JP2000200950A - Flexible wiring board and manufacture thereof - Google Patents

Flexible wiring board and manufacture thereof

Info

Publication number
JP2000200950A
JP2000200950A JP11000538A JP53899A JP2000200950A JP 2000200950 A JP2000200950 A JP 2000200950A JP 11000538 A JP11000538 A JP 11000538A JP 53899 A JP53899 A JP 53899A JP 2000200950 A JP2000200950 A JP 2000200950A
Authority
JP
Japan
Prior art keywords
δhm
insulator
heat
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11000538A
Other languages
Japanese (ja)
Other versions
JP3514646B2 (en
Inventor
Shingetsu Yamada
紳月 山田
Jun Takagi
潤 高木
Koichiro Taniguchi
浩一郎 谷口
Shingo Kuwamura
信吾 桑村
Kaoru Nomoto
薫 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Denso Corp
Original Assignee
Mitsubishi Plastics Inc
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc, Denso Corp filed Critical Mitsubishi Plastics Inc
Priority to JP00053899A priority Critical patent/JP3514646B2/en
Publication of JP2000200950A publication Critical patent/JP2000200950A/en
Application granted granted Critical
Publication of JP3514646B2 publication Critical patent/JP3514646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints

Abstract

PROBLEM TO BE SOLVED: To provide a flexible wiring board and manufacture thereof using a thermoplastic insulation layer and having a conductor foil, such as Cu foil, surely thermally welding to a filmy insulation layer into one body and a solder heat resistance. SOLUTION: A molding material, i.e., a thermoplastic resin compsn. composed of a polyarylketone resin having a crystal melting peak temp. of 260 deg.C or higher 65-35 wt.%, and an amorphous polyetherimide resin 35-65 wt.% is formed into a filmy insulator so as to satisfy the relation (ΔHm-ΔHc)/ΔHmm<=0.5 between the glass transition temp. of 150-230 deg.C measured by the differential scan calorimetry at the temp. rise, the crystal melting heat quantity ΔHm and the crystallizing heat quantity ΔHc generated by the crystallization during temp. rise, and the conductor foil is thermally welded to one or each side of the filmy insulator in the heating and pressing conditions, so as to satisfy the relation (ΔHm-ΔHc)/ΔHmm>=0.7 and then is etched to form a conductive circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、フレキシブルプ
リント配線基板に関し、より詳しくは絶縁層を熱可塑性
樹脂で形成したフレキシブルプリント配線基板およびそ
の製造方法に関する。
The present invention relates to a flexible printed circuit board, and more particularly to a flexible printed circuit board having an insulating layer formed of a thermoplastic resin and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年の電子機器の小型・軽量化の要求に
応えるため、ガラスクロスにエポキシ樹脂を含浸したプ
リプレグを用いたリジッド基板に比べ、軽量で占有容積
が小さく、自由な立体配線と配線の単純化が可能なフレ
キシブルプリント配線基板(以下、FPC基板と略記す
る。)が多用されはじめている。
2. Description of the Related Art In order to meet the recent demand for smaller and lighter electronic devices, compared to rigid boards using prepregs in which glass cloth is impregnated with epoxy resin, they are lighter, occupy less space, and have free three-dimensional wiring and wiring. Flexible printed circuit boards (hereinafter, abbreviated as FPC boards) that can simplify the above have been widely used.

【0003】このFPC基板の絶縁材料としては、ポリ
エステル樹脂やポリイミド樹脂が一般的であるが、ポリ
エステル樹脂は、ハンダ耐熱性(約260℃)に乏し
く、これを用いたFPC基板の用途は狭い分野に限定さ
れている。
As an insulating material of the FPC board, a polyester resin or a polyimide resin is generally used. However, the polyester resin has poor solder heat resistance (about 260 ° C.), and the use of the FPC board using the same is narrow. Is limited to

【0004】ポリイミド樹脂を用いたFPC基板は、ポ
リイミドフィルムをエポキシ樹脂などの接着剤を用いて
銅箔と接着した3層タイプと、接着剤を用いない2層タ
イプとに大別される。これら3層タイプおよび2層タイ
プに共通の問題点としては、ポリイミドの材料特性によ
って耐薬品性が劣る(強塩基に弱い)点や、吸水率が高
くて寸法安定性に難点があることが挙げられる。また、
3層タイプの問題点としては、耐熱性や耐薬品性および
電気特性などの諸特性が接着剤の特性によって左右され
るので、ポリイミド樹脂本来の優れた諸特性が充分に生
かされないという問題がある。
[0004] FPC boards using a polyimide resin are roughly classified into a three-layer type in which a polyimide film is bonded to a copper foil using an adhesive such as an epoxy resin, and a two-layer type in which no adhesive is used. Problems common to the three-layer type and the two-layer type include poor chemical resistance (weak against a strong base) due to the material properties of polyimide, and a problem in dimensional stability due to high water absorption. Can be Also,
As a problem of the three-layer type, since various properties such as heat resistance, chemical resistance and electric properties are influenced by the properties of the adhesive, there is a problem that the excellent properties inherent in the polyimide resin cannot be fully utilized. .

【0005】2層タイプの製造方法の一つとしては、特
許第2724026号公報に、金属箔上にポリイミド溶
液またはポリイミドの前駆体であるポリアミド酸溶液を
直接に流延塗布することにより、FPC基板の絶縁層の
全てをポリイミドで形成することが記載されている。ま
た、上記公報にはポリイミドフィルムの片面または両面
に接着性を有するポリイミド層を形成し、これと金属箔
を重ね合わせ、加熱圧着により絶縁層が全てポリイミド
からなるFPC基板を製造する方法が記載されている。
[0005] One of the two-layer type manufacturing methods is disclosed in Japanese Patent No. 2724026, in which a polyimide solution or a polyamic acid solution which is a precursor of polyimide is directly cast onto a metal foil to form an FPC substrate. It is described that all the insulating layers are made of polyimide. Further, the above publication describes a method of forming an polyimide layer having adhesiveness on one or both sides of a polyimide film, laminating a metal foil on the polyimide layer, and heating and pressing to produce an FPC board in which the insulating layer is entirely made of polyimide. ing.

【0006】また、2層タイプの製造方法のもう一つの
方法としては、熱可塑性のポリイミドフィルムを300
℃程度の温度で銅箔とプレスする方法が知られている。
この2層タイプFPC基板の問題点としては、エッチン
グ工程で銅箔に打痕が入りやすいといった品質上の問題
や、銅張板製造の手間からくるコスト高の問題があり、
3層タイプに比較すると、基板としての特性は良いもの
のあまり普及していないのが現状である。
[0006] As another method of the two-layer type manufacturing method, a thermoplastic polyimide film having a thickness of 300 mm is used.
A method of pressing a copper foil at a temperature of about ° C is known.
Problems of this two-layer type FPC board include a quality problem that a dent is easily formed in a copper foil in an etching process, and a problem of high cost due to a trouble of manufacturing a copper clad board.
Compared with the three-layer type, at present, it has good characteristics as a substrate but is not widely used.

【0007】[0007]

【発明が解決しようとする課題】そこで、この発明の課
題は上記した従来のポリイミド基板材料の問題点を解決
し、ハンダ耐熱性を有する熱可塑性の絶縁層を用いたフ
レキシブルプリント配線基板(FPC基板)について、
銅箔などの導体箔に対して比較的低温での熱融着により
確実に接着一体化されたFPC基板を提供することであ
る。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional polyimide substrate material and to provide a flexible printed wiring board (FPC board) using a thermoplastic insulating layer having solder heat resistance. )about,
An object of the present invention is to provide an FPC board which is securely bonded and integrated to a conductor foil such as a copper foil by heat fusion at a relatively low temperature.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、結晶融解ピーク温度260℃
以上のポリアリールケトン樹脂65〜35重量%と、非
晶性ポリエーテルイミド樹脂35〜65重量%とからな
り、示差走査熱量測定で昇温した時に測定されるガラス
転移温度が150〜230℃、結晶融解熱量ΔHmと昇
温中の結晶化により発生する結晶化熱量ΔHcとの関係
が下記の式(I) で示される関係を満たす熱可塑性樹脂組
成物からなるフィルム状絶縁体を設け、このフィルム状
絶縁体の片面または両面に重ねて導体箔を熱融着し、前
記導体箔に導電性回路を形成してなるフレキシブルプリ
ント配線基板としたのである。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5
In order to solve the above-mentioned problems, according to the present invention, a crystal melting peak temperature of 260 ° C.
It is composed of 65 to 35% by weight of the above-mentioned polyarylketone resin and 35 to 65% by weight of the amorphous polyetherimide resin, and has a glass transition temperature of 150 to 230 ° C measured when the temperature is raised by differential scanning calorimetry. A film-like insulator made of a thermoplastic resin composition is provided in which the relationship between the heat of crystal melting ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature increase satisfies the relationship represented by the following formula (I). The conductor foil is heat-sealed on one or both sides of the insulator, thereby forming a flexible printed circuit board having a conductive circuit formed on the conductor foil. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5
.

【0009】また、本願の製造方法に係る発明において
は、上記課題を解決するために、結晶融解ピーク温度2
60℃以上のポリアリールケトン樹脂65〜35重量%
と、非晶性ポリエーテルイミド樹脂35〜65重量%と
からなる熱可塑性樹脂組成物を成形材料として、示差走
査熱量測定で昇温した時に測定されるガラス転移温度が
150〜230℃、結晶融解熱量ΔHmと昇温中の結晶
化により発生する結晶化熱量ΔHcとの関係が下記の式
(I) で示される関係を満たすようにフィルム状絶縁体を
成形加工し、このフィルム状絶縁体の片面または両面に
導体箔を重ねて前記熱可塑性樹脂組成物が下記の式(II)
で示される関係を満たすように熱融着した後、前記導体
箔をエッチングして導電性回路を形成することからなる
方法を採用したのである。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 。
Further, in the invention according to the manufacturing method of the present application, in order to solve the above-mentioned problems, the crystal melting peak temperature 2
65-35% by weight of polyarylketone resin at 60 ° C or higher
A thermoplastic resin composition comprising 35 to 65% by weight of an amorphous polyetherimide resin as a molding material, a glass transition temperature measured by differential scanning calorimetry of 150 to 230 ° C., and crystal melting. The relationship between the amount of heat ΔHm and the amount of heat of crystallization ΔHc generated by crystallization during heating is expressed by the following equation:
(I) molding and processing a film-like insulator so as to satisfy the relationship represented by, the thermoplastic resin composition by laminating a conductor foil on one or both surfaces of the film-like insulator, the following formula (II)
Then, a method is adopted in which the conductive foil is etched to form a conductive circuit after heat-sealing so as to satisfy the relationship shown in FIG. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7.

【0010】上記したように構成されるこの発明のフレ
キシブルプリント配線基板は、結晶性のポリアリールケ
トン樹脂と非晶性のポリエーテルイミド樹脂を所定量配
合した絶縁層を有するものであり、この絶縁層は両樹脂
の優れた諸特性により、熱融着性やハンダ耐熱性を有
し、FPC基板に通常要求される可撓性、機械的強度お
よび電気的絶縁性を有する。
The flexible printed wiring board of the present invention having the above-described structure has an insulating layer in which a predetermined amount of a crystalline polyarylketone resin and an amorphous polyetherimide resin are mixed. The layer has heat-fusing properties and solder heat resistance due to the excellent properties of both resins, and has the flexibility, mechanical strength, and electrical insulation normally required for FPC boards.

【0011】このような熱可塑性樹脂組成物からなるフ
ィルム状絶縁体は、ガラス転移温度が150〜230℃
のものであり、かつ結晶融解熱量ΔHmと昇温中の結晶
化により発生する結晶化熱量ΔHcとの関係が前記式
(I) で示される関係を満たすものであるから、加熱によ
る結晶化の進行状態が適当範囲に調整されたものであ
り、例えば250℃未満という比較的低温で熱融着性を
発揮させることができる。
The film-like insulator made of such a thermoplastic resin composition has a glass transition temperature of 150 to 230 ° C.
And the relationship between the heat of crystal melting ΔHm and the heat of crystallization ΔHc generated by crystallization during heating is expressed by the above equation.
Since the relationship represented by (I) is satisfied, the state of progress of crystallization by heating is adjusted to an appropriate range, and for example, it is possible to exhibit heat fusion at a relatively low temperature of less than 250 ° C. it can.

【0012】この発明のFPC基板の製造方法では、上
記熱可塑性樹脂組成物からなるフィルム状絶縁体の片面
または両面に導体箔を重ね、熱可塑性樹脂組成物が前記
式(II)で示される関係を満たすように加熱・加圧条件で
熱融着する。
In the method of manufacturing an FPC board according to the present invention, a conductor foil is laminated on one or both sides of a film-like insulator made of the above-mentioned thermoplastic resin composition, and the thermoplastic resin composition has a relationship represented by the above formula (II). Is heat-fused under heat and pressure conditions to satisfy

【0013】熱融着後の熱可塑性樹脂組成物は、ポリア
リールケトン樹脂の結晶性が適当に進行しているので、
260℃に耐えるハンダ耐熱性を確実に有する絶縁層に
なり、かつ導体箔との接着強度も大きく、その後に導体
箔をエッチングして形成された導電性回路は絶縁層に強
固に接着して剥離し難い。導体箔として、表面が粗化さ
れている導体箔を使用すると、接着強度はより大きくな
る。
In the thermoplastic resin composition after heat fusion, the crystallinity of the polyarylketone resin is appropriately advanced.
It becomes an insulating layer that has solder heat resistance that can withstand 260 ° C, and has a large adhesive strength with the conductive foil. Then, the conductive circuit formed by etching the conductive foil is strongly adhered to the insulating layer and peeled off Difficult to do. When a conductor foil whose surface is roughened is used as the conductor foil, the adhesive strength is further increased.

【0014】また、フィルム状絶縁体と導体箔の接着
は、層間にエポキシ樹脂などの接着剤を介在させないで
熱融着するので、FPC基板の耐熱性、耐薬品性、電気
特性などの諸特性は接着剤の特性に支配されることがな
く、絶縁層の優れた諸特性が充分に活かされる。また、
FPC基板の製造工程中に接着剤の塗布等の工程がない
ので、製造効率の良いFPC基板の製造方法となる。
Further, since the film-like insulator and the conductor foil are bonded by heat without interposing an adhesive such as epoxy resin between the layers, various characteristics such as heat resistance, chemical resistance and electric characteristics of the FPC board are obtained. Is not influenced by the properties of the adhesive, and the excellent properties of the insulating layer are fully utilized. Also,
Since there is no step of applying an adhesive or the like in the manufacturing process of the FPC board, the manufacturing method of the FPC board has high manufacturing efficiency.

【0015】[0015]

【発明の実施の形態】この発明のフレキシブルプリント
配線基板の構造およびその製造方法の実施形態を、以下
に添付図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the structure of a flexible printed wiring board of the present invention and a method of manufacturing the same will be described below with reference to the accompanying drawings.

【0016】図1の(e)に示すように、この発明に係
るフレキシブルプリント配線基板は、所定の熱可塑性樹
脂組成物からなるフィルム状絶縁体1の両面に重ねて銅
箔2を後述の物性を満足するように熱融着し、この銅箔
2をエッチングして導電性回路を形成したものである。
As shown in FIG. 1 (e), the flexible printed circuit board according to the present invention has a copper foil 2 on both sides of a film-like insulator 1 made of a predetermined thermoplastic resin composition. And a conductive circuit is formed by etching the copper foil 2.

【0017】このようなフレキシブルプリント配線基板
を製造するには、まず図1(a)に示すように、ポリア
リールケトン樹脂と非晶性ポリエーテルイミド樹脂とを
配合して前記式(I) で示される所定の結晶性の熱可塑性
のフィルム状絶縁体1を調製する。そして、図1(b)
に示すように、両面に銅箔2を重ねて真空熱プレス機を
用いて熱プレスを行ない両面銅張積層板5を作製する。
この両面銅張板の要所にスルーホール形成用の孔3をレ
ーザーまたはドリルで形成し(図1(c))、これに銅
めっき4を施し(図1(d))、スルーホールめっきに
よる層間接続の手段とする。次いで、サブトラクティブ
法によって導電性回路を形成する(図1(e))。
In order to manufacture such a flexible printed wiring board, first, as shown in FIG. 1A, a polyarylketone resin and an amorphous polyetherimide resin are blended and the compound represented by the formula (I) is used. A given crystalline thermoplastic film insulator 1 as shown is prepared. Then, FIG.
As shown in (1), copper foils 2 are stacked on both sides and hot-pressed using a vacuum hot press machine to produce a double-sided copper-clad laminate 5.
Holes 3 for forming through-holes are formed at important points on the double-sided copper-clad plate by laser or drill (FIG. 1 (c)), and copper plating 4 is applied thereto (FIG. 1 (d)). Means for interlayer connection. Next, a conductive circuit is formed by a subtractive method (FIG. 1E).

【0018】また、層間接続に導電性ペーストを使用す
る場合には、図2(b)に示すように、フィルム状絶縁
体1の要所にホール形成用の孔3をレーザーまたはドリ
ルで形成し、これに導電性ペースト6を充填し(図2
(c))、乾燥させた後、両面に銅箔2を重ねて真空熱
プレス機を用いて熱プレスを行ない、両面銅張積層板7
を作製する(図2(d))。次いで、サブトラクティブ
法によって導電性回路を形成する(図2(e))。
When a conductive paste is used for interlayer connection, as shown in FIG. 2B, holes 3 for forming holes are formed in key portions of the film-like insulator 1 by laser or drill. Is filled with a conductive paste 6 (FIG. 2).
(C)) After drying, the copper foils 2 are overlaid on both sides and hot-pressed using a vacuum hot press machine to obtain a double-sided copper-clad laminate 7.
(FIG. 2D). Next, a conductive circuit is formed by a subtractive method (FIG. 2E).

【0019】フィルム状絶縁体を構成する第1の成分で
あるポリアリールケトン樹脂は、その構造単位に芳香核
結合、エーテル結合およびケトン結合を含む熱可塑性樹
脂であり、すなわち、フェニルケトンとフェニルエーテ
ルの組み合わせ構造からなる耐熱性の結晶性高分子であ
る。
The polyarylketone resin, which is the first component of the film-like insulator, is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, that is, phenylketone and phenylether. Is a heat-resistant crystalline polymer having a combination structure of

【0020】ポリアリールケトン樹脂の代表例として
は、ポリエーテルケトン、ポリエーテルエーテルケト
ン、ポリエーテルケトンケトンなどがあるが、この発明
においては、下記の化1の式に示されるポリエーテルエ
ーテルケトンを好適なものとして使用できる。
Representative examples of the polyarylketone resin include polyetherketone, polyetheretherketone, and polyetherketoneketone. In the present invention, polyetherketone represented by the following formula 1 is used. It can be used as suitable.

【0021】[0021]

【化1】 Embedded image

【0022】フィルム状絶縁体を構成する第2の成分で
ある非晶性ポリエーテルイミド樹脂は、その構造単位に
芳香核結合、エーテル結合およびイミド結合を含む非晶
性熱可塑性樹脂であり、この発明においては、下記の化
2の式に示されるポリエーテルイミド樹脂を適用でき
る。
The amorphous polyetherimide resin as the second component constituting the film-like insulator is an amorphous thermoplastic resin having an aromatic nucleus bond, an ether bond and an imide bond in its structural unit. In the present invention, a polyetherimide resin represented by the following formula 2 can be applied.

【0023】[0023]

【化2】 Embedded image

【0024】そして、この発明に用いるフィルム状絶縁
体は、上記した2種類の耐熱性樹脂を所定の割合でブレ
ンドした組成物からなり、すなわち、結晶融解ピーク温
度260℃以上のポリアリールケトン樹脂65〜35重
量%と非晶性ポリエーテルイミド樹脂35〜65重量%
とからなり、示差走査熱量測定で昇温した時に測定され
るガラス転移温度が150〜230℃の熱可塑性樹脂組
成物からなるものである。
The film-like insulator used in the present invention is composed of a composition obtained by blending the above two kinds of heat-resistant resins at a predetermined ratio, that is, a polyarylketone resin 65 having a crystal melting peak temperature of 260 ° C. or higher. 35 to 65% by weight and amorphous polyetherimide resin 35 to 65% by weight
And a glass transition temperature of 150 to 230 ° C. measured when the temperature is raised by differential scanning calorimetry.

【0025】上記の配合割合を限定する理由は、ポリア
リールケトン樹脂が65重量%を越えて多量に配合され
たり、ポリエーテルイミド樹脂の配合割合が35重量%
未満の少量の配合割合では、組成物の結晶化速度が速く
なり、導体箔と熱融着性が低下するからである。また、
結晶性ポリアリルエーテルケトン樹脂が35重量%未満
であったり、非晶性ポリエーテルイミド樹脂が65重量
%を超えると、組成物の結晶化度が低くなり、たとえ結
晶融解ピーク温度が260℃以上であってもハンダ耐熱
性が低下するので、好ましくないからである。
The reason for limiting the above mixing ratio is that the polyaryl ketone resin is mixed in a large amount exceeding 65% by weight, or the mixing ratio of the polyetherimide resin is 35% by weight.
If the mixing ratio is small, the crystallization rate of the composition is increased, and the heat-fusibility with the conductive foil is reduced. Also,
When the content of the crystalline polyallyl ether ketone resin is less than 35% by weight or the content of the amorphous polyetherimide resin exceeds 65% by weight, the crystallinity of the composition becomes low, and the crystal melting peak temperature becomes 260 ° C. or more. This is not preferable because the solder heat resistance is reduced.

【0026】本願の発明における重要な制御因子である
フィルム状絶縁体の熱特性は、結晶融解熱量ΔHmと昇
温中の結晶化により発生する結晶化熱量ΔHcとの関係
が下記の式(I) で示される関係を満たすことである。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 この熱特性は、JIS K 7121、JIS K71
22に準じた示差走査熱量測定で昇温したときのDSC
曲線に現れる2つの転移熱の測定値、結晶融解熱量ΔH
m(J/g)と結晶化熱量ΔHc(J/g)の値から上
記式によって算出される。
The thermal characteristics of the film-like insulator, which is an important control factor in the invention of the present application, are expressed by the following formula (I), wherein the relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during heating is as follows. That is, the relationship represented by is satisfied. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 The thermal characteristics are defined by JIS K7121 and JIS K71.
DSC when the temperature is raised by differential scanning calorimetry according to No. 22
Measured values of two transition heats appearing in the curve, heat of crystal fusion ΔH
It is calculated from the value of m (J / g) and the value of the heat of crystallization ΔHc (J / g) by the above equation.

【0027】上記式(I)の値は、原料ポリマーの種類や
分子量、組成物の配合比率にも依存しているが、フィル
ム状絶縁体の成形・加工条件の大きく影響する。すなわ
ち、フィルム状に製膜する際に、原料ポリマーを溶融さ
せた後、速やかに冷却することにより、前記式の値を小
さくすることができる。また、これらの数値は、各工程
でかかる熱履歴を調整することにより、制御することが
できる。ここでいう熱履歴とは、フィルム状絶縁体の温
度と、その温度になっていた時間を指し、温度が高いほ
ど、この数値は大きくなる傾向がある。
The value of the above formula (I) also depends on the type and molecular weight of the raw material polymer and the compounding ratio of the composition, but greatly affects the conditions for forming and processing the film-shaped insulator. That is, when the film is formed into a film, the raw material polymer is melted and then cooled immediately, whereby the value of the above formula can be reduced. Further, these numerical values can be controlled by adjusting the heat history in each step. The heat history here refers to the temperature of the film-shaped insulator and the time during which the temperature has been reached, and the higher the temperature, the larger the numerical value tends to be.

【0028】前記式(I) で示される関係は、FPC基板
を製造する過程において、フィルム状絶縁体の少なくと
も一面に導体箔を熱融着したFPC用素板について、熱
融着工程前の測定に基づくものである。
The relationship represented by the above-mentioned formula (I) is obtained by measuring the FPC plate obtained by heat-sealing a conductor foil on at least one surface of a film-like insulator in the process of manufacturing the FPC board before the heat-sealing step. It is based on.

【0029】前記式(I) で示される値が、熱融着前に
0.5を越えると、すでに結晶性が高い状態であるか
ら、250℃以下の低温での熱融着が難しくなる。この
場合、導体箔との熱融着を高温で行なう必要があり製造
効率の面からも好ましくない。
If the value represented by the above formula (I) exceeds 0.5 before thermal fusion, it becomes difficult to perform thermal fusion at a low temperature of 250 ° C. or lower because the crystallinity is already high. In this case, it is necessary to perform heat fusion with the conductor foil at a high temperature, which is not preferable in terms of manufacturing efficiency.

【0030】そして、導体箔との熱融着後のフィルム状
絶縁体の熱特性は、下記式(II)の関係を満たす必要があ
る。 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 なぜなら、上記式(II)の値が、0.7未満の低い値で
は、絶縁層の結晶化が不充分であり、ハンダ耐熱性(通
常260℃)を保てないからである。
The thermal properties of the film-like insulator after the heat-sealing with the conductive foil must satisfy the relationship of the following formula (II). Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Because when the value of the above formula (II) is lower than 0.7, the crystallization of the insulating layer is insufficient, and This is because heat resistance (usually 260 ° C.) cannot be maintained.

【0031】この発明に用いるフィルム状絶縁体は、通
常25〜300μmの膜厚のものであり、その製造方法
は、例えばTダイを用いた押出キャスト法やカレンダー
法などの周知の製膜方法を採用すればよく、特に限定さ
れた製造方法を採る必要はない。なお、製膜性や安定生
産性の面からTダイを用いた押出キャスト法を採用する
ことが好ましい。押出キャスト法の成形温度は、組成物
の流動特性や製膜特性によって適宜に調節するが、概ね
組成物の融点以上、430℃以下である。
The film-like insulator used in the present invention generally has a thickness of 25 to 300 μm, and its production method is, for example, a known film-forming method such as an extrusion casting method using a T-die or a calendering method. What is necessary is just to employ | adopt and it is not necessary to employ | adopt a manufacturing method especially limited. In addition, it is preferable to employ the extrusion casting method using a T-die from the viewpoint of film forming property and stable productivity. The molding temperature of the extrusion casting method is appropriately adjusted depending on the flow characteristics and film forming characteristics of the composition, but is generally from the melting point of the composition to 430 ° C. or less.

【0032】この発明に用いるフィルム状絶縁体を構成
する樹脂組成物には、この発明の効果を阻害しない程度
に、他の樹脂やその他の添加剤を配合してもよく、その
具体例としては、熱安定剤、紫外線吸収剤、光安定剤、
着色剤、滑剤、難燃剤、無機フィラーなどが挙げられ
る。また、フィルム状絶縁体の表面に、ハンドリング性
を改良する等のためにエンボス化工やコロナ処理などを
施してもよい。
The resin composition constituting the film-like insulator used in the present invention may contain other resins and other additives to such an extent that the effects of the present invention are not impaired. , Heat stabilizer, UV absorber, light stabilizer,
Examples include a coloring agent, a lubricant, a flame retardant, and an inorganic filler. Further, the surface of the film-shaped insulator may be subjected to embossing, corona treatment, or the like in order to improve handling properties.

【0033】この発明に用いる導体箔としては、例えば
銅、金、銀、アルミニウム、ニッケル、錫などのように
厚さ8〜70μm程度の金属箔が挙げられる。このう
ち、適用される金属箔としては、その表面を黒色酸化処
理などの化成処理した銅箔が特に好ましい。導体箔は、
接着効果を高めるために、フィルム状絶縁体との接触面
(重ねる面)側を予め化学的または機械的に粗化したも
のを用いることが好ましい。表面粗化処理された導体箔
の具体例としては、電解銅箔を製造する際に電気化学的
に処理された粗化銅箔などが挙げられる。
Examples of the conductor foil used in the present invention include metal foils having a thickness of about 8 to 70 μm, such as copper, gold, silver, aluminum, nickel, and tin. Among them, the metal foil to be applied is particularly preferably a copper foil whose surface has been subjected to a chemical conversion treatment such as a black oxidation treatment. The conductor foil is
In order to enhance the bonding effect, it is preferable to use a material whose contact surface (overlapping surface) with the film-shaped insulator is chemically or mechanically roughened in advance. Specific examples of the conductor foil subjected to the surface roughening treatment include a roughened copper foil that has been electrochemically treated when producing an electrolytic copper foil.

【0034】導体箔をフィルム状絶縁体の片面または両
面に重ねて加熱・加圧条件で熱融着する際には、例えば
熱プレス法もしくは熱ラミネートロール法またはこれら
を組み合わせた方法、その他の周知の加熱圧着方法を採
用することができる。
When the conductor foil is superimposed on one or both surfaces of the film-shaped insulator and heat-sealed under heating and pressing conditions, for example, a hot pressing method or a heat laminating roll method, a method combining these, or other well-known methods Can be adopted.

【0035】[0035]

【実施例および比較例】まず、この発明のフィルム状絶
縁体の条件を満足するフィルム状絶縁体の製造例1〜3
およびこれに対比する参考例1、2の製造方法およびこ
れらの物性について以下に説明する。
EXAMPLES AND COMPARATIVE EXAMPLES First, Production Examples 1 to 3 of a film insulator satisfying the conditions of the film insulator of the present invention.
The production methods of Reference Examples 1 and 2 and the physical properties thereof will be described below.

【0036】〔フィルム状絶縁体の製造例1〕ポリエー
テルエーテルケトン樹脂(ビクトレックス社製:PEE
K381G)(以下の文中または表1、2において、P
EEKと略記する。)60重量%と、ポリエーテルイミ
ド樹脂(ゼネラルエレクトリック社製:Ultem−1
000)(以下の文中または表1、2において、PEI
と略記する。)40重量%をドライブレンドした。この
混合組成物を押出成形し、厚さ25μmのフィルム状絶
縁体を製造した。
[Production Example 1 of Film Insulator] Polyetheretherketone resin (Victrex: PEE)
K381G) (in the following text or in Tables 1 and 2, P
Abbreviated as EEK. ) 60% by weight and a polyetherimide resin (manufactured by General Electric Company: Ultem-1)
000) (PEI in the following text or in Tables 1 and 2)
Abbreviated. ) 40% by weight was dry blended. This mixed composition was extruded to produce a film insulator having a thickness of 25 μm.

【0037】〔フィルム状絶縁体の製造例2〕製造例1
において、混合組成物の配合割合をPEEK40重量
%、PEI60重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 2 of Film Insulator] Production Example 1
, A film-like insulator was produced in the same manner except that the mixing ratio of the mixed composition was 40% by weight of PEEK and 60% by weight of PEI.

【0038】〔フィルム状絶縁体の製造例3〕製造例1
において、混合組成物の配合割合をPEEK30重量
%、PEI70重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 3 of Film Insulator] Production Example 1
, A film-like insulator was produced in the same manner except that the mixing ratio of the mixed composition was 30% by weight of PEEK and 70% by weight of PEI.

【0039】〔フィルム状絶縁体の参考例1、2〕製造
例1において、混合組成物の配合割合をPEEK100
重量%(参考例1)、またはPEI100重量%(参考
例2)としたこと以外は、同様にしてそれぞれのフィル
ム状絶縁体を製造した。
[Reference Examples 1 and 2 of Film Insulator] In Production Example 1, the mixing ratio of the mixed composition was changed to PEEK100
Each film-shaped insulator was manufactured in the same manner except that the weight% (Reference Example 1) or the PEI 100% by weight (Reference Example 2) was used.

【0040】上記製造例および参考例で得られたフィル
ム状絶縁体の物性を調べるため、以下の(1) および(2)
に示す項目を測定または測定値から計算値を算出した。
これらの結果は、表1にまとめて示した。
In order to examine the physical properties of the film-like insulator obtained in the above Production Examples and Reference Examples, the following (1) and (2)
The following items were measured or calculated values were calculated from the measured values.
These results are summarized in Table 1.

【0041】(1) ガラス転移温度(℃)、結晶化温度
(℃)、結晶融解ピーク温度(℃) JIS K7121に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時の上記各温度をサーモグラムから
求めた。
(1) Glass transition temperature (° C.), crystallization temperature (° C.), crystal melting peak temperature (° C.) Using a 10 mg sample according to JIS K7121 and heating using Perkin Elmer: DSC-7 Speed 1
Each of the above temperatures when the temperature was raised at 0 ° C./min was determined from a thermogram.

【0042】(2) (ΔHm−ΔHc)/ΔHm JIS K7122に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時のサーモグラムから結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、上記式の値を算出した。
(2) (ΔHm−ΔHc) / ΔHm According to JIS K7122, 10 mg of a sample was used, and the heating rate was set to 1 using DSC-7 manufactured by PerkinElmer.
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were determined from the thermogram when the temperature was raised at 0 ° C./min, and the value of the above equation was calculated.

【0043】[0043]

【表1】 [Table 1]

【0044】〔実施例1〕製造例1で得られた厚さ25
μmのフィルム状絶縁体の両面に、厚さ12μmの電気
化学的に表面を粗面化した電解銅箔を重ねて、真空雰囲
気下760mmHg、プレス温度220℃、プレス圧力
30kg/cm2 、プレス時間20分の条件で熱融着
し、両面銅張積層板を作製した。
Example 1 Thickness 25 obtained in Production Example 1
Electrochemically roughened electrolytic copper foil having a thickness of 12 μm is superposed on both surfaces of a film-shaped insulator of μm, and 760 mmHg in a vacuum atmosphere, a press temperature of 220 ° C., a press pressure of 30 kg / cm 2 , and a press time Heat bonding was performed for 20 minutes to produce a double-sided copper-clad laminate.

【0045】作製した両面銅張積層板のフィルム状絶縁
体に対し、前記 (2)(ΔHm−ΔHc)/ΔHmの測定
試験を前記同じ方法で行ない、式値を表2に示した。
The film-like insulator of the double-sided copper-clad laminate was subjected to the measurement test of (2) (ΔHm−ΔHc) / ΔHm in the same manner as described above.

【0046】また、上記得られた両面銅張積層板に対し
て、後述する(3) の方法で接着強度を調べ、この結果を
表2中に併記した。
The adhesive strength of the obtained double-sided copper-clad laminate was examined by the method (3) described later, and the results are shown in Table 2.

【0047】次に、上記得られた両面銅張積層板にサブ
トラクティブ法によって回路パターンを形成し、導電性
回路をエッチングにより形成したFPC基板を製造し
た。
Next, a circuit pattern was formed on the obtained double-sided copper-clad laminate by a subtractive method, and an FPC board having a conductive circuit formed by etching was manufactured.

【0048】得られたFPC基板のハンダ耐熱性を下記
の(4) の試験方法で調べ、この結果を表2中に併記し
た。
The solder heat resistance of the obtained FPC board was examined by the following test method (4), and the results are shown in Table 2.

【0049】また、得られたFPC基板の層間剥離の有
無を下記の(5) の方法で調べ、この結果を表2中に併記
した。
The presence or absence of delamination of the obtained FPC board was examined by the following method (5). The results are also shown in Table 2.

【0050】(3) 接着強度 JIS C6481の常態の引き剥がし強さに準拠し
て、FPC素板の銅箔の引き剥がし強さを測定し、その
平均値をkgf/10cmで示した。
(3) Adhesive strength The peel strength of the copper foil of the FPC blank was measured in accordance with the normal peel strength of JIS C6481, and the average value was shown in kgf / 10 cm.

【0051】(4) ハンダ耐熱性 JIS C6481の常態のハンダ耐熱性に準拠し、2
60℃のハンダ浴に試験片のFPC素板の銅箔側がハン
ダ浴に接触する状態で10秒間浮かべた後、浴から取り
出して室温まで放冷し、その膨れや剥がれ箇所の有無を
目視観察し、その良否を評価した。
(4) Solder heat resistance According to the normal solder heat resistance of JIS C6481,
After the test piece was floated on a solder bath at 60 ° C. for 10 seconds while the copper foil side of the FPC plate was in contact with the solder bath, the test piece was taken out of the bath, allowed to cool to room temperature, and visually inspected for swelling or peeling. , The quality was evaluated.

【0052】(5) FPC基板をエポキシ樹脂に包埋
し、精密切断機で断面観察用サンプルを作製し、走査型
電子顕微鏡(SEM)で切断面を観察し、フィルム状絶
縁体と銅箔製の導電性回路との層間剥離の有無を評価し
た。
(5) The FPC board is embedded in epoxy resin, a sample for cross-section observation is prepared by a precision cutting machine, and the cut surface is observed by a scanning electron microscope (SEM). Of the conductive circuit was evaluated for the presence or absence of delamination.

【0053】[0053]

【表2】 [Table 2]

【0054】〔実施例2〕実施例1において、フィルム
状絶縁体として製造例2を使用し、両面銅張積層板を作
製する際のプレス温度を240℃、プレス時間を30分
に変更したこと以外は実施例1と同様にしてFPC基板
を作製し、試験(3) 〜(5) の評価を表2中に併記した。
Example 2 In Example 1, the production temperature was changed to 240 ° C. and the press time was changed to 30 minutes in the production of the double-sided copper-clad laminate using Production Example 2 as the film-like insulator. Except for the above, an FPC board was produced in the same manner as in Example 1, and the evaluations of Tests (3) to (5) are also shown in Table 2.

【0055】〔比較例1〕実施例2において、両面銅張
積層板を作製する際のプレス温度を230℃、プレス時
間を10分に変更したこと以外は実施例2と同様にして
FPC基板を作製し、試験(3) 〜(5) の評価を表2中に
併記した。
[Comparative Example 1] An FPC board was prepared in the same manner as in Example 2 except that the pressing temperature was changed to 230 ° C and the pressing time was changed to 10 minutes when producing a double-sided copper-clad laminate. Table 2 shows the results of the tests (3) to (5).

【0056】〔比較例2〕実施例1において、フィルム
状絶縁体として製造例3を使用し、両面銅張積層板を作
製する際のプレス温度を240℃、プレス時間を20分
に変更したこと以外は実施例1と同様にしてFPC基板
を作製し、試験(3) 〜(5) の評価を表2中に併記した。
[Comparative Example 2] In Example 1, the production temperature was changed to 240 ° C. and the press time was changed to 20 minutes when producing the double-sided copper-clad laminate using Production Example 3 as the film-like insulator. Except for the above, an FPC board was produced in the same manner as in Example 1, and the evaluations of Tests (3) to (5) are also shown in Table 2.

【0057】表2の結果からも明らかなように、実施例
1の両面銅張積層板の接着強度は、1.5kgf/10
cmという良好な値であり、ハンダ耐熱性試験の結果は
基板に膨れや剥がれが一切観察されず、また導電性回路
形成後のFPC基板に対するSEM観察でも層間剥離は
全く観察されなかった。
As is clear from the results in Table 2, the adhesive strength of the double-sided copper-clad laminate of Example 1 was 1.5 kgf / 10
cm, and the results of the solder heat resistance test showed that no swelling or peeling was observed on the substrate, and no delamination was observed by SEM observation on the FPC substrate after forming the conductive circuit.

【0058】実施例2の両面銅張積層板の接着強度も
1.3kgf/10cmという良好な値であり、ハンダ
耐熱性試験の結果も良好であり、またエッチングによる
導電性回路形成後のFPC基板に対するSEM観察でも
層間剥離は全く観察されなかった。
The adhesive strength of the double-sided copper-clad laminate of Example 2 was also a good value of 1.3 kgf / 10 cm, the result of the solder heat resistance test was good, and the FPC board after forming the conductive circuit by etching. No delamination was observed at all by SEM observation.

【0059】これに対して、比較例1のFPC基板に対
するSEM観察では層間の密着性があって一応は良好で
あったが、ハンダ耐熱性については、基板に膨れや剥が
れが観察されて不良という結果であった。
On the other hand, in the SEM observation of the FPC board of Comparative Example 1, although the adhesion between the layers was good because of the adhesion between the layers, the solder heat resistance was poor due to swelling and peeling observed on the board. It was a result.

【0060】また、比較例2のFPC基板は、両面銅張
積層板の接着強度が0.2kgf/10cmという不良
な値であり、エッチングによる導電性回路形成後に回路
部分の銅箔が剥離した。
In the FPC board of Comparative Example 2, the adhesive strength of the double-sided copper-clad laminate was a poor value of 0.2 kgf / 10 cm, and the copper foil of the circuit portion was peeled off after the formation of the conductive circuit by etching.

【0061】[0061]

【発明の効果】この発明のフレキシブルプリント配線基
板は、以上説明したように、所定のポリアリールケトン
樹脂と非晶性ポリエーテルイミド樹脂とを所定量配合
し、所定の熱的特性が所定の関係を満たす熱可塑性樹脂
組成物からなるフィルム状絶縁体を絶縁層とし、それに
重ねて導電性回路を形成した導体箔を設けたので、この
種の基板に通常要求される可撓性、機械的強度および充
分なハンダ耐熱性を有し、かつ銅箔等の導体箔と絶縁層
とが比較的低温の熱融着により積層一体化されており、
優れた接着強度を有するという利点がある。
As described above, in the flexible printed wiring board of the present invention, a predetermined amount of a predetermined amount of a polyarylketone resin and a predetermined amount of an amorphous polyetherimide resin are blended, and a predetermined thermal characteristic is determined. A film-like insulator made of a thermoplastic resin composition that satisfies the above conditions is used as an insulating layer, and a conductive foil having a conductive circuit formed thereon is provided thereon, so that the flexibility and mechanical strength normally required for this type of substrate are provided. And has sufficient solder heat resistance, and the conductor foil such as copper foil and the insulating layer are laminated and integrated by relatively low-temperature heat fusion,
There is an advantage of having excellent adhesive strength.

【0062】また、フレキシブルプリント配線基板の製
造方法に係る発明は、接着剤の塗布等の工程が省略され
ているので、上記の利点を有するフレキシブルプリント
配線基板を効率よく製造できる方法である。
Further, the invention relating to the method for manufacturing a flexible printed wiring board is a method for efficiently manufacturing a flexible printed wiring board having the above-mentioned advantages because steps such as application of an adhesive are omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フレキシブルプリント配線基板の製造工程を示
す模式図
FIG. 1 is a schematic view showing a manufacturing process of a flexible printed wiring board.

【図2】フレキシブルプリント配線基板の製造工程を示
す模式図
FIG. 2 is a schematic view showing a manufacturing process of a flexible printed wiring board.

【符号の説明】[Explanation of symbols]

1 フィルム状絶縁体 2 銅箔 3 孔 4 銅めっき 5、7 両面銅張積層板 6 導電性ペースト DESCRIPTION OF SYMBOLS 1 Film-shaped insulator 2 Copper foil 3 Hole 4 Copper plating 5, 7 Double-sided copper-clad laminate 6 Conductive paste

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/00 H05K 3/00 R 3/38 3/38 B // B29K 73:00 79:00 B29L 9:00 31:34 (72)発明者 高木 潤 滋賀県長浜市三ッ矢町5番8号 三菱樹脂 株式会社長浜工場内 (72)発明者 谷口 浩一郎 滋賀県長浜市三ッ矢町5番8号 三菱樹脂 株式会社長浜工場内 (72)発明者 桑村 信吾 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 野本 薫 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4F100 AB01B AB01C AB33B AB33C AK01A AK49A AK49J AK54A AK54J AK56A AK56K AL01A AR00A BA03 BA08 BA26 DD07B DD07C EA031 EC032 EH152 EJ152 GB43 JA04A JA12A JA20A JB16A JG01B JG01C JG04 JG04A JJ03 JK17 YY00A 4F211 AA32 AA40 AD03 AD28 AE03 AG01 AG03 AH36 AP05 TA13 TC02 TN07 TQ04 5E343 AA16 AA18 AA33 BB24 BB67 DD54 DD76 GG02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/00 H05K 3/00 R 3/38 3/38 B // B29K 73:00 79:00 B29L 9 : 00 31:34 (72) Inventor Jun Takagi 5-8, Mitsuya-cho, Nagahama-shi, Shiga Prefecture Mitsubishi Plastics Co., Ltd. Inside Nagahama Plant (72) Inventor Koichiro Taniguchi 5-8, Mitsuya-cho, Nagahama-shi, Shiga Prefecture Mitsubishi Plastics, Inc. Inside the Nagahama Plant (72) Inventor Shingo Kuwamura 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Corporation (72) Inventor Kaoru Nomoto 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture F-term ( Reference) 4F100 AB01B AB01C AB33B AB33C AK01A AK49A AK49J AK54A AK54J AK56A AK56K AL01A AR00A BA03 BA08 BA26 DD07B DD07C EA031 EC032 EH152 EJ152 GB43 JA04A JA12A JA20A JB16 JG04JG01JG04B J03 JK17 YY00A 4F211 AA32 AA40 AD03 AD28 AE03 AG01 AG03 AH36 AP05 TA13 TC02 TN07 TQ04 5E343 AA16 AA18 AA33 BB24 BB67 DD54 DD76 GG02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶融解ピーク温度260℃以上のポリ
アリールケトン樹脂65〜35重量%と、非晶性ポリエ
ーテルイミド樹脂35〜65重量%とからなり、示差走
査熱量測定で昇温した時に測定されるガラス転移温度が
150〜230℃、結晶融解熱量ΔHmと昇温中の結晶
化により発生する結晶化熱量ΔHcとの関係が下記の式
(I) で示される関係を満たす熱可塑性樹脂組成物からな
るフィルム状絶縁体を設け、このフィルム状絶縁体の片
面または両面に重ねて導体箔を熱融着し、この導体箔に
導電性回路を形成してなるフレキシブルプリント配線基
板。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5
1. A method comprising 65 to 35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and 35 to 65% by weight of an amorphous polyetherimide resin, which is measured when heated by differential scanning calorimetry. The glass transition temperature is 150 to 230 ° C., and the relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature rise is as follows:
(I) A film-like insulator made of a thermoplastic resin composition satisfying the relationship shown in (I) is provided, and a conductor foil is heat-sealed on one or both sides of the film-like insulator, and a conductive circuit is formed on the conductor foil. A flexible printed wiring board formed by: Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5
【請求項2】 導体箔が、表面粗化されている導体箔で
ある請求項1記載のフレキシブルプリント配線基板。
2. The flexible printed circuit board according to claim 1, wherein the conductive foil is a surface-roughened conductive foil.
【請求項3】 ポリアリールケトン樹脂が、ポリエーテ
ルエーテルケトン樹脂である請求項1または2に記載の
フレキシブルプリント配線基板。
3. The flexible printed circuit board according to claim 1, wherein the polyarylketone resin is a polyetheretherketone resin.
【請求項4】 結晶融解ピーク温度260℃以上のポリ
アリールケトン樹脂65〜35重量%と、非晶性ポリエ
ーテルイミド樹脂35〜65重量%とからなる熱可塑性
樹脂組成物を成形材料として、示差走査熱量測定で昇温
した時に測定されるガラス転移温度が150〜230
℃、結晶融解熱量ΔHmと昇温中の結晶化により発生す
る結晶化熱量ΔHcとの関係が下記の式(I) で示される
関係を満たすようにフィルム状絶縁体を成形加工し、こ
のフィルム状絶縁体の片面または両面に導体箔を重ねて
前記熱可塑性樹脂組成物が下記の式(II)で示される関係
を満たすように熱融着した後、前記導体箔をエッチング
して導電性回路を形成することからなるフレキシブルプ
リント配線基板の製造方法。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
4. A thermoplastic resin composition comprising 65 to 35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and 35 to 65% by weight of an amorphous polyetherimide resin as a molding material. The glass transition temperature measured when the temperature is raised by scanning calorimetry is 150 to 230.
C., a film-shaped insulator is formed and processed such that the relationship between the heat of crystal melting ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature rise satisfies the relationship represented by the following formula (I). After one or both surfaces of the insulator is laminated with a conductive foil and the thermoplastic resin composition is heat-sealed so as to satisfy the relationship represented by the following formula (II), the conductive circuit is etched to form a conductive circuit. A method for manufacturing a flexible printed wiring board, comprising: Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項5】 フィルム状絶縁体の片面または両面に重
ねる導体箔が、表面粗化されている導体箔である請求項
4記載のフレキシブルプリント配線基板の製造方法。
5. The method for manufacturing a flexible printed wiring board according to claim 4, wherein the conductive foil to be overlapped on one or both surfaces of the film-shaped insulator is a conductive foil having a roughened surface.
【請求項6】 ポリアリールケトン樹脂が、ポリエーテ
ルエーテルケトン樹脂である請求項4または5に記載の
フレキシブルプリント配線基板の製造方法。
6. The method according to claim 4, wherein the polyaryl ketone resin is a polyether ether ketone resin.
JP00053899A 1999-01-05 1999-01-05 Flexible printed wiring board and method of manufacturing the same Expired - Fee Related JP3514646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00053899A JP3514646B2 (en) 1999-01-05 1999-01-05 Flexible printed wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00053899A JP3514646B2 (en) 1999-01-05 1999-01-05 Flexible printed wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000200950A true JP2000200950A (en) 2000-07-18
JP3514646B2 JP3514646B2 (en) 2004-03-31

Family

ID=11476537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00053899A Expired - Fee Related JP3514646B2 (en) 1999-01-05 1999-01-05 Flexible printed wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3514646B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204050A (en) * 2000-12-27 2002-07-19 Toray Eng Co Ltd Metal wiring circuit board and its manufacturing method
WO2002057343A1 (en) * 2001-01-22 2002-07-25 Mitsubishi Plastics, Inc. Polyaryl ketone resin film and laminates therof with metal
JP2003053921A (en) * 2001-08-17 2003-02-26 Mitsubishi Plastics Ind Ltd Polyimide laminated film, metal laminate using the same, and metal laminate manufacturing method
US6824884B2 (en) 2000-08-10 2004-11-30 Mitsubishi Plastics, Inc. Heat resistant resin composition, a heat resistant film or sheet thereof and a laminate comprising the film or the sheet as a susbstrate
WO2006006697A1 (en) 2004-07-09 2006-01-19 Kabushiki Kaisha Toyota Jidoshokki Sliding member of compressor
JP2006249443A (en) * 2006-05-19 2006-09-21 Mitsubishi Plastics Ind Ltd Polyarylketone-based resin film
JP2008034724A (en) * 2006-07-31 2008-02-14 Shin Etsu Polymer Co Ltd Manufacturing method of low dielectric wiring board
JP2009130049A (en) * 2007-11-21 2009-06-11 Furukawa Electric Co Ltd:The Multilayer printed circuit board and method of manufacturing the same
JP2009130051A (en) * 2007-11-21 2009-06-11 Furukawa Electric Co Ltd:The Multilayer printed circuit board and method of manufacturing the same
JP2011148940A (en) * 2010-01-25 2011-08-04 Teijin Ltd Biaxially oriented film
JP2020163647A (en) * 2019-03-29 2020-10-08 信越ポリマー株式会社 Laminated polyether ether ketone resin sheet, method of manufacturing the same
CN113099631A (en) * 2021-03-10 2021-07-09 奥士康科技股份有限公司 Method for laminating anti-fault layer of multilayer circuit board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824884B2 (en) 2000-08-10 2004-11-30 Mitsubishi Plastics, Inc. Heat resistant resin composition, a heat resistant film or sheet thereof and a laminate comprising the film or the sheet as a susbstrate
JP2002204050A (en) * 2000-12-27 2002-07-19 Toray Eng Co Ltd Metal wiring circuit board and its manufacturing method
KR100823403B1 (en) * 2001-01-22 2008-04-17 미쓰비시 쥬시 가부시끼가이샤 Polyaryl ketone resin film and laminates thereof with metal
WO2002057343A1 (en) * 2001-01-22 2002-07-25 Mitsubishi Plastics, Inc. Polyaryl ketone resin film and laminates therof with metal
US7033675B2 (en) 2001-01-22 2006-04-25 Mitsubishi Plastics, Inc. Polyarlketone resin film and a laminate thereof with metal
JP2003053921A (en) * 2001-08-17 2003-02-26 Mitsubishi Plastics Ind Ltd Polyimide laminated film, metal laminate using the same, and metal laminate manufacturing method
JP4605950B2 (en) * 2001-08-17 2011-01-05 三菱樹脂株式会社 POLYIMIDE LAMINATED FILM, METAL LAMINATE USING SAME, AND METHOD FOR PRODUCING METAL LAMINATE
WO2006006697A1 (en) 2004-07-09 2006-01-19 Kabushiki Kaisha Toyota Jidoshokki Sliding member of compressor
EP1785627A1 (en) * 2004-07-09 2007-05-16 Kabushiki Kaisha Toyota Jidoshokki Sliding member of compressor
EP1785627A4 (en) * 2004-07-09 2012-07-11 Toyota Jidoshokki Kk Sliding member of compressor
JP2006249443A (en) * 2006-05-19 2006-09-21 Mitsubishi Plastics Ind Ltd Polyarylketone-based resin film
JP2008034724A (en) * 2006-07-31 2008-02-14 Shin Etsu Polymer Co Ltd Manufacturing method of low dielectric wiring board
JP2009130049A (en) * 2007-11-21 2009-06-11 Furukawa Electric Co Ltd:The Multilayer printed circuit board and method of manufacturing the same
JP2009130051A (en) * 2007-11-21 2009-06-11 Furukawa Electric Co Ltd:The Multilayer printed circuit board and method of manufacturing the same
JP2011148940A (en) * 2010-01-25 2011-08-04 Teijin Ltd Biaxially oriented film
JP2020163647A (en) * 2019-03-29 2020-10-08 信越ポリマー株式会社 Laminated polyether ether ketone resin sheet, method of manufacturing the same
JP7198139B2 (en) 2019-03-29 2022-12-28 信越ポリマー株式会社 METHOD FOR MANUFACTURING LAMINATED POLYETHER ETHER KETONE RESIN SHEET
CN113099631A (en) * 2021-03-10 2021-07-09 奥士康科技股份有限公司 Method for laminating anti-fault layer of multilayer circuit board

Also Published As

Publication number Publication date
JP3514646B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
JP6499584B2 (en) Thermoplastic liquid crystal polymer film, circuit board, and production method thereof
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
JP3514731B2 (en) Manufacturing method of three-dimensional printed wiring board
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
US8069559B2 (en) Method of assembling an insulated metal substrate
JP4064897B2 (en) Multilayer circuit board and manufacturing method thereof
JP3514667B2 (en) Heat fusible insulating sheet
EP1395102B1 (en) Method of making a multi-layer circuit board
JP3565069B2 (en) Method for manufacturing double-sided flexible printed circuit board
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JPH11309803A (en) Multi-layered laminated sheet, its manufacture, and multilayered mounting circuit board
JP3514668B2 (en) Coverlay film
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP2001036203A (en) Flexible printed wiring board and its manufacture
JP4248697B2 (en) Heat sealable insulation sheet
JP3995836B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and manufacturing method thereof
JP3990513B2 (en) Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board
JP2008177243A (en) Manufaturing method for multilayer printed board
JPH05114784A (en) Double sided flexible metal plated laminate board
JPH05310957A (en) Fiber sheet and circuit substrate using the same
JPH09232755A (en) Manufacture of multilayered printed-wiring board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees