JP3803241B2 - Method of joining heat-resistant resin molded body and metal body and joined body - Google Patents

Method of joining heat-resistant resin molded body and metal body and joined body Download PDF

Info

Publication number
JP3803241B2
JP3803241B2 JP2000341521A JP2000341521A JP3803241B2 JP 3803241 B2 JP3803241 B2 JP 3803241B2 JP 2000341521 A JP2000341521 A JP 2000341521A JP 2000341521 A JP2000341521 A JP 2000341521A JP 3803241 B2 JP3803241 B2 JP 3803241B2
Authority
JP
Japan
Prior art keywords
resin
heat
temperature
molded body
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000341521A
Other languages
Japanese (ja)
Other versions
JP2002144436A (en
Inventor
浩一郎 谷口
紳月 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000341521A priority Critical patent/JP3803241B2/en
Publication of JP2002144436A publication Critical patent/JP2002144436A/en
Application granted granted Critical
Publication of JP3803241B2 publication Critical patent/JP3803241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエーテルイミド樹脂とポリアリールケトン樹脂との混合樹脂からなる耐熱性樹脂成形体と金属体とを熱融着により強固に接合させる方法およびその接合体に関する。
【0002】
【従来の技術】
ポリエーテルエーテルケトン樹脂に代表されるポリアリールケトン樹脂は、耐熱性、難燃性、耐加水分解性、耐薬品性などに優れている為、航空機部品、電気・電子部品を中心に多く採用されている。一方、ポリアリールケトン樹脂は原料価格が非常に高価な上、樹脂自体のガラス転移温度が約140〜170℃程度と比較的低いことから、耐熱性の改良検討が種々行われてきた。その中でも良好な相溶性を示す系として、ポリエーテルイミド樹脂とのブレンドが注目されてきた。このブレンド系(以下、ポリアリールケトン系樹脂組成物と略記することがある)のすぐれた特徴を活かした用途の一つに、射出成形によって成形された部品や押出成形によって成形されたフィルムの表面に、金属体をメッキあるいは接着剤により接着させ、機構部品や電気、電子部品として用いるものがある。例えば、特公平7−3446号公報には、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂および無機質充填剤からなるフィルムの表面に接着剤を塗布し、金属体の銅箔を積層接着しエッチングにより配線回路を形成するフィルムキャリアテープが開示されている。
【0003】
しかしながら、上述した樹脂成形体と金属体とを接着剤にて接着させた場合、ポリアリールケトン系樹脂組成物が耐熱性や誘電特性などの優れた特性を有しているにもかかわらず、接着剤の特性が劣るためにその接着された成形体の特性が大きく損なわれる。また、メッキをほどこすにはエッチングなどの煩雑な工程が必要になるという問題があった。
一方、ポリアリールケトン樹脂などの結晶性樹脂と金属体とを、接着やメッキによらず熱融着により接合する方法も種々検討されている。しかしながら、結晶性樹脂の場合には、融点や流動開始温度近傍あるいはそれ以上の温度まで加熱しないと接着性が得られにくく、融点や流動開始温度を超えると一転して樹脂が流れ出し易く、流動変形してしまい、成形体の形状が大幅に変形してしまったり、所望の成形品の周囲に樹脂がはみ出してしまうなどの問題点があった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、ポリエーテルイミド樹脂とポリアリールケトン樹脂との混合樹脂からなる耐熱性樹脂成形体と金属体とを、混合樹脂の大幅な流れ出しを抑制しつつ強固に接合させる方法及びその接合体を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、特定組成のポリエーテルイミド樹脂とポリアリールケトン樹脂からなる耐熱性樹脂成形体を用い、かつ、特定の温度条件範囲で金属体と熱融着させることにより、上記課題を解決することのできる耐熱性樹脂成形体と金属体との接合方法を見出し、本発明を完成するに至った。 すなわち、本発明の要旨とするところは、ポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)からなる樹脂組成物を主成分とし、その混合重量比がA/B=50〜80/50〜20である耐熱性樹脂成形体と金属体とを熱融着により接合する方法であって、熱融着温度をポリエーテルイミド樹脂(A)の流動開始温度(T)以上、ポリアリールケトン樹脂(B)の流動開始温度(T)未満の温度条件(ただし、T>T)で熱融着することを特徴とする耐熱性樹脂成形体と金属体との接合方法に存する。
また、本発明では、上記熱融着方法を用いた耐熱性樹脂成形体と金属体との接合体をも含んでいる。
【0006】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明は、ポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)からなる樹脂組成物を主成分とする混合樹脂からなる耐熱性樹脂成形体と金属体とをポリエーテルイミド樹脂(A)の流動開始温度(T)以上、ポリアリールケトン樹脂(B)の流動開始温度(T)未満の温度条件(ただし、T>T)で熱融着させる方法である。
ここで、本発明で用いられる上記樹脂組成物を主成分とする耐熱性樹脂成形体は、押出成形や射出成形などによって成形されたものであり、その結晶の状態(結晶、半結晶、非晶)は、特に制限されるものではない。特にフィルムやシート状成形体は、金属体である銅箔等の金属箔と単層あるいは多層に接合(積層)することにより耐熱性や柔軟性、寸法精度等に優れたプリント配線基板として好適に使用することができる。
【0007】
本発明を構成するポリエーテルイミド樹脂は、その構造単位に芳香核結合、エーテル結合およびイミド結合を含む熱可塑性樹脂であり、特に制限されるものではないが、本発明においては、下記構造式(1)に示す非晶性ポリエーテルイミドが好適に使用される。具体的には、ゼネラルエレクトリック社製、商品名「Ultem1000」、「Ultem CRS5001」などとして市販されている。なお、使用するポリエーテルイミド樹脂は、1種類を単独で、2種類以上を組み合わせて用いることが出来る。
【式1】

Figure 0003803241
【0008】
また、ポリアリールケトン樹脂は、その構造単位に芳香核結合、エーテル結合およびケトン結合を含む熱可塑性樹脂であり、その代表例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等があるが、本発明においては、下記構造式(2)に示すポリエーテルエーテルケトンが好適に使用される。なお、使用するポリアリールケトン樹脂は、1種類を単独で、2種類以上を組合せて用いることが出来る。
【式2】
Figure 0003803241
【0009】
本発明においては、上記混合樹脂からなる成形体と金属体とをポリエーテルイミド樹脂(A)の流動開始温度(T)以上、ポリアリールケトン樹脂(B)の流動開始温度(T)未満の温度条件(ただし、T>T)で行うことが重要である。
ここで、該熱融着温度がT未満では、金属体との接着強度が不十分となり、一方T以上では、成形体が流れ出し、流動変形してしまい、成形体の形状が大幅に変形してしまったり、所望の成形品の周囲に樹脂がはみ出してしまうなどの問題が起こり易く好ましくない。
なお、本発明において用いる流動開始温度は次の条件で測定したものである。すなわち、(株)島津製作所製の「高化式フローテスターCFT−500C型」により内径1mm、長さ2mmのノズルを用いて、昇温速度3℃/分、荷重3.92MPa(40Kgf/cm)の条件で測定し求めた。
【0010】
また、本発明においては、ポリエーテルイミド樹脂(A)の流動開始温度(T)とポリアリールケトン樹脂(B)の流動開始温度(T)の差が30℃以上、より好ましくは50℃以上であることが、温度設定の自由度や接着強度の安定性などの実用的な面から好ましい。さらに、成形体と金属体とのより強固な接着強度を必要とする場合には、該熱融着温度をT−30℃以上、T未満の範囲、特には、樹脂組成物の補外融解開始温度(Tim)以上、T未満の範囲に設定することが好ましい。ここで、補外融解開始温度(Tim)は、JIS K7121に準拠して試料量が約10mg、加熱速度が10℃/分の条件で測定して、最も高い温度に発現したピークから求めた。なお、補外融解開始温度(Tim)は、パーキンエルマー(株)社製「DSC−7」ではOnset温度として示される。
【0011】
また、本発明に適用するポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)からなる耐熱性樹脂成形体の混合重量比はA/B=50〜80/50〜20、すなわち、ポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)からなる樹脂組成物を100重量部とした場合に、ポリエーテルイミド樹脂(A)が50〜80重量部である必要がある。
ここで、ポリエーテルイミド樹脂(A)が50重量部未満では、流動開始温度が高い樹脂成分が多く、上述した温度条件での熱融着では充分な接着強度が得られにくく、一方80重量部を超えると上述した温度条件での熱融着において、混合樹脂成形体を構成する樹脂組成物が流れ出し、流動変形しやすく好ましくない。このことから、より好ましいポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)からなる耐熱性樹脂成形体の混合重量比はA/B=50〜70/50〜30である。
【0012】
特に、本発明をプリント配線基板などのエレクトロニクス用部材に適用する場合には、ポリアリールケトン樹脂(B)の示差走査熱量計により測定される結晶融解ピーク温度は260℃以上であることがはんだ耐熱性等の点から好ましい。また、銅箔などの導電箔との接着強度は、ハンドリングやエッチング適性、回路基板の信頼性などの点から、少なくとも0.6N/mm以上であることが好ましく、1.2N/mm以上であることがより好ましい。
本発明を構成する樹脂組成物には、その性質を損なわない程度に、他の樹脂や各種添加剤、例えば、充填材(無機系、有機系)、熱安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜配合してもかまわない。
【0013】
特に、本発明をプリント配線基板などのエレクトロニクス用部材に適用する場合には、充填材を混合し、寸法安定性を向上させることが好ましい。この場合、充填材の混合量は、ポリエーテルイミド樹脂とポリアリールケトン樹脂からなる樹脂組成物100重量部に対し、10〜70重量部が好ましい。ここで充填材が70重量部を超えると、混合樹脂成形体の衝撃強度などの力学特性が低下するため好ましくない。また10重量部未満では、線膨張係数を低減し寸法安定性を向上させる効果が少なかったり、弾性率の向上効果があまり期待できない。特に、本発明をフィルム形状とし、プリント配線基板などのエレクトロニクス用部材に適用する場合には、充填材の混合範囲を20〜40重量部とすれば、フィルムの可とう性、端裂強度などの機械的強度と寸法安定性とのバランスが両立しやすく好ましい。
【0014】
また、用いる充填材としては、特に制限はなく、公知のものを使用することができる。例えば、タルク、マイカ、クレー、ガラス、アルミナ、シリカ、窒化アルミニウム、窒化珪素などの無機充填材、ガラス繊維やアラミド繊維などの繊維が挙げられ、これらは1種類を単独で、2種類以上を組み合わせて用いることができる。また、用いる充填材には、チタネートなどのカップリング剤処理、脂肪酸、樹脂酸、各種界面活性剤処理などの表面処理を行ってもよい。特に、本発明をプリント配線基板に適用する場合には、平均粒径が1〜20μm程度、平均アスペクト比(粒径/厚み)が20〜50程度の無機充填材が、端裂強度などの機械的強度を低下させることなく寸法安定性を向上させる効果が高く好ましい。
【0015】
また各種添加剤の混合方法は、公知の方法を用いることができる。例えば、(a)各種添加剤をポリアリールケトン樹脂及び/またはポリエーテルイミド樹脂などの適当なベース樹脂に高濃度(代表的な含有量としては3〜60重量%)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合し、ニーダーや押出機等を用いて機械的にブレンドする方法、(b)使用する樹脂に直接各種添加剤をニーダーや押出機等を用いて機械的にブレンドする方法などが挙げられる。上記混合方法の中では、(a)のマスターバッチを作製し、混合する方法が分散性や作業性の点から好ましい。
【0016】
このようにして得られたポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)を主成分とする樹脂組成物は、押出成形機や射出成形機に投入され賦形される。特に、金属体(箔)との熱融着によってプリント配線基板を形成する目的のためには、そのハンドリング性等の点でフィルムまたはシート状成形体であることが好ましく、フィルムであることがより好ましい。ここで、フィルムまたはシート(以下、単にフィルムと略記することがある)の製膜方法としては、公知の方法、例えばTダイを用いる押出キャスト法やカレンダー法等を採用することができ、特に限定されるものではないが、フィルムの製膜性や安定生産性等の面から、Tダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、組成物の流動特性や製膜性等によって適宜調整されるが、概ね融点以上、430℃以下である。また、該フィルムの厚みは、通常10〜500μm程度である。さらに、必要に応じて二軸あるいは一軸に延伸したり、フィルムの表面にはハンドリング性の改良等のために、エンボス加工やコロナ処理等を適宜施してもよい。
【0017】
次に、本発明の耐熱性樹脂成形体と金属体との接合体の製造方法について説明する。
耐熱性樹脂成形体と金属体との熱融着による製造方法は、上述した熱融着温度範囲に設定されたプレス装置にて成形体と金属体とを加圧する方法、予め上述した熱融着温度範囲に熱せられた金属体を成形体に圧着する方法、上述した熱融着温度範囲に設定された熱ロールにてフィルムやシート形状の成形体と金属箔とを連続的に加圧する方法などが挙げられる。プレス装置でプリント配線基板を作製する場合、プレス圧力は面圧力で0.98〜9.8MPa(10〜100Kg/cm)程度の範囲で、減圧度973hPa(ヘクトパスカル)程度の減圧下で行うと、金属箔の酸化を防止でき好ましい。また、各々の成形体と金属体は、成形体と金属体の片面同士が接合(積層)されても良いし、片方または各々の両面が接合(積層)される形状であってもかまわない。
【0018】
本発明の金属体に用いられる金属としては、銅、銀、金、鉄、亜鉛、アルミニウム、マグネシウム、ニッケルなど、またはこれらの合金類が挙げられる。これらは、1種類を単独で、2種類以上を組み合わせて用いることが出来る。さらに、本発明を妨げない範囲の表面処理、例えばアミノシラン剤などによる処理が施された金属であっても良い。
金属体の形状としては、構造部材としての形状の他、電気、電子回路を形成するための細線やエッチング処理にて回路を形成するための箔状などが挙げられる。放熱を主目的とするためにはアルミニウムが好ましく、複雑で微細な回路形成のためには銅箔であることが好ましい。この場合、表面を黒色酸化処理等の化成処理を施したものが好適に使用される。金属体は、接着効果を高めるために、混合樹脂成形体との接触面(重ねる面)側を予め化学的または機械的に粗化したものを用いることが好ましい。表面粗化処理された銅箔の具体例としては、電解銅箔を製造する際に電気化学的に処理された粗化銅箔などが挙げられる。
【0019】
【実施例】
以下に本発明を実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示される種々の測定値および評価は次のようにして行った。
【0020】
(1)流動開始温度
使用する原料のペレットを乾燥後、(株)島津製作所製の「高化式フローテスターCFT−500C型」により内径1mm、長さ2mmのノズルを用いて、昇温速度3℃/分、荷重3.92MPa(40Kgf/cm)の条件で測定した。
【0021】
(2)補外融解開始温度
パーキンエルマー(株)製「DSC−7」を用いて、試料約10mgをJISK7121に準じて、加熱速度を10℃/分の条件で測定して、最も高い温度に発現したピークから求めた。なお、補外融解開始温度(Tim)は、パーキンエルマー(株)社製「DSC−7」ではOnset温度として示される。
【0022】
(3)接着強度
JIS C6481の常態の引き剥がし強さに準拠して、両面の銅箔をそれぞれ測定し、その平均値(n=10)をN/mmで表示した。また、接着強度が1.2N/mm以上のものを(◎)、0.6N/mm以上、1.2N/mm未満のものを(○)、0.6N/mm未満のものを(×)として併記した。
【0023】
(4)流れ性評価
結晶化処理したフィルムから、試験片(形状サイズ:半径50mmの円板)を切り出し、2枚重ねにセットし銅箔との熱融着温度と同じ温度条件で、30分間熱プレス(圧力:2.94MPa)した。得られた試料の最大外径の平均値(n=5)を求め、元サイズに対する増加率を流れ率(%)として算出し、流れ率が0.5%未満のものを(◎)、0.5%以上、2%未満のものを(○)、2%以上、3%未満のものを(△)、3%以上のものを(×)として表示した。
【0024】
(実施例1)
表1に示すようにポリエーテルエーテルケトン樹脂[ビクトレックス社製、PEEK381G、Tg:143℃、Tm:334℃、流動開始温度:345.3℃](以下、単にPEEKと略記することがある)40重量%と、非晶性ポリエーテルイミド樹脂[ゼネラルエレクトリック社製、Ultem1000、Tg:216℃、流動開始温度:272.7℃](以下、単にPEIと略記することがある)60重量%とからなる混合組成物を、Tダイを備えた押出機を用いて設定温度380℃で押出し、厚さ75μmのフィルムを得た。次いで熱処理することにより結晶化した該フィルムの両面に銅箔(厚さ:18μm、表面粗面化)を粗化面を接着面となるように積層し、330℃で30分間、熱プレス(圧力:2.94MPa)することにより銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。
【0025】
(実施例2)
表1に示すように、実施例1において、接着評価に使用する金属体を銅箔からアルミシート(厚さ:100μm)に変更した以外は、実施例1と同様にアルミ張積層板を得た。評価した接着強度などの評価結果を表1に示す。
【0026】
(実施例3)
表1に示すように、実施例1において、使用するPEEKとPEIの混合比をそれぞれ30重量部及び70重量部に変更した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。
【0027】
(実施例4)
表1に示すように、実施例3において、熱プレスによる熱融着温度を310℃に変更した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。
【0028】
(実施例5)
表1に示すように、実施例1において、使用するPEEKとPEIにさらに市販のマイカ(平均粒径:10μm、アスペクト比:40)30重量部を混合した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。また、該銅張積層板をプレッシャークッカー試験機を用い、121℃×100%RH×48時間の条件で吸湿処理を行ない、その後260℃のはんだ浴に20秒浸漬することにより、変形、そり、界面剥離等の発生を目視によって調べたが特に問題はなく良好な結果を示した。
【0029】
(比較例1)
表1に示すように、実施例1において、使用するPEEKとPEIの混合比をそれぞれ100重量部及び0重量部に変更した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。流れ性評価では、形状を保持し良好な結果を示したものの、銅箔との接着強度は、ほとんどなくすぐに剥離した。
【0030】
(比較例2)
表1に示すように、実施例1において、使用するPEEKとPEIの混合比をそれぞれ100重量部及び0重量部に変更し、さらに熱プレスによる熱融着温度を350℃に変更した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。銅箔との接着強度は、良好な結果を示したものの、流れ性評価では、少し樹脂のはみ出しが観察された。
【0031】
(比較例3)
表1に示すように、実施例1において、熱プレスによる熱融着温度を350℃に変更した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。銅箔との接着強度は、良好な結果を示したものの、流れ性評価では、大幅な樹脂のフローが観察された。
【0032】
(比較例4)
表1に示すように、実施例1において、使用するPEEKとPEIの混合比をそれぞれ60重量部及び40重量部に変更した以外は、実施例1と同様に銅張積層板を得た。評価した接着強度などの評価結果を表1に示す。流れ性評価では、形状を保持し良好な結果を示したものの、銅箔との接着強度は、不十分であった。
【0033】
【表1】
Figure 0003803241
【0034】
表1より、本発明で規定する組成を有し、かつ金属体との熱融着温度が規定する範囲にある実施例1乃至5の熱融着方法では、いずれも接着強度と流れ性の両方の特性に優れていることが分かる。これに対して、組成が異なる(比較例1、4)か、金属との熱融着温度が規定する範囲外(比較例2、3)にある場合は、接着強度と流れ性のどちらかの特性に劣ることが分かる。
【0035】
【発明の効果】
本発明によれば、ポリエーテルイミド樹脂とポリアリールケトン樹脂との混合樹脂からなる耐熱性樹脂成形体と金属体とを熱融着により強固に接合でき、各種用途の接合体(積層体)を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of strongly bonding a heat-resistant resin molded body made of a mixed resin of a polyetherimide resin and a polyaryl ketone resin and a metal body by thermal fusion, and the bonded body.
[0002]
[Prior art]
Polyaryl ketone resins typified by polyether ether ketone resins are excellent in heat resistance, flame retardancy, hydrolysis resistance, chemical resistance, etc., so they are often used mainly in aircraft parts and electrical / electronic parts. ing. On the other hand, since the polyaryl ketone resin is very expensive and the glass transition temperature of the resin itself is relatively low at about 140 to 170 ° C., various studies for improving heat resistance have been conducted. Among them, a blend with a polyetherimide resin has attracted attention as a system exhibiting good compatibility. One of the applications that take advantage of the excellent characteristics of this blend system (hereinafter sometimes abbreviated as polyaryl ketone resin composition) is the surface of parts molded by injection molding or film molded by extrusion molding. In addition, there is a type in which a metal body is bonded by plating or an adhesive and used as a mechanical part, an electric part or an electronic part. For example, in Japanese Examined Patent Publication No. 7-3446, an adhesive is applied to the surface of a film made of a polyetherketone resin, a polyetherimide resin and an inorganic filler, a copper foil of a metal body is laminated and bonded, and a wiring circuit is formed by etching. A film carrier tape is disclosed that forms a film.
[0003]
However, when the resin molded body and the metal body described above are bonded with an adhesive, the polyaryl ketone resin composition has excellent properties such as heat resistance and dielectric properties. Since the properties of the agent are inferior, the properties of the bonded molded body are greatly impaired. In addition, there is a problem that a complicated process such as etching is required for plating.
On the other hand, various methods for joining a crystalline resin such as a polyaryl ketone resin and a metal body by thermal fusion without bonding or plating have been studied. However, in the case of a crystalline resin, adhesion is difficult to obtain unless heated to a temperature close to or higher than the melting point or flow starting temperature, and if the melting point or flow starting temperature is exceeded, the resin will easily turn out and flow deformation occurs. As a result, the shape of the molded body is greatly deformed, and the resin protrudes around the desired molded product.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to firmly join a heat-resistant resin molded body made of a mixed resin of a polyetherimide resin and a polyarylketone resin and a metal body while suppressing a large flow of the mixed resin, and the bonding thereof. To provide a body.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the inventors of the present invention use a heat-resistant resin molded body composed of a polyetherimide resin and a polyaryl ketone resin having a specific composition, and heat-seal the metal body within a specific temperature condition range. Thus, a method for joining the heat-resistant resin molded body and the metal body capable of solving the above-mentioned problems has been found, and the present invention has been completed. That is, the gist of the present invention is that a resin composition comprising a polyetherimide resin (A) and a polyaryl ketone resin (B) is a main component, and the mixing weight ratio is A / B = 50 to 80/50. a heat-resistant resin molded article and the metal body is 20 a method of bonding by thermal fusion, the flow starting temperature of the heat fusion temperature polyetherimide resin (a) (T a) above, polyaryl ketone flow temperature of the resin (B) (T B) of less than the temperature condition (where, T B> T a) lies in the joining method of the heat-resistant resin molded article and the metal body, characterized by heat sealing at.
Moreover, in this invention, the joined body of the heat resistant resin molding and metal body which used the said heat sealing | fusion method is also included.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The present invention relates to a polyetherimide resin (A) comprising a heat-resistant resin molded body made of a mixed resin mainly composed of a resin composition comprising a polyetherimide resin (A) and a polyarylketone resin (B) and a metal body. This is a method in which heat fusion is performed under a temperature condition (however, T B > T A ) that is equal to or higher than the flow start temperature (T A ) of the polyaryl ketone resin (B) and lower than the flow start temperature (T B ) of the polyaryl ketone resin (B).
Here, the heat-resistant resin molded body mainly composed of the resin composition used in the present invention is formed by extrusion molding, injection molding or the like, and its crystal state (crystal, semi-crystal, amorphous) ) Is not particularly limited. In particular, films and sheet-like molded products are suitable as printed wiring boards with excellent heat resistance, flexibility, dimensional accuracy, etc. by joining (laminating) single-layered or multilayered metal foils such as copper foils that are metal bodies. Can be used.
[0007]
The polyetherimide resin constituting the present invention is a thermoplastic resin containing an aromatic nucleus bond, an ether bond and an imide bond in its structural unit, and is not particularly limited, but in the present invention, the following structural formula ( The amorphous polyetherimide shown in 1) is preferably used. Specifically, it is marketed as a product name "Ultem1000", "Ultem CRS5001", etc. by General Electric. In addition, the polyetherimide resin to be used can be used individually by 1 type and in combination of 2 or more types.
[Formula 1]
Figure 0003803241
[0008]
The polyaryl ketone resin is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, and representative examples thereof include polyether ketone, polyether ether ketone, polyether ketone ketone and the like. In the present invention, polyether ether ketone represented by the following structural formula (2) is preferably used. In addition, the polyaryl ketone resin to be used can be used individually by 1 type and in combination of 2 or more types.
[Formula 2]
Figure 0003803241
[0009]
In the present invention, the molded body made of the mixed resin and the metal body are equal to or higher than the flow start temperature (T A ) of the polyetherimide resin (A) and lower than the flow start temperature (T B ) of the polyaryl ketone resin (B). It is important to carry out under the following temperature conditions (where T B > T A ).
Here, it is less than the heat fusion temperature is T A, the adhesive strength between the metal body becomes insufficient, whereas T or more of B, the molded body flows out, it causes to flow variations, greatly deformed shape of the molded body Or problems such as the resin sticking out around the desired molded product are not preferred.
The flow start temperature used in the present invention is measured under the following conditions. That is, by using a nozzle with an inner diameter of 1 mm and a length of 2 mm by “Koka Kyuyo Flow Tester CFT-500C type” manufactured by Shimadzu Corporation, a heating rate of 3 ° C./min, a load of 3.92 MPa (40 Kgf / cm 2). ) Measured under the conditions of
[0010]
In the present invention, the difference between the flow temperature (T B) of the flow temperature (T A) and polyaryl ketone resins polyetherimide resin (A) (B) is 30 ° C. or higher, more preferably 50 ° C. It is preferable from the practical aspects such as the degree of freedom of temperature setting and the stability of adhesive strength. Furthermore, when a stronger adhesive strength between the molded body and the metal body is required, the heat sealing temperature is in the range of T B −30 ° C. or higher and lower than T B , in particular, extrapolation of the resin composition. melting initiation temperature (Tim) above, it is preferably set in a range of less than T B. Here, the extrapolation melting start temperature (Tim) was determined from the peak at the highest temperature, measured under the conditions of a sample amount of about 10 mg and a heating rate of 10 ° C./min according to JIS K7121. The extrapolated melting start temperature (Tim) is indicated as the Onset temperature in “DSC-7” manufactured by PerkinElmer Co., Ltd.
[0011]
Further, the mixing weight ratio of the heat-resistant resin molded body comprising the polyetherimide resin (A) and the polyarylketone resin (B) applied to the present invention is A / B = 50 to 80/50 to 20, that is, polyether. When the resin composition comprising the imide resin (A) and the polyaryl ketone resin (B) is 100 parts by weight, the polyetherimide resin (A) needs to be 50 to 80 parts by weight.
Here, if the polyetherimide resin (A) is less than 50 parts by weight, there are many resin components having a high flow start temperature, and it is difficult to obtain sufficient adhesive strength by heat fusion under the above-described temperature conditions, while 80 parts by weight. If it exceeds 1, the resin composition constituting the mixed resin molded body flows out in the heat fusion under the above-described temperature condition, and it is not preferable because it easily flows and deforms. From this, the mixing weight ratio of the heat-resistant resin molding which consists of a more preferable polyetherimide resin (A) and polyaryl ketone resin (B) is A / B = 50-70 / 50-30.
[0012]
In particular, when the present invention is applied to an electronic member such as a printed wiring board, the crystal melting peak temperature measured by a differential scanning calorimeter of the polyaryl ketone resin (B) is 260 ° C. or higher. It is preferable in terms of properties. The adhesive strength with a conductive foil such as a copper foil is preferably at least 0.6 N / mm or more and 1.2 N / mm or more from the viewpoint of handling, etching suitability, circuit board reliability, and the like. It is more preferable.
The resin composition constituting the present invention includes other resins and various additives such as fillers (inorganic and organic), heat stabilizers, ultraviolet absorbers, and light stabilizers to the extent that the properties are not impaired. Further, a nucleating agent, a coloring agent, a lubricant, a flame retardant, etc. may be appropriately blended.
[0013]
In particular, when the present invention is applied to an electronic member such as a printed wiring board, it is preferable to mix a filler to improve dimensional stability. In this case, the mixing amount of the filler is preferably 10 to 70 parts by weight with respect to 100 parts by weight of the resin composition composed of the polyetherimide resin and the polyaryl ketone resin. Here, when the filler exceeds 70 parts by weight, the mechanical properties such as the impact strength of the mixed resin molded article deteriorate, which is not preferable. If the amount is less than 10 parts by weight, the effect of reducing the linear expansion coefficient and improving the dimensional stability is small, and the effect of improving the elastic modulus cannot be expected so much. In particular, when the present invention is formed into a film shape and applied to an electronic member such as a printed wiring board, if the mixing range of the filler is 20 to 40 parts by weight, the flexibility of the film, the strength of tearing, etc. A balance between mechanical strength and dimensional stability is preferred because it is easy to achieve both.
[0014]
Moreover, there is no restriction | limiting in particular as a filler to be used, A well-known thing can be used. Examples include inorganic fillers such as talc, mica, clay, glass, alumina, silica, aluminum nitride, and silicon nitride, and fibers such as glass fiber and aramid fiber, which are used alone or in combination of two or more. Can be used. The filler used may be subjected to a surface treatment such as a coupling agent treatment such as titanate, a fatty acid, a resin acid, or various surfactant treatments. In particular, when the present invention is applied to a printed wiring board, an inorganic filler having an average particle size of about 1 to 20 μm and an average aspect ratio (particle size / thickness) of about 20 to 50 is used for a machine such as end tear strength. The effect of improving dimensional stability without lowering the mechanical strength is high and preferable.
[0015]
Moreover, a well-known method can be used for the mixing method of various additives. For example, (a) A master batch in which various additives are mixed in a suitable base resin such as polyaryl ketone resin and / or polyetherimide resin at a high concentration (typically 3 to 60% by weight) is separately prepared. A method of preparing, mixing and adjusting the concentration of the resin to be used, and mechanically blending using a kneader or an extruder, etc. (b) Kneader or extruder directly adding various additives to the resin to be used Etc., and a method of mechanically blending them. Among the above mixing methods, the method of preparing and mixing the master batch (a) is preferable from the viewpoint of dispersibility and workability.
[0016]
The resin composition mainly composed of the polyetherimide resin (A) and the polyaryl ketone resin (B) thus obtained is put into an extrusion molding machine or an injection molding machine and shaped. In particular, for the purpose of forming a printed wiring board by heat fusion with a metal body (foil), it is preferably a film or a sheet-like molded body in terms of its handleability, and more preferably a film. preferable. Here, as a method for forming a film or a sheet (hereinafter, sometimes simply abbreviated as a film), a known method such as an extrusion casting method using a T-die or a calendering method can be employed. However, the extrusion casting method using a T die is preferable from the viewpoints of film forming properties and stable productivity. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition, but is generally about the melting point or higher and 430 ° C. or lower. Moreover, the thickness of this film is about 10-500 micrometers normally. Furthermore, it may be stretched biaxially or uniaxially as necessary, and the surface of the film may be appropriately subjected to embossing, corona treatment, etc. in order to improve handling properties.
[0017]
Next, the manufacturing method of the joined body of the heat resistant resin molding of this invention and a metal body is demonstrated.
The manufacturing method by heat fusion between the heat-resistant resin molded body and the metal body includes a method of pressurizing the molded body and the metal body with a press device set in the above-described heat fusion temperature range, and the above-described heat fusion. A method of pressure-bonding a metal body heated to a temperature range to a molded body, a method of continuously pressurizing a film or sheet-shaped molded body and a metal foil with a heat roll set to the above-described heat fusion temperature range, etc. Is mentioned. When producing a printed wiring board with a press device, the pressing pressure is in the range of about 0.98 to 9.8 MPa (10 to 100 kg / cm 2 ) in terms of surface pressure, and the pressure is about 973 hPa (hectopascal). The metal foil is preferably prevented from being oxidized. Further, each of the molded body and the metal body may be joined (laminated) on one side of the molded body and the metal body, or may have a shape in which one or both sides are joined (laminated).
[0018]
Examples of the metal used in the metal body of the present invention include copper, silver, gold, iron, zinc, aluminum, magnesium, nickel, and alloys thereof. These can be used alone or in combination of two or more. Furthermore, it may be a metal that has been subjected to a surface treatment within a range that does not interfere with the present invention, for example, treatment with an aminosilane agent or the like.
Examples of the shape of the metal body include a shape as a structural member, a fine wire for forming an electric / electronic circuit, and a foil shape for forming a circuit by etching treatment. Aluminum is preferred for the main purpose of heat dissipation, and copper foil is preferred for forming complex and fine circuits. In this case, the surface of which is subjected to chemical conversion treatment such as black oxidation treatment is preferably used. In order to enhance the adhesion effect, it is preferable to use a metal body that has been chemically or mechanically roughened in advance on the contact surface (overlapping surface) side with the mixed resin molded body. Specific examples of the surface-roughened copper foil include a roughened copper foil that has been electrochemically processed when an electrolytic copper foil is produced.
[0019]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Various measured values and evaluations displayed in this specification were performed as follows.
[0020]
(1) Flow start temperature After drying raw material pellets to be used, a temperature rise rate of 3 mm by using a nozzle with an inner diameter of 1 mm and a length of 2 mm by “Koka Kowyo Flow Tester CFT-500C type” manufactured by Shimadzu Corporation. The measurement was performed under the conditions of ° C./min and a load of 3.92 MPa (40 kgf / cm 2 ).
[0021]
(2) Extrapolation melting start temperature Using “DSC-7” manufactured by PerkinElmer Co., Ltd., about 10 mg of the sample was measured according to JISK7121 at a heating rate of 10 ° C./min. It calculated | required from the peak which expressed. The extrapolated melting start temperature (Tim) is indicated as the Onset temperature in “DSC-7” manufactured by PerkinElmer Co., Ltd.
[0022]
(3) Adhesive strength Based on the normal peel strength of JIS C6481, the copper foils on both sides were measured, and the average value (n = 10) was displayed in N / mm. Also, the adhesive strength is 1.2 N / mm or more (◎), 0.6 N / mm or more, less than 1.2 N / mm (◯), and less than 0.6 N / mm (×) As well as
[0023]
(4) Evaluation of flowability A test piece (shape size: disk with a radius of 50 mm) was cut out from the crystallized film, set in two layers, and for 30 minutes under the same temperature conditions as the thermal fusion temperature with the copper foil. Hot pressing (pressure: 2.94 MPa) was performed. The average value (n = 5) of the maximum outer diameters of the obtained samples was obtained, and the rate of increase with respect to the original size was calculated as the flow rate (%). .5% or more and less than 2% are indicated as (.largecircle.), 2% or more and less than 3% are indicated as (.DELTA.), And 3% or more are indicated as (.times.).
[0024]
Example 1
As shown in Table 1, polyetheretherketone resin [manufactured by Victrex, PEEK381G, Tg: 143 ° C., Tm: 334 ° C., flow start temperature: 345.3 ° C.] (hereinafter sometimes simply referred to as PEEK) 40% by weight and amorphous polyetherimide resin (General Electric Co., Ultem 1000, Tg: 216 ° C., flow start temperature: 272.7 ° C.) (hereinafter, sometimes simply referred to as PEI) 60% by weight The mixture composition consisting of was extruded at a set temperature of 380 ° C. using an extruder equipped with a T-die to obtain a film having a thickness of 75 μm. Next, copper foil (thickness: 18 μm, surface roughening) is laminated on both surfaces of the film crystallized by heat treatment so that the roughened surface becomes an adhesive surface, and hot pressing (pressure) at 330 ° C. for 30 minutes. : 2.94 MPa) to obtain a copper-clad laminate. Table 1 shows the evaluation results such as the evaluated adhesive strength.
[0025]
(Example 2)
As shown in Table 1, in Example 1, an aluminum-clad laminate was obtained in the same manner as in Example 1 except that the metal body used for adhesion evaluation was changed from a copper foil to an aluminum sheet (thickness: 100 μm). . Table 1 shows the evaluation results such as the evaluated adhesive strength.
[0026]
Example 3
As shown in Table 1, a copper clad laminate was obtained in the same manner as in Example 1 except that the mixing ratio of PEEK and PEI used in Example 1 was changed to 30 parts by weight and 70 parts by weight, respectively. Table 1 shows the evaluation results such as the evaluated adhesive strength.
[0027]
Example 4
As shown in Table 1, in Example 3, a copper clad laminate was obtained in the same manner as in Example 1 except that the heat fusion temperature by hot pressing was changed to 310 ° C. Table 1 shows the evaluation results such as the evaluated adhesive strength.
[0028]
(Example 5)
As shown in Table 1, in Example 1, copper was used in the same manner as in Example 1 except that 30 parts by weight of commercially available mica (average particle size: 10 μm, aspect ratio: 40) was further mixed with PEEK and PEI used. A tension laminate was obtained. Table 1 shows the evaluation results such as the evaluated adhesive strength. In addition, the copper clad laminate was subjected to moisture absorption treatment under the conditions of 121 ° C. × 100% RH × 48 hours using a pressure cooker tester, and then immersed in a solder bath at 260 ° C. for 20 seconds to deform, warp, The occurrence of interfacial peeling and the like was examined visually, but there was no particular problem and a good result was shown.
[0029]
(Comparative Example 1)
As shown in Table 1, a copper clad laminate was obtained in the same manner as in Example 1 except that the mixing ratio of PEEK and PEI used was changed to 100 parts by weight and 0 parts by weight, respectively. Table 1 shows the evaluation results such as the evaluated adhesive strength. In the flowability evaluation, although the shape was maintained and good results were shown, the adhesive strength with the copper foil was hardly peeled off immediately.
[0030]
(Comparative Example 2)
As shown in Table 1, in Example 1, except that the mixing ratio of PEEK and PEI used was changed to 100 parts by weight and 0 parts by weight, respectively, and the heat fusion temperature by hot pressing was changed to 350 ° C. A copper clad laminate was obtained in the same manner as in Example 1. Table 1 shows the evaluation results such as the evaluated adhesive strength. Although the adhesive strength with the copper foil showed a good result, in the flowability evaluation, a slight protrusion of the resin was observed.
[0031]
(Comparative Example 3)
As shown in Table 1, a copper clad laminate was obtained in the same manner as in Example 1 except that the heat fusion temperature by hot pressing was changed to 350 ° C. in Example 1. Table 1 shows the evaluation results such as the evaluated adhesive strength. Although the adhesive strength with the copper foil showed a good result, a significant resin flow was observed in the flowability evaluation.
[0032]
(Comparative Example 4)
As shown in Table 1, a copper clad laminate was obtained in the same manner as in Example 1 except that the mixing ratio of PEEK and PEI used in Example 1 was changed to 60 parts by weight and 40 parts by weight, respectively. Table 1 shows the evaluation results such as the evaluated adhesive strength. In the flowability evaluation, the shape was maintained and good results were shown, but the adhesive strength with the copper foil was insufficient.
[0033]
[Table 1]
Figure 0003803241
[0034]
From Table 1, in the heat-sealing methods of Examples 1 to 5 having the composition specified in the present invention and in the range where the heat-sealing temperature with the metal body is specified, both have both adhesive strength and flowability. It can be seen that the characteristics are excellent. On the other hand, if the composition is different (Comparative Examples 1 and 4), or the heat fusion temperature with the metal is outside the specified range (Comparative Examples 2 and 3), either the adhesive strength or the flowability It turns out that it is inferior to a characteristic.
[0035]
【The invention's effect】
According to the present invention, a heat-resistant resin molded body made of a mixed resin of a polyetherimide resin and a polyarylketone resin and a metal body can be firmly bonded by thermal fusion, and bonded bodies (laminates) for various uses can be obtained. Can be provided.

Claims (6)

ポリエーテルイミド樹脂(A)とポリアリールケトン樹脂(B)からなる樹脂組成物を主成分とし、その混合重量比がA/B=50〜80/50〜20である耐熱性樹脂成形体と金属体とを熱融着により接合する方法であって、熱融着温度をポリエーテルイミド樹脂(A)の流動開始温度(T )以上、ポリアリールケトン樹脂(B)の流動開始温度(T )未満の温度条件(ただし、T >T )で熱融着することを特徴とする耐熱性樹脂成形体と金属体との接合方法。A heat-resistant resin molded body and a metal having a resin composition comprising a polyetherimide resin (A) and a polyaryl ketone resin (B) as main components and a mixing weight ratio of A / B = 50 to 80/50 to 20 a method of bonding a body by thermal fusion, the flow starting temperature of the heat fusion temperature polyetherimide resin (a) (T a) above, polyaryl ketones flow temperature of the resin (B) (T B ) A heat-resistant resin molded body and a metal body, which are heat-sealed under a temperature condition of less than (but T B > T A ). ポリエーテルイミド樹脂(A)の流動開始温度(T )とポリアリールケトン樹脂(B)の流動開始温度(T )の差が30℃以上であることを特徴とする請求項1記載の耐熱性樹脂成形体と金属体との接合方法。Heat according to claim 1, wherein the difference between the flow temperature (T B) of the flow temperature of the polyetherimide resin (A) (T A) and polyaryl ketone resin (B) is 30 ° C. or higher Method for bonding the resin molded body and the metal body. 熱融着温度を成形体の補外融解開始温度(JIS K7121)以上、ポリアリールケトン樹脂(B)の流動開始温度(T )未満の温度条件で熱融着することを特徴とする請求項1記載の耐熱性樹脂成形体と金属体との接合方法。The heat-sealing temperature is heat-sealed under a temperature condition not less than the extrapolated melting start temperature (JIS K7121) of the molded body and lower than the flow start temperature (T B ) of the polyaryl ketone resin (B). A method for joining the heat-resistant resin molded article and the metal body according to 1. 成形体がフィルムまたはシートであることを特徴とする請求項1及至3のいずれかに記載の耐熱性樹脂成形体と金属体との接合方法。The method for joining a heat-resistant resin molded body and a metal body according to any one of claims 1 to 3 , wherein the molded body is a film or a sheet. 金属体が表面粗化された銅箔であることを特徴とする請求項1及至4のいずれかに記載の耐熱性樹脂成形体と金属体との接合方法The method for joining a heat-resistant resin molded body and a metal body according to any one of claims 1 to 4, wherein the metal body is a copper foil whose surface is roughened. 金属体がアルミニウムからなることを特徴とする請求項1及至4のいずれかに記載の耐熱性樹脂成形体と金属体との接合方法The method for joining a heat-resistant resin molded body and a metal body according to any one of claims 1 to 4, wherein the metal body is made of aluminum.
JP2000341521A 2000-11-09 2000-11-09 Method of joining heat-resistant resin molded body and metal body and joined body Expired - Fee Related JP3803241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341521A JP3803241B2 (en) 2000-11-09 2000-11-09 Method of joining heat-resistant resin molded body and metal body and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341521A JP3803241B2 (en) 2000-11-09 2000-11-09 Method of joining heat-resistant resin molded body and metal body and joined body

Publications (2)

Publication Number Publication Date
JP2002144436A JP2002144436A (en) 2002-05-21
JP3803241B2 true JP3803241B2 (en) 2006-08-02

Family

ID=18816249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341521A Expired - Fee Related JP3803241B2 (en) 2000-11-09 2000-11-09 Method of joining heat-resistant resin molded body and metal body and joined body

Country Status (1)

Country Link
JP (1) JP3803241B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW575502B (en) * 2002-08-07 2004-02-11 Mitsubishi Plastics Inc Heat resistant film and its metal laminate
JP4701735B2 (en) 2004-07-09 2011-06-15 株式会社豊田自動織機 Sliding member
JP5108891B2 (en) * 2007-09-05 2012-12-26 大成プラス株式会社 Method for producing metal resin composite
JP5532203B2 (en) * 2009-06-03 2014-06-25 日産化学工業株式会社 Adhesive composition
DE102019129591A1 (en) * 2019-11-04 2021-05-06 HELLA GmbH & Co. KGaA Method for joining a thermoplastic film to a metallic component
EP4130106A4 (en) * 2020-03-24 2023-12-13 Mitsubishi Chemical Corporation Fiber-reinforced composite material and bonded body

Also Published As

Publication number Publication date
JP2002144436A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
US7033675B2 (en) Polyarlketone resin film and a laminate thereof with metal
JP5306226B2 (en) Metal laminate, LED mounting substrate, and white film
WO2000059274A1 (en) Method for manufacturing three-dimensional printed wiring board
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3803241B2 (en) Method of joining heat-resistant resin molded body and metal body and joined body
JP4234896B2 (en) HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
JP3514667B2 (en) Heat fusible insulating sheet
JP4605950B2 (en) POLYIMIDE LAMINATED FILM, METAL LAMINATE USING SAME, AND METHOD FOR PRODUCING METAL LAMINATE
JP3714876B2 (en) Heat resistant film
EP1550697B1 (en) Heat-resistant film and metal laminate thereof
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2805882B2 (en) Laminate
JP3995836B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and manufacturing method thereof
JP2002052648A (en) Method for manufacturing metal foil laminated sheet
JP3766263B2 (en) Heat resistant film and flexible printed wiring board based on the heat resistant film
KR100874080B1 (en) Heat-resistant film and metal laminate thereof
JP3990513B2 (en) Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board
JP2023008798A (en) Laminate and method for producing the same
JPS60175478A (en) Flexible printed board
JPS61110546A (en) Flexible printed substrate
JP2001036203A (en) Flexible printed wiring board and its manufacture
JPS60176290A (en) Flexible printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees