれ部分やブローホールのすきまを断線することなく被覆していく。従って、図5(B)に示すように、アルミニウムを主成分とする膜503の断線箇所はすべて短絡され、完全にソース領域309またはゲイト電極308と電気的に接続させることができる。
【0158】
アルミニウム膜503を成膜する工程と、加熱によるリフローを行う工程との間を、大気開放せずに連続的に行うことも、極めて重要である。
【0159】
本実施例の場合、アルミニウムを主成分とする膜が大気に触れてしまうと、表面に自然酸化膜が形成され、また不純物が付着したことが原因となって、アルミニウムを主成分とする膜の流動性が低下したり、不均質となり、リフローが不十分となって、結果としてコンタクトの不良が生じることがある。
【0160】
リフロー工程終了後、基板は搬送手段118により加熱室108から取り出されて、徐冷室109に搬送され、所定の温度まで徐冷される。
【0161】
その後、搬送手段118により、基板がスパッタ室107に搬送される。スパッタ室107において、チタン(Ti)をターゲットとしたスパッタを行い、Ti膜504が約500Åの膜厚に形成される。条件は実施例2と同じとした(図5(B))。
【0162】
以下実施例2と同様にして、成膜及びリフロー工程が終了する。このようにして、成膜及びリフロー工程が複数の基板に対して連続して処理される。その間、各膜の表面は全く外気に触れることがなく、各膜の酸化や汚染を防いで良好な電気的接触を有する成膜・リフローを行うことができた。
【0163】
以上の工程を経た後、実施例2と同様にして、積層された膜501〜504をパターニングしてソース電極516、ゲイト電極517を形成し、その上に第2の層間絶縁膜518として樹脂からなる材料を積層する。このようにして、図5(C)に示すような、良好なコンタクトを有する薄膜トランジスタが完成される。
【0164】
〔実施例4〕
本実施例では、薄膜トランジスタの電極を構成する積層膜の構造を、実施例2とは異ならせてリフローを行った他の例を示す。
【0165】
実施例2と同様の作製工程により、薄膜トランジスタを作製し、図4(A)のえぐれ部分を有したコンタクトホールが形成された状態とする。
【0166】
次に図1に示すマルチチャンバー型スパッタ装置を用いて、成膜及びリフロー工程を連続して行う。本実施例の工程を図6に示す。
【0167】
実施例4での、図1に示す装置における各スパッタ室に配置されたターゲットは、次の組成を示す。スパッタ室104はチタン(Ti)、スパッタ室105にはゲルマニウム(Ge)が20〜40%例えば20%、銅が2%含有されたアルミニウム(Al)、スパッタ室106にはチタン(Ti)である。本実施例では、スパッタ室107は使用しない。
【0168】
まず、実施例2に示す図4(A)に示す状態までの工程が終了した基板を、複数枚カセットに収納し、図1に示す装置のロード室102に搬送する。
【0169】
搬送手段118により、基板はカセットから搬送室101を経由して、スパッタ室104に搬送される。
【0170】
スパッタ室104において、チタン(Ti)をターゲットとしたスパッタが行われ、下地膜としてのTi膜601が約500Åの膜厚に形成された。成膜条件は実施例2と同じである。
【0171】
基板は、搬送手段118によりスパッタ室105に搬送される。スパッタ室105において、後のリフロー工程においてアルミニウムを主成分とする膜に実質的な流動性をもたらす元素として、ゲルマニウム(Ge)を20〜40%、例えば20%含有するアルミニウムを主成分とする膜602を形成する。ターゲットには、ゲルマニウムが20%、銅が2%含有されたアルミニウムをとした。成膜条件は実施例3と同じにした。
【0172】
アルミニウムを主成分とする膜602は、2000〜6000Å、ここでは4000Åの膜厚に形成される。この状態ではえぐれ部分やブローホールを完全には被覆しきれないため、コンタクトホール内で断線している可能性が高い。(図6(A))
【0173】
この場合、添加したゲルマニウムの含有量によって後のリフロー工程の処理温度が変わってくる。本実施例ではアルミニウムを主成分としているため、450 ℃以下、好ましくは400 ℃以下でリフローできるようにゲルマニウムの含有率を20〜40原子%とした。
【0174】
このゲルマニウムの添加濃度は図7に示すようなアルミニウム−ゲルマニウム系の相図において共晶点(424℃)が存在するゲルマニウムの含有率(30原子%)を元に求めた値である。実際には、共晶点に満たない温度において流動性を有するようになるので、20〜40原子%という値は妥当であろう。
【0175】
アルミニウムを主成分とする膜602に含有される元素として、ゲルマニウム(Ge)以外に、実施例2で示したアルミニウム膜に実質的な流動性をもたらす元素を用いることができる。
【0176】
また、銅はヒロック等アルミニウムの異常成長を抑制するために添加されている。銅に代えて、シリコン(Si)やスカンジウム(Sc)を添加したものを用いてもよい。
【0177】
次にリフロー工程を行なう。アルミニウムを主成分とする膜602が形成された基板は、搬送手段118によりスパッタ室105から取り出され、加熱室108に搬送される。
【0178】
このリフロー工程はゲイト電極308の耐熱性を考慮して375 〜450 ℃の温度範囲で行う必要がある(本実施例では、ゲイト電極308が陽極酸化膜307で保護されているため、通常より耐熱性が増している)。本実施例では、加熱室108内において400 ℃、1時間の加熱処理を行う。その際、処理雰囲気は真空中もしくは窒素中、アルゴン中等の不活性雰囲気が良い。ここでは窒素雰囲気とする。
【0179】
この加熱処理によりアルミニウムを主成分とする膜602の、主として上面にて反応が起こって、アルミニウム膜602が流動性を示すようになり、リフロー工程が進行する。
【0180】
このリフロー工程により、アルミニウムを主成分とする膜602の上層付近は流動性を持ち、えぐれ部分やブローホールのすきまを断線することなく被覆していく。従って、図6(B)に示すように、アルミニウムを主成分とする膜602の断線箇所はすべて短絡され、完全にソース領域309及びゲイト電極308に電気的に接続させることができる。
【0181】
アルミニウムを主成分とする膜602を成膜する工程と、加熱によるリフローを行う工程との間を、大気開放せずに、両工程を連続的に行うことは、極めて重要である。
【0182】
本実施例の場合、アルミニウムを主成分とする膜602が大気に触れてしまうと、表面に自然酸化膜が形成され、また不純物が付着したことが原因となって、アルミニウムを主成分とする膜の流動性が低下したり、不均質となり、リフローが不十分となって、結果としてコンタクトの不良が生じることがある。
【0183】
リフロー工程終了後、基板は搬送手段118により加熱室108から取り出されて、徐冷室109に搬送され、所定の温度まで徐冷される。
【0184】
その後、搬送手段118により、基板がスパッタ室106に搬送される。スパッタ室106において、チタン(Ti)をターゲットとしたスパッタが行われ、Ti膜603が約500Åの膜厚に形成される。条件は実施例2と同じにした(図6(B))。
【0185】
以下実施例2と同様にして、成膜及びリフロー工程が終了する。このようにして、成膜及びリフロー工程が複数の基板に対して連続して処理される。その間、各膜の表面は全く外気に触れることがなく、これにより膜の酸化や汚染を防ぐことができる。その結果、アルミニウムを主成分とする膜と、その上下のチタン膜とを良好な電気的接触を有して成膜・リフローを行うことができた。
【0186】
以上の工程を経た後、実施例2と同様にして、積層された膜601〜603をパターニングしてソース電極616、ゲイト電極617を形成し、その上に第2の層間絶縁膜618として樹脂からなる材料を積層する。このようにして、図6(C)に示すような、良好なコンタクトを有する薄膜トランジスタが完成される。
【0187】
〔実施例5〕
本実施例は、実施例4において配線電極を構成する材料に対しゲルマニウム以外の金属元素を添加した場合の例を示す。特に、その添加濃度について説明する。本実施例における薄膜トランジスタ(TFT)の作製工程例は実施例4と同様であるので省略する。
【0188】
本実施例ではアルミニウムを主成分としているため、450 ℃以下でリフローできるように添加元素の濃度を調節しなくてはならない。そこで、参考図例として図7〜13にそれぞれ、アルミニウムと、ゲルマニウム、スズ、ガリウム、亜鉛、鉛、インジウム、アンチモンの各元素とからなる合金の二元系相図を示す。
【0189】
各相図によると、各元素がアルミニウムに対して概略以下の濃度で添加されていると、450 ℃でも析出物のない液相状態で存在しうることが判る。
Ge:25〜32原子%(図7)
Sn:85原子%以上(図8)
Ga:45原子%以上(図9)
Zn:65原子%以上(図10)
Pb:99原子%以上(図11)
In:98原子%以上(図12)
【0190】
この各種元素の添加濃度は相図において共晶点が存在する各元素の含有率から求めた値である。実際には、共晶点に満たない温度において流動性を有するようになるので±数十%ぐらいの濃度範囲を持たせることができる。
図13においてアルミニウムとアンチモンの合金は450 ℃で液相状態とはならないが、上記理由により対象内となる。
【0191】
〔実施例6〕
本実施例は、リフロー工程における加熱処理をRTA(ラピッド・サーマル・アニール)で行う例を示す。本実施例における薄膜トランジスタ(TFT)の作製工程例は実施例2と同様であるので省略する。
【0192】
RTAとは、被処理体に対して赤外光や紫外光等の強光をランプ等により照射するアニール方法である。この特徴として、昇温速度および降温速度が速く、処理時間が数秒〜数十秒と短いため、実質的に最表面の薄膜のみを加熱できることである。即ち、例えばガラス基板上の薄膜のみを1000℃程度の極めて高温でアニールすることが可能である。
【0193】
図1に示す装置において、加熱室108をチャンバー内に赤外線ランプを配置した構造する。チャンバー内に搬送された基板に対し、RTAが行われる。
【0194】
RTA処理は数秒〜数十秒の極めて短時間で行われるため、ヒータを用いて加熱した場合に比較して、リフロー工程に要する時間を大幅に短縮でき、生産性の面からも非常に有効な手段である。
【0195】
また、ヒータによる加熱を用いたリフロー工程は、例えばゲイト電極としてアルミニウムを用いた場合、アルミニウムの耐熱性を考慮して、450 ℃以下の低温で行わなければならない。
【0196】
しかし、本実施例で示すRTA技術を応用すれば、ゲイト電極の耐熱性を考慮する必要がないためリフロー温度の許容範囲が拡がる。
即ち、配線電極に添加する元素の種類や濃度範囲をさらに広く選択できるようになる。
【0197】
【発明の効果】
本発明により、アルミニウムまたはアルミニウムを主成分とする膜のリフロー工程を、良好かつ確実に行うことができる。その結果、アルミニウムまたはアルミニウムを主成分とする膜と、その下の活性層やゲイト電極とのコンタクトホールを介してのコンタクトを確実に行うことができる。このため、作製される薄膜トランジスタ及びこれを用いた回路、液晶表示装置等の信頼性を大幅に向上させ、かつ製造歩留りを向上させることが可能になる。
【図面の簡単な説明】
【図1】 実施例で用いるマルチチャンバー型スパッタ装置を示す図。
【図2】 図1のAーA’断面を示す図。
【図3】 実施例2の薄膜トランジスタの作製工程を示す図。
【図4】 実施例2の薄膜トランジスタの作製工程を示す図。
【図5】 実施例3のスパッタ工程・リフロー工程を示す図。
【図6】 実施例4のスパッタ工程・リフロー工程を示す図。
【図7】 アルミニウムとゲルマニウムでなる合金の二元系相図。
【図8】 アルミニウムとスズでなる合金の二元系相図。
【図9】 アルミニウムとガリウムでなる合金の二元系相図。
【図10】 アルミニウムと亜鉛でなる合金の二元系相図。
【図11】 アルミニウムと鉛でなる合金の二元系相図。
【図12】 アルミニウムとインジウムでなる合金の二元系相図。
【図13】 アルミニウムとアンチモンでなる合金の二元系相図。
【図14】 従来の薄膜トランジスタの配線接続構造の例を示す図。
【符号の説明】
100 基板
101 搬送室
102 ロード室
103 アンロード室
104〜107 スパッタ室
108 加熱室
109 徐冷室
110〜117 ゲイトバルブ
118 搬送手段
121〜123 ガス導入管
124〜126 真空排気ポンプ
200 基板
201 ステージ
202 ターゲット
203 ホルダ
204 電源
210 基板
211 基板ホルダ
212 エレベータ
213 ヒータ
401 Ti膜
402 アルミニウムを主成分とする膜
403 スズ膜
404 Ti膜
416 ソース電極
417 ゲイト電極
501 Ti膜
502 ゲルマニウム膜
503 アルミニウムを主成分とする膜
504 Ti膜
516 ソース電極
517 ゲイト電極
601 Ti膜
602 アルミニウムを主成分とする膜(Ge添加)
603 Ti膜
616 ソース電極
617 ゲイト電極

Claims (26)

  1. 気密性を有し、独立して雰囲気制御が可能な第1および第2の反応室を有し、
    前記第1および第2の反応室は、気密性を有して連結されており、
    前記第1の反応室では、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含むアルミニウムを主成分とする膜を基板上に形成し、
    前記第2の反応室では、アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置。
  2. 請求項1に記載の前記半導体装置の作製装置は、独立して雰囲気制御可能で気密性を有する基板搬送室を有し、前記第1および第2の反応室は、前記基板搬送室を介して連結されていることを特徴とする半導体装置の作製装置。
  3. 請求項1又は請求項2に記載の前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含むアルミニウムを主成分とする膜はスパッタ法により形成されることを特徴とする半導体装置の作製装置。
  4. 気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を有し、
    前記第1、第2および第3の反応室は、気密性を有して連結されており、
    前記第1の反応室では、アルミニウムまたはアルミニウムを主成分とする膜を基板上に形成し、
    前記第2の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜上に、前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を形成し、
    前記第3の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置。
  5. 気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を有し、
    前記第1、第2および第3の反応室は、気密性を有して連結されており、
    前記第1の反応室では、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を基板上に形成し、
    前記第2の反応室では、前記膜上にアルミニウムまたはアルミニウムを主成分とする膜を形成し、
    前記第3の反応室では、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製装置。
  6. 請求項4又は請求項5に記載の前記半導体装置の作製装置は、独立して雰囲気制御可能で気密性を有する基板搬送室を有し、前記第1、第2および第3の反応室は、前記基板搬送室を介して連結されていることを特徴とする半導体装置の作製装置。
  7. 請求項4乃至請求項6のいずれか一項に記載の前記アルミニウムまたはアルミニウムを主成分とする膜はスパッタ法により形成されることを特徴とする半導体装置の作製装置。
  8. 請求項乃至請求項7のいずれか一項に記載の前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜はスパッタ法により形成されることを特徴とする半導体装置の作製装置。
  9. 請求項乃至請求項8のいずれか一項に記載の前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素は、12族〜15族に属するものから選ばれた1種または複数種の元素であることを特徴とする半導体装置の作製装置。
  10. 請求項乃至請求項9のいずれか一項に記載の前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素は、ゲルマニウム(Ge)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、鉛(Pb)、インジウム(In)、アンチモン(Sb)から選ばれた1種または複数種であることを特徴とする半導体装置の作製方法。
  11. 気密性を有し、独立して雰囲気制御が可能な第1および第2の反応室を用いた半導体装置の作製方法であって、
    前記第1および前記第2の反応室は気密性を有して連結され、
    前記第1の反応室内において、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含むアルミニウムを主成分とする膜を基板上に形成し、
    前記第2の反応室内において、前記アルミニウムを主成分とする膜にエネルギーを付与して、前記アルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製方法。
  12. 請求項11に記載の前記第1および第2の反応室は、独立して雰囲気制御可能で気密性を有する基板搬送室を介して連結されており、前記第1の反応室から前記第2の反応室へ前記基板を搬送する際に、前記基板は、前記基板搬送室を経由して搬送されることを特徴とする半導体装置の作製方法。
  13. 気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を用いた半導体装置の作製方法であって、
    前記第1、第2および第3の反応室は気密性を有して連結され、
    前記第1の反応室において、アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を基板上に形成し、
    前記第2の反応室において、前記膜上にアルミニウムまたはアルミニウムを主成分とする膜を形成し、
    前記第3の反応室において、前記アルミニウムまたはアルミニウムを主成分とする膜にエネルギーを付与して、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製方法。
  14. 気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を用いた半導体装置の作製方法であって、
    前記第1、第2および第3の反応室は気密性を有して連結され、
    前記第1の反応室において、アルミニウムまたはアルミニウムを主成分とする膜を形成し、
    前記第2の反応室において、前記アルミニウムまたはアルミニウムを主成分とする膜上に、前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を形成し、
    前記第3の反応室において、前記アルミニウムまたはアルミニウムを主成分とする膜にエネルギーを付与して、前記アルミニウムまたはアルミニウムを主成分とする膜の少なくとも一部に流動性を付与することを特徴とする半導体装置の作製方法。
  15. 求項11、請求項13および請求項14のいずれか一項に記載の前記エネルギーは450℃以下の温度で加熱することによって付与されることを特徴とする半導体装置の作製方法。
  16. 求項11、請求項13および請求項14のいずれか一項に記載の前記エネルギーは強光を照射することによって付与されることを特徴とする半導体装置の作製方法。
  17. 気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を用いた半導体装置の作製方法であって、
    前記第1、第2および第3の反応室は気密性を有して連結され、
    基板上に半導体層、ゲイト電極、層間絶縁膜を順に形成し、
    前記層間絶縁膜にコンタクトホールを形成し、前記基板を前記第1の反応室に搬送し、
    前記第1の反応室内において、前記コンタクトホール内および前記層間絶縁膜上にアルミニウムまたはアルミニウムを主成分とする膜を形成し、
    前記第1の反応室内の前記基板を大気に曝すことなく前記第2の反応室内に搬送し、
    前記第2の反応室内において、前記アルミニウムまたはアルミニウムを主成分とする膜上に前記アルミニウムまたはアルミニウムを主成分とするに流動性を付与する元素を含む膜を形成し、
    前記第2の反応室内の前記基板を大気に曝すことなく前記第3の反応室内に搬送し、
    前記第3の反応室内において、前記基板を加熱することにより、前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与することを特徴とする半導体装置の作製方法。
  18. 気密性を有し、独立して雰囲気制御が可能な第1、第2および第3の反応室を用いた半導体装置の作製方法であって、
    前記第1、第2および第3の反応室は気密性を有して連結され、
    基板上に半導体層、ゲイト電極、層間絶縁膜を順に形成し、
    前記層間絶縁膜にコンタクトホールを形成し、前記基板を前記第1の反応室に搬送し、
    前記第1の反応室内において、前記コンタクトホール内および前記層間絶縁膜上にアルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜を形成し、
    前記第1の反応室内の前記基板を大気に曝すことなく前記第2の反応室内に搬送し、
    前記第2の反応室内において、前記流動性を付与する元素を含む膜上にアルミニウムまたはアルミニウムを主成分とする膜を形成し、
    前記第2の反応室内の前記基板を大気に曝すことなく前記第3の反応室内に搬送し、
    前記第3の反応室内において、前記基板を加熱することにより、前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与することを特徴とする半導体装置の作製方法。
  19. 気密性を有し、独立して雰囲気制御が可能な第1および第2の反応室を用いた半導体装置の作製方法であって、
    前記第1および第2の反応室は気密性を有して連結され、
    基板上に半導体層、ゲイト電極、層間絶縁膜を順に形成し、
    前記層間絶縁膜にコンタクトホールを形成し、前記基板を前記第1の反応室に搬送し、
    前記第1の反応室内において、前記コンタクトホール内および前記層間絶縁膜上に、流動性を付与する元素を含むアルミニウムを主成分とする膜を形成し、
    前記第1の反応室内の前記基板を大気に曝すことなく前記第2の反応室内に搬送し、
    前記第2の反応室内において、前記基板を加熱することにより、前アルミニウムを主成分とする膜に流動性を付与することを特徴とする半導体装置の作製方法。
  20. 請求項19に記載の前記流動性を付与する元素の含有量は、20〜40%であることを特徴とする半導体装置の作製方法。
  21. 請求項13、請求項17および請求項18のいずれか一項に記載の前記第1、第2および第3の反応室は、独立して雰囲気制御可能で気密性を有する基板搬送室を介して連結されており、前記第1の反応室から前記第2の反応室へ前記基板を搬送する際および前記第2の反応室から第3の反応室へ前記基板を搬送する際に、前記基板は、前記基板搬送室を経由して搬送されることを特徴とする半導体装置の作製方法。
  22. 請求項11または請求項19に記載の前記流動性を付与する元素を含むアルミニウムを主成分とする膜はスパッタ法により形成されることを特徴とする半導体装置の作製方法。
  23. 請求項13、請求項14、請求項17及び請求項18のいずれか一項に記載の前記アルミニウムまたはアルミニウムを主成分とする膜はスパッタ法により形成されることを特徴とする半導体装置の作製装置。
  24. 請求項13、請求項14、請求項17及び請求項18のいずれか一項に記載の前記アルミニウムまたはアルミニウムを主成分とする膜に流動性を付与する元素を含む膜はスパッタ法により形成されることを特徴とする半導体装置の作製装置。
  25. 請求項11乃至請求項24のいずれか一項に記載の前記流動性を付与する元素は、12族〜15族に属するものから選ばれた1種または複数種の元素であることを特徴とする半導体装置の作製方法。
  26. 求項11乃至請求項24のいずれか一項に記載の前記流動性を付与する元素は、ゲルマニウム(Ge)、スズ(Sn)、ガリウム(Ga)、亜鉛(Zn)、鉛(Pb)、インジウム(In)、アンチモン(Sb)から選ばれた1種または複数種であることを特徴とする半導体装置の作製方法。
JP12037897A 1996-04-29 1997-04-23 半導体装置の作製装置および半導体装置の作製方法 Expired - Fee Related JP3804881B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12037897A JP3804881B2 (ja) 1996-04-29 1997-04-23 半導体装置の作製装置および半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-132873 1996-04-29
JP13287396 1996-04-29
JP12037897A JP3804881B2 (ja) 1996-04-29 1997-04-23 半導体装置の作製装置および半導体装置の作製方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002252642A Division JP3804945B2 (ja) 1996-04-29 2002-08-30 薄膜トランジスタの作製方法
JP2006104032A Division JP4402070B2 (ja) 1996-04-29 2006-04-05 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JPH1070089A JPH1070089A (ja) 1998-03-10
JP3804881B2 true JP3804881B2 (ja) 2006-08-02

Family

ID=26457978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12037897A Expired - Fee Related JP3804881B2 (ja) 1996-04-29 1997-04-23 半導体装置の作製装置および半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP3804881B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227323B2 (en) 2009-06-18 2012-07-24 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900992B2 (ja) * 2000-07-21 2012-03-21 株式会社東芝 スパッタリングターゲットとそれを用いたGe層、Ge化合物層、Ge合金層および光ディスク、電気・電子部品、磁気部品
WO2011105183A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor element and deposition apparatus
EP2469580A1 (en) * 2010-12-27 2012-06-27 Nexcis Improved interface between a I-III-VI2 material layer and a molybdenum substrate
CN112106186A (zh) * 2018-07-05 2020-12-18 应用材料公司 硅化物膜成核

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227323B2 (en) 2009-06-18 2012-07-24 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH1070089A (ja) 1998-03-10

Similar Documents

Publication Publication Date Title
CN100594586C (zh) 薄膜半导体装置的制造方法
JPH07106594A (ja) 半導体装置およびその作製方法
US20020197785A1 (en) Process for manufacturing a semiconductor device
JPH1032202A (ja) 電子装置およびその作製方法
US6225218B1 (en) Semiconductor device and its manufacturing method
US6156627A (en) Method of promoting crystallization of an amorphous semiconductor film using organic metal CVD
US6057234A (en) Method for fabricating semiconductor device
KR101124192B1 (ko) 반도체 장치를 제조하기 위한 방법
JP3804881B2 (ja) 半導体装置の作製装置および半導体装置の作製方法
JP7030285B2 (ja) 半導体装置、表示装置、半導体装置の製造方法及び表示装置の製造方法
JPH098313A (ja) 半導体装置の製造方法および液晶表示装置の製造方法
JP4675433B2 (ja) 半導体装置の作製方法
JP3804945B2 (ja) 薄膜トランジスタの作製方法
JP4402070B2 (ja) 半導体装置の作製方法
KR20040011385A (ko) 박막 트랜지스터의 제조방법과 평면표시장치의 제조방법및 박막 트랜지스터와 평면표시장치
JP4987198B2 (ja) 多結晶シリコン薄膜トランジスタの製造方法
JP3925085B2 (ja) 半導体装置の製造方法、光変調素子の製造方法、および表示装置の製造方法
JP4090084B2 (ja) 半導体装置の作製方法
JP4214561B2 (ja) 薄膜トランジスタの製造方法
JP4417327B2 (ja) 半導体装置の作製方法
JP4461731B2 (ja) 薄膜トランジスタの製造方法
JP3315190B2 (ja) 薄膜トランジスタの作製方法
KR100209586B1 (ko) 다결정 실리콘 박막트랜지스터의 제조방법
JP4817655B2 (ja) 半導体装置の作製方法
JPH0621465A (ja) 半導体装置とその作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees