JP3804322B2 - Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate - Google Patents

Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate Download PDF

Info

Publication number
JP3804322B2
JP3804322B2 JP01767299A JP1767299A JP3804322B2 JP 3804322 B2 JP3804322 B2 JP 3804322B2 JP 01767299 A JP01767299 A JP 01767299A JP 1767299 A JP1767299 A JP 1767299A JP 3804322 B2 JP3804322 B2 JP 3804322B2
Authority
JP
Japan
Prior art keywords
steel plate
seismic
seismic reinforcement
flanges
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01767299A
Other languages
Japanese (ja)
Other versions
JP2000213177A (en
Inventor
勝尚 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP01767299A priority Critical patent/JP3804322B2/en
Publication of JP2000213177A publication Critical patent/JP2000213177A/en
Application granted granted Critical
Publication of JP3804322B2 publication Critical patent/JP3804322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐震補強鋼板を用いた耐震補強構造及びその取付け方法に関する。
【0002】
【従来の技術】
鉄筋コンクリート構造物の耐震補強手段の一つに、例えば特開平9−158490号公報、及び特公昭57−12833号公報に示すように、既設コンクリート壁面に耐震補強鋼板を取付ける技術が開示されている。図6は、これらの公報に開示された従来の補強鋼板の取付構造を示すもので、梁1の下部において、既設壁面2の一面に亘って補強鋼板3を複数のアンカー4を介して固定している。
【0003】
また、この耐震補強鋼板3の耐震効果を上げるためには、その上下端部を後施工によりアンカー5することが必要であり、従って、通常では、補強鋼板の設置位置を梁1の幅内に設定し、梁1の下部から、下階の梁1上のスラブ6まで補強鋼板3を配置している。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の耐震補強鋼板を用いた耐震補強構造にあっては、次のような技術的課題があった。第一の課題は、補強鋼板3自体を少なくとも壁面の一辺の長さに相当する辺長を有する大きさのパネルとしていたため、小運搬、取付作業にも動力機械を要するなど作業に制約を伴うことである。
【0005】
また、第二の課題は、梁に対して壁が偏心して設けられている場合などにおいて、事情により補強鋼板を梁側面に設置しなければならない場合も生ずるが、この場合には、補強鋼板3の下端が無梁である床スラブ位置となり、施工後のアンカー支持力が不十分となり、同じく耐震性能低下の原因となるおそれがあることである。
【0006】
本発明は、以上の課題を解決するものであって、その目的は、補強鋼板及びその取付構造を十分な剛性を保てる形状とすること、及びその配置位置が梁の面外であっても支持強度が高い取付方法を提供するものである。
【0007】
【課題を解決するための手段】
以上の目的を達成するため、本発明は、既設鉄筋コンクリート構造物における上下の梁またはスラブ間に、横方向に所定間隔をおいて形鋼のごときフランジとウェブからなる複数のリブ材を縦設し、各リブ材の間に少なくとも対向する二辺にフランジを有する耐震補強鋼板を、前記対向する二辺のフランジを水平にして、多段に固定すると共に、当該耐震補強鋼板の両側部を前記リブ材に結合したことを特徴とするものである。したがって、本発明の耐震構造では、リブ材のウェブと耐震補強鋼板のフランジとが、格子状のスチフナーとして働くので、耐震補強構造の座屈を防止する。また、各部材は、作業員の持ち運びに適当なサイズおよび重量になるため、小運搬が容易である。さらに、組立にあたっては、縦設したリブ材間に耐震補強鋼板を積み上げるかたちで行うことができるほか、多段に配置される耐震補強鋼板相互間の固定を、相互のフランジ部を接合するボルトにより行うことができるため、作業は小回りとなり、耐震補強対象建物内での執務・居住の妨げを極力抑えた施工が可能である。
【0008】
この発明において、前記各耐震補強鋼板は溝鋼からなり、耐震補強鋼板同士をそのフランジ部を対向させて上下に突合わせ、フランジ間を貫通するボルトナットを用いて互いに連結した構成とすることで、耐震補強鋼板が溝形鋼であるため、フランジを溶接する加工手間を省くことができる。
【0009】
また、上記発明において、前記リブ材がT形鋼である構成とすれば、リブ材がT形鋼であるので、ウェブの一端にはフランジがなく、耐震補強鋼板の取付けの際に障害がなく、作業が容易である。
【0010】
本発明の耐震補強鋼板の取付法は上記の耐震補強鋼板を用いた耐震補強構造を構築するにあたって、耐震補強鋼板の上部を梁の下部の側面にアンカーするとともに、鋼板の下端に位置する床スラブを穿孔し、この孔に通したボルトにより、鋼板の下端と、下階の梁の上部の側面にアンカーされた補強鋼材とをボルト締めすることを特徴とするものである。この発明方法によれば、耐震補強鋼板の上端を梁の下部側面までの高さに留めることにより、耐震補強鋼板の面積を少なくすることができるので、資材が節約され、運搬、取付け作業が容易である。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施の形態につき、添付図面を参照して詳細に説明する。図1,2は本発明の第一実施形態を示す。なお、従来と同一箇所には同一符号を付し、新たに説明を加え、あるいは新規部分にのみ新たな符号を用いて説明する。
【0012】
同図において、既設コンクリート壁面2は、梁1及び柱7に対してその一面が同一面に形成されており、補強鋼板10はその面一側に多段に配置される。この補強鋼板10の取付に先立ち、壁面2には断面T字形をなすCT(カットティー)材からなるリブ材12が例えばケミカルアンカー14により横方向に所定間隔をおいて縦設状態に取付けられ、このリブ材12のフランジ12aに補強鋼板10の両側部が溶接により多段に固定される。
【0013】
各補強鋼板10は溝形鋼から構成され、その上下フランジ10a同士を突合わせた状態で縦配列され、両フランジ10a間を貫通してボルトナット16により連結することで互いに連結される。
【0014】
スラブ6上に設置された最下部の補強鋼板10のフランジ10aには長尺ボルト18が挿通され、この長尺ボルト18はスラブ6を貫通して、その下階の壁面に固定された受け部材20に連結される。この受け部材20は、前記補強鋼板10よりやや幅狭な溝形鋼からなるものであって、壁面2の最上位置に複数のケミカルアンカー14を介して固定され、その上部フランジ20aを貫通する長尺ボルト18の先端にナットを介して連結するようにしている。
【0015】
従って、各補強鋼板10の取付状態では、リブ材12のウェブ12b、及び各補強鋼板10のフランジ10aによって平板状でなく立体的形状に組上がり、これらウェブ12b及びフランジ10aにより剛性が付与されるため、挫屈強度が向上し、より大きな耐震性を得られることになる。また、最下部の補強鋼板はスラブ下に固定された受け部材20に連結しているため、補強鋼板を受ける床スラブの下に梁が位置しなくても、十分な支持力を得ることが出来る。
【0016】
図2は、本発明の第二実施形態を示す。本実施形態では、各補強鋼板10がその階の壁面2の上部から下部まで全面に亘り配置され、また当該階の最下部の補強鋼板10とその下階の最上部の補強鋼板10同士がスラブ6を貫通する長尺ボルトによって連結されているほかは第一実施形態と同一である。
【0017】
本実施形態では、その壁面2全体に補強鋼板が取付けられているため、さらに耐震性が増す。また各補強鋼板同士は各階を通じても互いに連結されているため、支持強度も高いものとなる。
【0018】
図4,5は本発明の第三実施形態を示すものである(なお、図4の上面図は補強鋼板を両側に設けた場合を示し、側面図は補強鋼板を片側のみに設けた場合を示す)。本実施形態では、既設鉄筋コンクリート壁のない部分に新たに多数の耐震補強鋼板30を用いて耐震壁を構築する場合を示している。まず、梁1に沿って横方向に所定間隔でリブ材12を縦列する。リブ材12は各階のスラブ6を縦通させて配置する。
【0019】
その後、リブ材12のフランジ12a間に補強鋼板30を配置する。補強鋼板30は前記実施形態よりも幅広であって、上下だけでなく、左右にもフランジ30を形成したものであり、左右両側に開口されたボルト孔30bを通じてボルトナット16によりリブ材12に連結する。また上下フランジ30a間は同じくボルトナット16を通じて上下の補強鋼板30同士を連結する。また、スラブ6を挟む上下階同士は長尺ボルト18により連結する。
【0020】
なお、以上の補強鋼板30は、図4の側面図で示す場合のようにリブ材12の表側のみに連結しても良いが、図4の平面図に示すように、リブ材12の裏側にも補強鋼板30を接合することでさらに耐震性が増すことになる。また、補強鋼板30の上下スラブ6との接合位置、及びリブ材12の背面と梁1の接触位置にはグラウト注入により隙間を埋め、各部一体化を図ることが出来る。
【0021】
従って、本実施形態は、既設の鉄筋コンクリート壁がない場所に新たに耐震補強壁を構築する場合に好適である。
【0022】
【発明の効果】
以上の説明により明らかなように、本発明による耐震補強鋼板を用いた耐震補強構造によれば、補強鋼板及びその取付構造を十分な剛性を保てる形状とすることが出来、より高い耐震効果を得ることが出来、しかも、耐震補強対象建物内での執務・居住の妨げを極力抑えた施工が可能である。また、本発明方法によれば、耐震補強鋼板の配置位置が梁の面外であっても支持強度を高くすることが出来る。
【図面の簡単な説明】
【図1】本発明の第一実施形態による上面図、正面図及び側面図である。
【図2】同一部を拡大して示す斜視図である。
【図3】本発明の第二実施形態による上面図、正面図及び側面図である。
【図4】本発明の第三実施形態による上面図、正面図及び側面図である。
【図5】同一部を拡大して示す斜視図である。
【図6】従来の耐震鋼板の取付構造を示す側面図である。
【符号の説明】
1 梁
2 壁面
6 スラブ
10,30 耐震補強鋼板
10a,30a フランジ
12 リブ材
12a フランジ
12b ウエッブ
20 受け部材
16 ボルトナット
18 長尺ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic reinforcing structure using a seismic reinforcing steel plate and a method for attaching the seismic reinforcing structure.
[0002]
[Prior art]
As one of the seismic reinforcement means for a reinforced concrete structure, for example, as shown in Japanese Patent Application Laid-Open No. 9-158490 and Japanese Patent Publication No. 57-12833, a technique for attaching a seismic reinforcement steel plate to an existing concrete wall surface is disclosed. FIG. 6 shows a conventional reinforcing steel plate mounting structure disclosed in these publications. In the lower part of the beam 1, the reinforcing steel plate 3 is fixed over a surface of the existing wall surface 2 via a plurality of anchors 4. ing.
[0003]
Further, in order to increase the seismic effect of the seismic strengthened steel plate 3, it is necessary to anchor the upper and lower ends thereof by post-construction. Therefore, normally, the installation position of the strengthened steel plate is within the width of the beam 1. The reinforcing steel plate 3 is arranged from the lower part of the beam 1 to the slab 6 on the beam 1 on the lower floor.
[0004]
[Problems to be solved by the invention]
However, in such a seismic reinforcement structure using the conventional seismic reinforcement steel plate, there are the following technical problems. The first problem is that the reinforcing steel plate 3 itself is a panel having a side length corresponding to at least one side length of the wall surface. That is.
[0005]
The second problem also arises when the reinforcing steel plate has to be installed on the side of the beam depending on circumstances when the wall is provided eccentric to the beam. In this case, the reinforcing steel plate 3 The lower end of the floor is a non-beam floor slab position, and the anchor supporting force after construction becomes insufficient, which may also cause a decrease in seismic performance.
[0006]
The present invention solves the above-mentioned problems, and its purpose is to provide a reinforcing steel plate and its mounting structure in a shape that can maintain sufficient rigidity, and support even when the arrangement position is out of the plane of the beam. An attachment method having high strength is provided.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is provided with a plurality of rib members made up of flanges and webs such as shaped steel at predetermined intervals in the transverse direction between upper and lower beams or slabs in an existing reinforced concrete structure. , between each rib member, the earthquake-proof reinforcement steel sheet having a flange at two sides at least facing, and to level the two sides of the flange to the opposite, is fixed to the multistage, the rib both side portions of the earthquake-proof reinforcement steel It is characterized by being bonded to the material . Therefore, in the earthquake-resistant structure of the present invention, the rib material web and the flange of the earthquake-resistant reinforcing steel plate function as a lattice stiffener, thereby preventing buckling of the earthquake-resistant reinforcing structure. Moreover, since each member becomes a size and weight suitable for carrying of an operator, small conveyance is easy. Furthermore, when assembling, seismic reinforcing steel plates can be stacked between the ribs installed vertically, and the seismic reinforcing steel plates arranged in multiple stages are fixed with bolts that join the flanges. Therefore, the work becomes a small turn, and it is possible to perform construction with as much as possible hindering work and residence in the building subject to seismic reinforcement.
[0008]
In this invention, each said earthquake-proof reinforcement steel plate consists of groove steel, and it makes it the composition which mutually connected using the bolt nut which penetrates between the flanges, making the flange parts face each other and making the flange part face each other. Since the seismic reinforced steel plate is a grooved steel, the labor of welding the flange can be saved.
[0009]
Further, in the above invention, if the rib material is a T-shaped steel, the rib material is a T-shaped steel. Therefore, there is no flange at one end of the web, and there is no obstacle when installing the seismic reinforced steel plate. Easy to work.
[0010]
Mounting how to earthquake-proof steel sheet of the present invention, when constructing a seismic reinforcement structure using the above-described seismic reinforcing steel, the upper part of the earthquake-proof reinforcement steel with anchor to the side of the lower portion of the beam, located at the lower end of the steel plate The floor slab is drilled, and the lower end of the steel plate and the reinforcing steel material anchored to the upper side surface of the beam on the lower floor are bolted by bolts passed through the hole. According to the method of the present invention, the area of the seismic reinforcing steel plate can be reduced by keeping the upper end of the seismic reinforcing steel plate at the height to the lower side surface of the beam. It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show a first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same location as the past, and it demonstrates newly, or it demonstrates using a new code | symbol only for a new part.
[0012]
In the figure, the existing concrete wall surface 2 is formed on the same surface with respect to the beam 1 and the column 7, and the reinforcing steel plates 10 are arranged in multiple stages on the same surface side. Prior to the attachment of the reinforcing steel plate 10, a rib member 12 made of a CT (cut tee) material having a T-shaped cross section is attached to the wall surface 2 in a vertically installed state at a predetermined interval in the lateral direction by, for example, a chemical anchor 14. Both sides of the reinforcing steel plate 10 are fixed to the flange 12a of the rib member 12 in multiple stages by welding.
[0013]
Each reinforcing steel plate 10 is made of channel steel, and is vertically arranged in a state where the upper and lower flanges 10 a are abutted with each other, and is connected to each other by passing through both flanges 10 a and connecting with bolts and nuts 16.
[0014]
A long bolt 18 is inserted into the flange 10a of the lowermost reinforcing steel plate 10 installed on the slab 6, and the long bolt 18 penetrates the slab 6 and is fixed to the wall surface of the lower floor. 20. The receiving member 20 is made of channel steel that is slightly narrower than the reinforcing steel plate 10, and is fixed to the uppermost position of the wall surface 2 via a plurality of chemical anchors 14 and extends through the upper flange 20a. It connects with the front-end | tip of the shank bolt 18 via a nut.
[0015]
Therefore, in the attached state of each reinforcing steel plate 10, the rib 12a web 12b and the flange 10a of each reinforcing steel plate 10 are assembled into a three-dimensional shape instead of a flat plate shape, and rigidity is imparted by the web 12b and the flange 10a. For this reason, the buckling strength is improved and greater earthquake resistance can be obtained. Further, since the lowermost reinforcing steel plate is connected to the receiving member 20 fixed under the slab, a sufficient supporting force can be obtained even if the beam is not located under the floor slab that receives the reinforcing steel plate. .
[0016]
FIG. 2 shows a second embodiment of the present invention. In this embodiment, each reinforcing steel plate 10 is arranged over the entire surface from the upper part to the lower part of the wall surface 2 of the floor, and the lowermost reinforcing steel sheet 10 on the floor and the uppermost reinforcing steel sheet 10 on the lower floor are slabs. The first embodiment is the same as the first embodiment except that it is connected by a long bolt that penetrates through 6.
[0017]
In this embodiment, since the reinforcing steel plate is attached to the entire wall surface 2, the earthquake resistance is further increased. Moreover, since each reinforcement steel plate is mutually connected also through each floor, it becomes a thing with high support strength.
[0018]
4 and 5 show a third embodiment of the present invention (note that the top view of FIG. 4 shows a case where reinforcing steel plates are provided on both sides, and a side view shows a case where reinforcing steel plates are provided only on one side. Show). In this embodiment, the case where a seismic wall is constructed | assembled using many seismic reinforcement steel plates 30 in the part without an existing reinforced concrete wall is shown. First, the rib members 12 are vertically arranged along the beam 1 at predetermined intervals in the horizontal direction. The rib member 12 is arranged by passing through the slabs 6 on each floor.
[0019]
Thereafter, the reinforcing steel plate 30 is disposed between the flanges 12 a of the rib member 12. The reinforcing steel plate 30 is wider than the above embodiment, and is formed with flanges 30 not only on the upper and lower sides but also on the left and right sides, and is connected to the rib member 12 by the bolt nuts 16 through the bolt holes 30b opened on the left and right sides. To do. The upper and lower flanges 30a are similarly connected to the upper and lower reinforcing steel plates 30 through bolts and nuts 16. Further, the upper and lower floors sandwiching the slab 6 are connected by a long bolt 18.
[0020]
The reinforcing steel plate 30 may be connected only to the front side of the rib member 12 as shown in the side view of FIG. 4, but on the back side of the rib member 12 as shown in the plan view of FIG. 4. In addition, joining the reinforced steel plate 30 further increases the earthquake resistance. In addition, gaps can be filled by grout injection at the joining position of the reinforcing steel plate 30 with the upper and lower slabs 6 and at the contact position between the back surface of the rib member 12 and the beam 1 so that the respective parts can be integrated.
[0021]
Therefore, this embodiment is suitable when a seismic reinforcement wall is newly constructed in a place where there is no existing reinforced concrete wall.
[0022]
【The invention's effect】
As is clear from the above description, according to the seismic reinforcing structure using the seismic reinforcing steel sheet according to the present invention, the reinforcing steel sheet and its mounting structure can be shaped to maintain sufficient rigidity, and a higher seismic effect is obtained. In addition, it is possible to perform construction with as much as possible prevention of work and residence in the building subject to seismic reinforcement. Further, according to the method of the present invention, the support strength can be increased even if the position of the seismic reinforcing steel plate is out of the plane of the beam.
[Brief description of the drawings]
FIG. 1 is a top view, a front view, and a side view according to a first embodiment of the present invention.
FIG. 2 is an enlarged perspective view showing the same part.
FIG. 3 is a top view, a front view, and a side view according to a second embodiment of the present invention.
FIG. 4 is a top view, a front view, and a side view according to a third embodiment of the present invention.
FIG. 5 is an enlarged perspective view showing the same part.
FIG. 6 is a side view showing a conventional mounting structure for earthquake-resistant steel plates.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Beam 2 Wall surface 6 Slab 10, 30 Seismic reinforcement steel plate 10a, 30a Flange 12 Rib material 12a Flange 12b Web 20 Receiving member 16 Bolt nut 18 Long bolt

Claims (5)

既設鉄筋コンクリート構造物における上下の梁またはスラブ間に、横方向に所定間隔をおいて形鋼のごときフランジとウェブからなる複数のリブ材を縦設し、各リブ材の間に少なくとも対向する二辺にフランジを有する耐震補強鋼板を、前記対向する二辺のフランジを水平にして、多段に固定すると共に、当該耐震補強鋼板の両側部を前記リブ材に結合したことを特徴とする耐震補強鋼板を用いた耐震補強構造。A plurality of rib members composed of flanges and webs, such as shaped steel, are vertically arranged between the upper and lower beams or slabs in the existing reinforced concrete structure at predetermined intervals in the transverse direction, and at least two opposite members are provided between the rib members. A seismic reinforcing steel plate having flanges on its sides, the two opposing flanges being horizontal and fixed in multiple stages, and both sides of the seismic reinforcing steel plate are joined to the rib material Seismic reinforcement structure using 前記各耐震補強鋼板は溝鋼からなり、耐震補強鋼板同士をそのフランジ部を対向させて上下に突合わせ、フランジ間を貫通するボルトナットを用いて互いに連結したことを特徴とする請求項1に記載の耐震補強鋼板を用いた耐震補強構造。  The seismic reinforced steel plates are made of groove steel, the seismic reinforced steel plates face each other with their flange portions facing each other, and are connected to each other using bolts and nuts penetrating between the flanges. Seismic reinforcement structure using the described earthquake-resistant steel sheet. 前記リブ材がT形鋼であることを特徴とする請求項1または2に記載の耐震補強鋼板を用いた耐震補強構造。  The seismic reinforcing structure using the seismic reinforcing steel plate according to claim 1 or 2, wherein the rib member is a T-shaped steel. 請求項1〜3の何れかに記載の耐震補強鋼板を用いた耐震補強構造を構築するにあたっての前記耐震補強鋼板の取付方法であって、
前記耐震補強鋼板の上部を梁の下部の側面にアンカーするとともに、鋼板の下端に位置する床スラブを穿孔し、この孔に通したボルトにより、鋼板の下端と、下階の梁の上部の側面にアンカーされた補強鋼材とをボルト締めすることを特徴とする耐震補強鋼板の取付方法。
A method for mounting the seismic reinforcement steel plate in constructing a seismic reinforcement structure using the seismic reinforcement steel plate according to any one of claims 1 to 3,
With anchoring to the side of lower portion of the upper beams of the earthquake-proof reinforcement steel sheet, perforated floor slab located at the lower end of the steel sheet, by bolts through these holes, and the lower end of the steel plate, the side surface of the upper part of the lower floor beam A method for attaching an earthquake-resistant reinforced steel plate, comprising bolting a reinforcing steel material anchored to a steel plate.
既設鉄筋コンクリート構造物における上下の梁またはスラブ間に、横方向に所定間隔をおいて形鋼のごときフランジとウェブからなる複数のリブ材を縦設し、各リブ材の間に、少なくとも対向する二辺にフランジを有する耐震補強鋼板を、前記対向する二辺のフランジを水平にして積み上げて多段に固定すると共に、当該耐震補強鋼板の両側部を前記リブ材に結合することを特徴とする耐震補強鋼板を用いた耐震補強方法。A plurality of rib members composed of flanges and webs, such as shaped steel, are vertically arranged between the upper and lower beams or slabs in the existing reinforced concrete structure at predetermined intervals in the transverse direction, and at least two opposite members are provided between the rib members. Seismic strengthening steel plate having flanges on its sides, the two opposing flanges are stacked horizontally and fixed in multiple stages, and both sides of the seismic strengthening steel plate are joined to the rib material Seismic reinforcement method using steel plate.
JP01767299A 1999-01-26 1999-01-26 Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate Expired - Fee Related JP3804322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01767299A JP3804322B2 (en) 1999-01-26 1999-01-26 Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01767299A JP3804322B2 (en) 1999-01-26 1999-01-26 Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate

Publications (2)

Publication Number Publication Date
JP2000213177A JP2000213177A (en) 2000-08-02
JP3804322B2 true JP3804322B2 (en) 2006-08-02

Family

ID=11950359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01767299A Expired - Fee Related JP3804322B2 (en) 1999-01-26 1999-01-26 Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate

Country Status (1)

Country Link
JP (1) JP3804322B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138410A (en) * 2006-11-30 2008-06-19 Kumagai Gumi Co Ltd Connecting structure of existing building and earthquake-resistant reinforcement
JP5113376B2 (en) * 2006-12-14 2013-01-09 大成建設株式会社 Reinforcement structure of the frame
JP5313559B2 (en) * 2008-06-19 2013-10-09 株式会社竹中工務店 Seismic wall formation method
JP5118686B2 (en) * 2009-12-14 2013-01-16 大成建設株式会社 Seismic reinforcement wall
JP5717284B2 (en) * 2011-03-17 2015-05-13 三井住友建設株式会社 Seismic reinforcement structure for existing buildings and seismic reinforcement method for existing buildings
JP5190904B1 (en) * 2012-12-19 2013-04-24 株式会社東武防災建設 Seismic reinforcement structure for wooden houses
CN116145803B (en) * 2023-03-01 2024-01-23 青岛金茂源钢结构工程有限公司 Box plate assembly type steel structure bottom reinforcement area module unit and construction method

Also Published As

Publication number Publication date
JP2000213177A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
US9518401B2 (en) Open web composite shear connector construction
KR101920417B1 (en) Seismic retrofit structure
KR101975774B1 (en) Composite Girder Structure integrated with Cover Plate, Temporary Bridge using such Structure, and Constructing Method of such Temporary Bridge
US11352786B2 (en) Constructing buildings with modular wall structure
KR101140378B1 (en) Reinforcement
JP3804322B2 (en) Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate
KR101095700B1 (en) Retaining Wall Structure and Constructing Method thereof
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
KR102398605B1 (en) Construction method of seismic retrofit system using pc panel
KR102146372B1 (en) Retaining Wall without Wale Beam, Wall Structure combined such Retaining Wall and Concrete Wall, and Constructing Method thereof
JP4733460B2 (en) Seismic reinforcement frame for existing buildings
JP3611876B2 (en) Column base and foundation beam structure
KR101037502B1 (en) Reinforcement
JP2003105861A (en) Medium-rise and high-rise building using hfc column and hfc beam or the like
US6256951B1 (en) Lateral bracing system
JP6633940B2 (en) Reinforcement structure of column and beam frame
JP3766940B2 (en) Seismic reinforcement method for existing buildings
JP4072274B2 (en) Building unit
JP3418681B2 (en) Installation method of ultra mild steel panel damper in precast RC building structure
JP3043938B2 (en) Joint structure between reinforced concrete columns and steel beams
KR102523155B1 (en) Connecting structure of middle girder and construction method thereof
KR100341443B1 (en) A temporary bridge of assembly type and assembly method therefor
JP4733496B2 (en) Seismic retrofit structure
JP2000303701A (en) Aseismatic reinforcing structure
JPH1121984A (en) Reinforced box culvert

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees