JP2001036203A - Flexible printed wiring board and its manufacture - Google Patents

Flexible printed wiring board and its manufacture

Info

Publication number
JP2001036203A
JP2001036203A JP11210097A JP21009799A JP2001036203A JP 2001036203 A JP2001036203 A JP 2001036203A JP 11210097 A JP11210097 A JP 11210097A JP 21009799 A JP21009799 A JP 21009799A JP 2001036203 A JP2001036203 A JP 2001036203A
Authority
JP
Japan
Prior art keywords
resin composition
film
δhm
flexible printed
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11210097A
Other languages
Japanese (ja)
Inventor
Shingetsu Yamada
紳月 山田
Norio Kurosaki
礼郎 黒崎
Yuji Nakamura
雄二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP11210097A priority Critical patent/JP2001036203A/en
Publication of JP2001036203A publication Critical patent/JP2001036203A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surely stick conductor foil, such as the copper foil, etc., and a film-like insulating layer to each other in one body by thermal fusion in a flexible printed wiring board using a thermoplastic insulating layer so that the foil may have a soldering heat resistance. SOLUTION: A flexible printed wiring board is provided with a film-like insulator which contains a styrene-based resin composition having a syndiotactic structure and a thermoplastic resin which is compatible with the resin composition as main ingredients. The content of the styrenebased resin composition is adjusted to >=35 wt.% and the thermoplastic resin has a peak crystal melting point of >=260 deg.C when the melting point is measured after the temperature of the resin is raised for differential scanning colorimetry and meets an inequality, [(ΔHm-ΔHc)/ΔHm]<=0.6, expressing the relation between the quantity of crystal melting heat ΔHm and the quantity of crystallizing heat ΔHc which occurs due to the crystallization during a temperature rise. In addition, conductor foil is melt-stuck to one or both surfaces of the film-like insulator and a conductive circuit is formed of the conductor foil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フレキシブルプリ
ント配線基板に関し、より詳しくは絶縁層を熱可塑性樹
脂で形成したフレキシブルプリント配線基板およびその
製造方法に関する。
The present invention relates to a flexible printed wiring board, and more particularly to a flexible printed wiring board having an insulating layer formed of a thermoplastic resin and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年の電子機器の小型・軽量化の要求に
応えるため、ガラスクロスにエポキシ樹脂を含浸したプ
リプレグを用いたリジッド基板に比べ、軽量で占有容積
が小さく、自由な立体配線や配線の単純化が可能なフレ
キシブルプリント配線基板(以下、FPC基板と略記す
る。)が多用されはじめている。
2. Description of the Related Art In order to meet the recent demand for smaller and lighter electronic devices, compared to a rigid substrate using a prepreg in which glass cloth is impregnated with an epoxy resin, it is lighter, occupies less space, and has free three-dimensional wiring and wiring. Flexible printed circuit boards (hereinafter, abbreviated as FPC boards) that can simplify the above have been widely used.

【0003】このFPC基板の絶縁材料としては、ポリ
エステル樹脂やポリイミド樹脂が一般的であるが、ポリ
エステル樹脂は、ハンダ耐熱性(約260℃)に乏し
く、これを用いたFPC基板の用途は狭い分野に限定さ
れている。ポリイミド樹脂を用いたFPC基板は、ポリ
イミドフィルムをエポキシ樹脂等の接着剤を用いて銅箔
と接着した3層タイプと、接着剤を用いない2層タイプ
に大別される。3層タイプ、2層タイプに共通の問題点
としては、ポリイミドの材料特性から来る耐薬品性が劣
る(強塩基に弱い)点や、吸水率が高く寸法安定性に難が
ある点が挙げられる。また、3層タイプの問題点として
は、その耐熱性や耐薬品性および電気特性などの諸特性
が接着剤の特性によって左右されるので、ポリイミド樹
脂本来の優れた諸特性が充分に生かされない問題があ
る。
As an insulating material of the FPC board, a polyester resin or a polyimide resin is generally used. However, the polyester resin has poor solder heat resistance (about 260 ° C.), and the use of the FPC board using the same is narrow. Is limited to FPC boards using a polyimide resin are roughly classified into a three-layer type in which a polyimide film is bonded to a copper foil using an adhesive such as an epoxy resin, and a two-layer type in which no adhesive is used. Problems common to the three-layer type and the two-layer type include poor chemical resistance due to the material properties of polyimide (weak against strong bases), and high water absorption and difficulty in dimensional stability. . Also, as a problem of the three-layer type, since various properties such as heat resistance, chemical resistance and electric properties are influenced by the properties of the adhesive, the excellent properties inherent in the polyimide resin cannot be sufficiently utilized. There is.

【0004】2層タイプの製造方法の一つとしては、特
許掲載公報第2724026号に、金属箔上にポリイミ
ド溶液またはポリイミドの前駆体であるポリアミド酸溶
液を直接に流延塗布することにより、FPC基板の絶縁
層の全てをポリイミドで形成することが記載されてい
る。また、上記公報にはポリイミドフィルムの片面また
は両面に接着性を有するポリイミド層を形成し、これと
金属箔を重ね合わせ、加熱圧着により絶縁層が全てポリ
イミドのFPC基板を製造する方法が記載されている。
また、上記2層タイプを製造する方法の別の方法として
は、熱可塑性のポリイミドフィルムを300℃程度の温
度で銅箔とプレスする方法が知られている。
[0004] One of the two-layer type manufacturing methods is disclosed in Japanese Patent Publication No. 2724026 by directly casting and coating a polyimide solution or a polyamic acid solution which is a precursor of polyimide on a metal foil. It is described that the entire insulating layer of the substrate is formed of polyimide. In addition, the above-mentioned publication describes a method of forming a polyimide layer having adhesiveness on one or both sides of a polyimide film, laminating a metal foil on the polyimide layer, and manufacturing an FPC board in which the insulating layer is entirely polyimide by heating and pressing. I have.
As another method of manufacturing the two-layer type, a method of pressing a thermoplastic polyimide film with a copper foil at a temperature of about 300 ° C. is known.

【0005】この2層タイプFPC基板の問題点として
は、エッチング工程で銅箔に打痕が入りやすいといった
品質上の問題や、銅張板製造の手間からくるコスト高の
問題があり、3層タイプに比較すると、基板としての特
性は良いもののあまり普及していないのが現状である。
[0005] Problems of the two-layer type FPC board include a quality problem that a dent is easily formed in a copper foil in an etching process, and a problem of high cost due to a trouble of manufacturing a copper clad board. Compared to the type, the characteristics as a substrate are good, but they are not very popular at present.

【0006】[0006]

【発明が解決しようとする課題】そこで、この発明の課
題は上記した従来のポリイミド基板材料の問題点を解決
し、ハンダ耐熱性を有する熱可塑性の絶縁層を用いたフ
レキシブルプリント配線基板(FPC)について、銅箔
などの導体箔に対して比較的低温での熱融着により確実
に接着一体化されたFPC基板を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional polyimide substrate material and to provide a flexible printed wiring board (FPC) using a thermoplastic insulating layer having solder heat resistance. (2) An object of the present invention is to provide an FPC board which is securely bonded and integrated to a conductor foil such as a copper foil by heat fusion at a relatively low temperature.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明においては、、シンジオタクチック構造を有
するスチレン系樹脂組成物と当該スチレン系樹脂組成物
と相溶性のある熱可塑性樹脂を主成分とする熱可塑性樹
脂組成物を成形材料として、示差走査熱量測定で昇温し
た時に測定される結晶融解熱量ΔHmと昇温中の結晶化
により発生する結晶化熱量ΔHcとの関係が下記の式
(I) で示される関係を満たすようにフィルム状絶縁体を
設け、このフィルム状絶縁体の片面または両面に導体箔
を重ねて導体箔を熱融着し、前記導体箔に導電性回路を
形成してなるフレキシブルプリント配線基板としたので
ある。
In order to solve the above-mentioned problems, the present invention provides a styrene resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin composition. The relationship between the heat of crystal fusion ΔHm measured when the temperature is raised by differential scanning calorimetry and the heat of crystallization ΔHc generated by crystallization during the temperature rise is as follows: formula
(I) A film-shaped insulator is provided so as to satisfy the relationship shown in (I), a conductor foil is laminated on one or both sides of the film-shaped insulator, and the conductor foil is heat-fused to form a conductive circuit on the conductor foil. Thus, a flexible printed circuit board was formed.

【0008】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 また、本願の製造方法に係る発明においては、上記課題
を解決するために、シンジオタクチック構造を有するス
チレン系樹脂組成物と、該スチレン系樹脂組成物と相溶
性のある熱可塑性樹脂を主成分とし上記スチレン系樹脂
組成物の含有率が35重量%以上のフィルム状絶縁体で
あって、示差走査熱量測定で昇温した時に測定される結
晶融解ピーク温度が260℃以上であり、結晶融解熱量
ΔHmと昇温中の結晶化により発生する結晶化熱量ΔH
cとの関係が下記の式(I) で示される関係を満たすよう
にフィルム状絶縁体を成形加工し、このフィルム状絶縁
体の片面または両面に導体箔を重ねて前記熱可塑性樹脂
組成物が下記の式(II)で示される関係を満たすように熱
融着した後、前記導体箔をエッチングして導電性回路を
形成することからなる方法を採用したのである。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 In the invention according to the production method of the present application, in order to solve the above-mentioned problem, a styrene-based resin having a syndiotactic structure A composition and a film-shaped insulator mainly containing a thermoplastic resin compatible with the styrene-based resin composition and having a content of the styrene-based resin composition of 35% by weight or more, which is measured by differential scanning calorimetry. The crystal melting peak temperature measured when the temperature is raised is 260 ° C. or higher, and the heat of crystal fusion ΔHm and the heat of crystallization ΔH generated by crystallization during the temperature rise.
Forming and processing a film-like insulator so that the relationship with c satisfies the relationship represented by the following formula (I), and laminating a conductor foil on one or both sides of the film-like insulator, the thermoplastic resin composition After heat-fusing so as to satisfy the relationship represented by the following formula (II), a method was adopted in which the conductive foil was etched to form a conductive circuit.

【0009】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 上記したように構成される本発明のフレキシブルプリン
ト配線基板は、シンジオタクチック構造を有するスチレ
ン系樹脂組成物と該スチレン系樹脂組成物と相溶性のあ
る熱可塑性樹脂を所定量配合した絶縁層を有するもので
あり、この絶縁層は両樹脂の優れた諸特性により、熱融
着性やハンダ耐熱性を有し、FPCに通常要求される可
撓性、機械的強度および電気的絶縁性を有する。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 The flexible of the present invention configured as described above The printed wiring board has an insulating layer in which a predetermined amount of a styrene-based resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene-based resin composition are blended. Due to its excellent properties, it has heat sealability and solder heat resistance, and has the flexibility, mechanical strength and electrical insulation normally required for FPC.

【0010】このような熱可塑性樹脂組成物からなるフ
ィルム状絶縁体は、結晶融解熱量ΔHmと昇温中の結晶
化により発生する結晶化熱量ΔHcとの関係が前記式
(I) で示される関係を満たすものであるから、加熱によ
る結晶化の進行状態が適当範囲に調整されたものであ
り、例えば190℃以下という比較的低温で熱融着性を
発揮させることができる。
In a film-like insulator made of such a thermoplastic resin composition, the relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during heating is expressed by the above formula.
Since the relationship represented by (I) is satisfied, the progress of crystallization by heating is adjusted to an appropriate range.For example, it is possible to exhibit thermal fusion at a relatively low temperature of 190 ° C. or less. it can.

【0011】本発明のFPCの製造方法では、上記熱可
塑性樹脂組成物からなるフィルム状絶縁体の片面または
両面に導体箔を重ね、熱可塑性樹脂組成物が前記式(II)
で示される関係を満たすように加熱・加圧条件で熱融着
する。
In the method of manufacturing an FPC according to the present invention, a conductor foil is laminated on one or both sides of a film-like insulator made of the above-mentioned thermoplastic resin composition, and the thermoplastic resin composition has the formula (II)
Is heat-fused under heating and pressurizing conditions so as to satisfy the relationship shown by.

【0012】熱融着後の熱可塑性樹脂組成物は、シンジ
オタクチック構造を有するスチレン系樹脂組成物の結晶
性が適当に進行しているので、260℃に耐えるハンダ
耐熱性を確実に有する絶縁層になり、かつ導体箔との接
着強度も大きく、その後に導体箔をエッチングして形成
された導電性回路は絶縁層に強固に接着して剥離し難
い。導体箔として、表面が粗化されている導体箔を使用
すると、接着強度はより大きくなる。
In the thermoplastic resin composition after heat fusion, since the crystallinity of the styrenic resin composition having a syndiotactic structure is appropriately advanced, an insulating material having solder heat resistance to withstand 260 ° C. is ensured. It becomes a layer and has a high adhesive strength with the conductor foil. Thereafter, the conductive circuit formed by etching the conductor foil is firmly adhered to the insulating layer and hardly peeled off. When a conductor foil whose surface is roughened is used as the conductor foil, the adhesive strength is further increased.

【0013】また、フィルム状絶縁体と導体箔の接着
は、層間にエポキシ樹脂などの接着剤を介在させないで
熱融着するので、FPCの耐熱性、耐薬品性、電気特性
などの諸特性は接着剤の特性に支配されることがなく、
絶縁層の優れた諸特性が充分に活かされる。また、FP
Cの製造工程中に接着剤の塗布等の工程がないので、製
造効率の良いFPCの製造方法となる。
In addition, since the film-like insulator and the conductive foil are bonded by heat without interposing an adhesive such as epoxy resin between the layers, the FPC has various properties such as heat resistance, chemical resistance, and electrical properties. Without being governed by the properties of the adhesive
The excellent properties of the insulating layer are fully utilized. Also, FP
Since there is no step of applying an adhesive or the like in the manufacturing process of C, an FPC manufacturing method with high manufacturing efficiency can be obtained.

【0014】[0014]

【発明の実施の形態】本発明のフレキシブルプリント配
線基板の構造およびその製造方法に関する実施形態を、
以下に添付図面に基づいて説明する。図1の(e)に示
すように、本発明に係るフレキシブルプリント配線基板
は、所定の熱可塑性樹脂組成物からなるフィルム状絶縁
体1の両面に重ねて銅箔2を後述の物性を満足するよう
に熱融着し、この銅箔2をエッチングして導電性回路を
形成したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to a structure of a flexible printed wiring board of the present invention and a method of manufacturing the same will be described.
This will be described below with reference to the accompanying drawings. As shown in FIG. 1E, in the flexible printed wiring board according to the present invention, the copper foil 2 satisfies the physical properties described below by superposing the copper foil 2 on both surfaces of a film-like insulator 1 made of a predetermined thermoplastic resin composition. In this manner, the copper foil 2 is etched to form a conductive circuit.

【0015】このようなフレキシブルプリント配線基板
を製造するには、まず図1(a)に示すように、シンジ
オタクチック構造を有するスチレン系樹脂と、このスチ
レン系樹脂と相溶性のある熱可塑性樹脂とを配合し、前
記式(I) で示される所定の結晶性を示す熱可塑性フィル
ム状絶縁体1を調製する。そして、図1(b)に示すよ
うに、両面に銅箔2を重ねて真空熱プレス機を用いて熱
プレスを行ない両面銅張積層板5を作製する。この両面
銅張板の要所にスルーホール形成用の孔3をレーザーま
たはドリルで形成し(図1(c))、これに銅めっきを施
し(図1(d))、スルーホールめっきによる層間接続の
手段とする。次いで、サブトラクティブ法によって導電
性回路を形成する(図1(e))。
In order to manufacture such a flexible printed circuit board, first, as shown in FIG. 1A, a styrene resin having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin are used. To prepare a thermoplastic film-like insulator 1 having the predetermined crystallinity represented by the above formula (I). Then, as shown in FIG. 1B, the copper foils 2 are stacked on both sides and hot-pressed using a vacuum hot press machine to produce a double-sided copper-clad laminate 5. A hole 3 for forming a through hole is formed at a key point of the double-sided copper clad board by a laser or a drill (FIG. 1 (c)), and this is plated with copper (FIG. 1 (d)). Means of connection. Next, a conductive circuit is formed by a subtractive method (FIG. 1E).

【0016】層間接続に、導電性ペーストを使用する場
合には、図2(b)に示すように、フィルム状絶縁体1
の要所にホール形成用の孔3をレーザーまたはドリルで
形成し、これに導電性ペースト4を充填し(図2
(c))、乾燥させた後、両面に銅箔2を重ねて真空熱
プレス機を用いて熱プレスを行い、両面銅張積層板5を
作製する(図2(d))。次いで、サブトラクティブ法
によって導電性回路を形成する(図2(e))。
When a conductive paste is used for interlayer connection, as shown in FIG.
2. Holes 3 for forming holes are formed at important points by laser or drill and filled with conductive paste 4 (FIG. 2).
(C)) After drying, the copper foils 2 are stacked on both sides and hot-pressed using a vacuum hot press machine to produce a double-sided copper-clad laminate 5 (FIG. 2 (d)). Next, a conductive circuit is formed by a subtractive method (FIG. 2E).

【0017】本発明においてフィルム状絶縁体を構成す
る第1の成分であるシンジオタクチック構造を有するス
チレン系樹脂とは、主な立体化学構造がシンジオタクチ
ック構造で、炭素−炭素結合から形成される主鎖に対し
て、側鎖であるフェニル基が交互に反対方向に位置する
構造を持つ耐熱性の結晶性高分子である。
In the present invention, the styrene-based resin having a syndiotactic structure, which is the first component constituting the film-like insulator, has a main stereochemical structure of a syndiotactic structure and is formed from carbon-carbon bonds. It is a heat-resistant crystalline polymer having a structure in which phenyl groups, which are side chains, are alternately located in opposite directions to the main chain.

【0018】フィルム状絶縁体を構成する第2の成分で
ある上記スチレン系樹脂組成物と相溶性のある熱可塑性
樹脂としては従来公知のものから任意に選択可能である
が、本発明においては、変性ポリフェニレンエーテル樹
脂が好適に使用できる。
The thermoplastic resin compatible with the styrene resin composition as the second component constituting the film-like insulator can be arbitrarily selected from conventionally known thermoplastic resins. Modified polyphenylene ether resin can be suitably used.

【0019】そして、本発明に用いられるフィルム状絶
縁体は、上記した2種類の耐熱性樹脂を所定の割合でブ
レンドした組成物を主成分とする。この2種類の耐熱性
樹脂の配合割合は、スチレン系樹脂が70重量%を越え
て多量に配合されたり、変性ポリフェニレンエーテル樹
脂の配合割合が30重量%未満の少量の配合割合では、
組成物の結晶化速度が速くなり、導体箔と熱融着性が低
下する。また、スチレン系樹脂が35重量%未満であっ
たり、変性ポリフェニレンエーテル樹脂が65重量%を
超えると、組成物の結晶化度が低くなり、たとえ結晶融
解ピーク温度が260℃以上であってもハンダ耐熱性が
低下するので好ましくない。
The film-like insulator used in the present invention is mainly composed of a composition obtained by blending the above two kinds of heat-resistant resins at a predetermined ratio. The compounding ratio of the two types of heat-resistant resin is such that the styrene-based resin is compounded in a large amount exceeding 70% by weight, or the compounding ratio of the modified polyphenylene ether resin is a small amount of less than 30% by weight.
The crystallization rate of the composition increases, and the heat-fusibility with the conductive foil decreases. If the content of the styrene resin is less than 35% by weight or the content of the modified polyphenylene ether resin exceeds 65% by weight, the crystallinity of the composition becomes low. It is not preferable because the heat resistance decreases.

【0020】フィルム状絶縁体を構成する第3の成分で
あるゴム状弾性体としては、スチレン−ブタジエンブロ
ック共重合体(SBR)、水素添加スチレン−ブタジエ
ンブロック共重合体(SEB)、スチレン−ブタジエン
−スチレンブロック共重合体(SBS)、水素添加スチ
レン−ブタジエン−スチレンブロック共重合体(SEB
S)などが挙げられるが、これらに限定されるものでは
ない。本発明においては、上記ゴム状弾性体のうちSE
BSが好適に使用される。ゴム状弾性体はフィルム状絶
縁体の10〜20重量%の範囲で含有するのが好まし
く、10重量%未満では強度の改良効果が少なく、20
重量%を越えるものでは耐熱性が低下する傾向がある。
The rubber-like elastic material as the third component constituting the film-like insulator includes styrene-butadiene block copolymer (SBR), hydrogenated styrene-butadiene block copolymer (SEB), and styrene-butadiene. -Styrene block copolymer (SBS), hydrogenated styrene-butadiene-styrene block copolymer (SEB)
S) and the like, but are not limited thereto. In the present invention, in the rubber-like elastic body, SE
BS is preferably used. The rubber-like elastic body is preferably contained in the range of 10 to 20% by weight of the film-like insulator, and if less than 10% by weight, the effect of improving strength is small, and
If the amount exceeds the weight percentage, heat resistance tends to decrease.

【0021】本願の発明における重要な制御因子である
フィルム状絶縁体の熱特性は、結晶融解熱量ΔHmと昇
温中の結晶化により発生する結晶化熱量ΔHcとの関係
が下記の式(I) で示される関係を満たすことである。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 この熱特性は、JIS K 7121、JIS K71
22に準じた示差走査熱量測定で昇温したときのDSC
曲線に現れる2つの転移熱の測定値、結晶融解熱量ΔH
m(J/g)と結晶化熱量ΔHc(J/g)の値から上
記式によって算出される。
The thermal characteristics of the film-like insulator, which is an important control factor in the present invention, are as follows: The relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during heating is expressed by the following formula (I). That is, the relationship represented by is satisfied. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 The thermal characteristics are based on JIS K 7121 and JIS K71.
DSC when the temperature is raised by differential scanning calorimetry according to No. 22
Measured values of two transition heats appearing in the curve, heat of crystal fusion ΔH
It is calculated from the value of m (J / g) and the value of the heat of crystallization ΔHc (J / g) by the above equation.

【0022】上記式(I)の値は、原料ポリマーの種類や
分子量、組成物の配合比率にも依存しているが、フィル
ム状絶縁体の成形・加工条件に大きく影響する。すなわ
ち、フィルム状に製膜する際に、原料ポリマーを溶融さ
せた後、速やかに冷却することにより、前記式の値を小
さくすることができる。また、これらの数値は、各工程
でかかる熱履歴を調整することにより、制御することが
できる。ここでいう熱履歴とは、フィルム状絶縁体の温
度と、その温度になっていた時間を指し、温度が高いほ
ど、この数値は大きくなる傾向がある。前記式(I) で示
される関係は、FPCを製造する過程において、フィル
ム状絶縁体の少なくとも一面に導体箔を熱融着したFP
C用素板について、熱融着工程前の測定に基づくもので
ある。
The value of the above formula (I) also depends on the type and molecular weight of the raw material polymer and the compounding ratio of the composition, but greatly affects the conditions for forming and processing the film-shaped insulator. That is, when the film is formed into a film, the raw material polymer is melted and then cooled immediately, whereby the value of the above formula can be reduced. Further, these numerical values can be controlled by adjusting the heat history in each step. The heat history here refers to the temperature of the film-shaped insulator and the time during which the temperature has been reached, and the higher the temperature, the larger the numerical value tends to be. The relationship represented by the above formula (I) indicates that in the process of manufacturing the FPC, the FP obtained by heat-sealing the conductor foil to at least one surface of the film-shaped insulator is used.
It is based on the measurement before the heat fusion process about the raw material plate for C.

【0023】前記式(I) で示される値が、熱融着前に
0.6を越えると、すでに結晶性が高い状態であるか
ら、190℃以下の低温での熱融着が難しくなる。この
場合、導体箔との熱融着を高温で行なう必要があり製造
効率の面からも好ましくない。そして、導体箔との熱融
着後のフィルム状絶縁体の熱特性は、下記式(II)の関係
を満たす必要がある。 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 なぜなら、上記式(II)の値が、0.7未満の低い値で
は、絶縁層の結晶化が不充分であり、ハンダ耐熱性(通
常260℃)を保てないからである。
If the value represented by the above formula (I) exceeds 0.6 before heat fusion, it becomes difficult to perform heat fusion at a low temperature of 190 ° C. or less because the crystallinity is already high. In this case, it is necessary to perform heat fusion with the conductor foil at a high temperature, which is not preferable in terms of manufacturing efficiency. Then, the thermal characteristics of the film-like insulator after heat-sealing with the conductor foil must satisfy the relationship of the following formula (II). Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Because when the value of the above formula (II) is lower than 0.7, the crystallization of the insulating layer is insufficient, and This is because heat resistance (usually 260 ° C.) cannot be maintained.

【0024】本発明に用いるフィルム状絶縁体は、通常
25〜300μmの膜厚のものであり、その製造方法
は、例えばTダイを用いた押出キャスト法やカレンダー
法などの周知の製膜方法を採用すればよく、特に限定さ
れた製造方法を採る必要はない。なお、製膜性や安定生
産性の面からTダイを用いた押出キャスト法を採用する
ことが好ましい。押出キャスト法の成形温度は、組成物
の流動特性や製膜特性によって適宜に調節するが、概ね
組成物の融点以上、300℃以下である。
The film-like insulator used in the present invention usually has a thickness of 25 to 300 μm, and its production method is, for example, a known film-forming method such as an extrusion casting method using a T-die or a calendering method. What is necessary is just to employ | adopt and it is not necessary to employ | adopt a manufacturing method especially limited. In addition, it is preferable to employ the extrusion casting method using a T-die from the viewpoint of film forming property and stable productivity. The molding temperature of the extrusion casting method is appropriately adjusted depending on the flow characteristics and film forming characteristics of the composition, but is generally from the melting point of the composition to 300 ° C. or less.

【0025】本発明に用いるフィルム状絶縁体を構成す
る樹脂組成物には、本発明の効果を阻害しない程度に、
他の樹脂その他の添加剤を配合してもよく、その具体例
としては、熱安定剤、紫外線吸収剤、光安定剤、着色
剤、滑剤、難燃剤、無機フィラーなどが挙げられる。ま
た、フィルム状絶縁体の表面に、ハンドリング性改良等
のためのエンボス化工やコロナ処理などを施してもよ
い。
The resin composition constituting the film-like insulator used in the present invention contains a resin composition which does not impair the effects of the present invention.
Other resins and other additives may be blended, and specific examples thereof include a heat stabilizer, an ultraviolet absorber, a light stabilizer, a coloring agent, a lubricant, a flame retardant, and an inorganic filler. Further, the surface of the film-shaped insulator may be subjected to embossing or corona treatment for improving the handling properties and the like.

【0026】本発明に用いる導体箔としては、例えば
銅、金、銀、アルミニウム、ニッケル、錫などのように
厚さ8〜70μm程度の金属箔が挙げられる。このう
ち、適用される金属箔としては、その表面を黒色酸化処
理などの化成処理した銅箔が特に好ましい。導体箔は、
接着効果を高めるために、フィルム状絶縁体との接触面
(重ねる面)側を予め化学的または機械的に粗化したも
のを用いることが好ましい。表面粗化処理された導体箔
の具体例としては、電解銅箔を製造する際に電気化学的
に処理された粗化銅箔などが挙げられる。
Examples of the conductive foil used in the present invention include metal foils having a thickness of about 8 to 70 μm, such as copper, gold, silver, aluminum, nickel, and tin. Among them, the metal foil to be applied is particularly preferably a copper foil whose surface has been subjected to a chemical conversion treatment such as a black oxidation treatment. The conductor foil is
In order to enhance the bonding effect, it is preferable to use a material whose contact surface (overlapping surface) with the film-shaped insulator is chemically or mechanically roughened in advance. Specific examples of the conductor foil subjected to the surface roughening treatment include a roughened copper foil that has been electrochemically treated when producing an electrolytic copper foil.

【0027】導体箔をフィルム状絶縁体の片面または両
面に重ねて加熱・加圧条件で熱融着する際には、例えば
熱プレス法もしくは熱ラミネートロール法またはこれら
を組み合わせた方法、その他の周知の加熱圧着方法を採
用することもできる。
When the conductor foil is superimposed on one or both surfaces of the film-shaped insulator and heat-sealed under heating and pressing conditions, for example, a hot pressing method or a heat laminating roll method, a method combining these, or other well-known methods Can be employed.

【0028】[0028]

【実施例】まず、本発明のフィルム状絶縁体の条件を満
足するフィルム状絶縁体の製造例1〜4およびこれに対
比する参考例1、2の製造方法およびこれらの物性につ
いて以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the production methods of Production Examples 1 to 4 of the film insulator satisfying the conditions of the film insulation of the present invention, the production methods of Reference Examples 1 and 2, and the physical properties thereof will be described below. .

【0029】〔フィルム状絶縁体の製造例1〕シンジオ
タクチック構造を有するスチレン系樹脂(出光興産社
製:ザレック)(以下の文中または表1、2において、
SPSと略記する。)60重量%と、変性ポリフェニレ
ンエーテル樹脂(三菱エンジニアリングプラスチック社
製:ユピエース)(以下の文中または表1、2におい
て、変性PPEと略記する。)40重量%をドライブレ
ンドした。この混合組成物を押出成形し、厚さ25μm
のフィルム状絶縁体を製造した。
[Production Example 1 of Film Insulator] Styrene resin having a syndiotactic structure (Zarek, manufactured by Idemitsu Kosan Co., Ltd.)
Abbreviated as SPS. ) 60% by weight and 40% by weight of a modified polyphenylene ether resin (manufactured by Mitsubishi Engineering-Plastics Corporation: Iupiace) (abbreviated as modified PPE in the following text or in Tables 1 and 2) were dry-blended. This mixed composition was extruded to a thickness of 25 μm.
Was manufactured.

【0030】〔フィルム状絶縁体の製造例2〕製造例1
において、混合組成物の配合割合をSPS40重量%、
変性PPE60重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 2 of Film Insulator] Production Example 1
In, the compounding ratio of the mixed composition is SPS 40% by weight,
A film-like insulator was produced in the same manner except that the modified PPE was 60% by weight.

【0031】〔フィルム状絶縁体の製造例3〕製造例1
において、混合組成物の配合割合をSPS30重量%、
変性PPE70重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 3 of Film Insulator] Production Example 1
In, the mixture ratio of the mixed composition is SPS 30% by weight,
A film-like insulator was produced in the same manner except that the modified PPE was 70% by weight.

【0032】〔フィルム状絶縁体の製造例4〕製造例1
において、混合組成物の配合割合をSPS40重量%、
変性PPE45重量%、SEBSを15重量%したこと
以外は、同様にしてフィルム状絶縁体を製造した。
[Production Example 4 of Film Insulator] Production Example 1
In, the compounding ratio of the mixed composition is SPS 40% by weight,
A film-like insulator was produced in the same manner except that the modified PPE was 45% by weight and the SEBS was 15% by weight.

【0033】〔フィルム状絶縁体の参考例1、2〕製造
例1において、混合組成物の配合割合をSPS100重
量%(参考例1)、または変性PPE100重量%(参
考例2)としたこと以外は、同様にしてそれぞれのフィ
ルム状絶縁体を製造した。
[Reference Examples 1 and 2 of Film Insulator] Except that in Preparation Example 1, the mixture ratio of the mixed composition was 100% by weight of SPS (Reference Example 1) or 100% by weight of modified PPE (Reference Example 2). Manufactured the respective film-shaped insulators in the same manner.

【0034】上記製造例および参考例で得られたフィル
ム状絶縁体の物性を調べるため、以下の(1) および(2)
に示す項目を測定または測定値から計算値を算出した。
これらの結果は、表1にまとめて示した。
In order to examine the physical properties of the film-shaped insulator obtained in the above Production Examples and Reference Examples, the following (1) and (2)
The following items were measured or calculated values were calculated from the measured values.
These results are summarized in Table 1.

【0035】(1) ガラス転移温度(℃)、結晶化温度
(℃)、結晶融解ピーク温度(℃) JIS K7121に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時の上記各温度をサーモグラムから
求めた。
(1) Glass transition temperature (° C.), crystallization temperature (° C.), crystal melting peak temperature (° C.) Using a 10 mg sample according to JIS K7121 and heating using Perkin Elmer: DSC-7 Speed 1
Each of the above temperatures when the temperature was raised at 0 ° C./min was determined from a thermogram.

【0036】(2) (ΔHm−ΔHc)/ΔHm JIS K7122に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時のサーモグラムから結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、上記式の値を算出した。
(2) (ΔHm−ΔHc) / ΔHm According to JIS K7122, 10 mg of a sample was used, and the heating rate was set to 1 using DSC-7 manufactured by PerkinElmer.
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were determined from the thermogram when the temperature was raised at 0 ° C./min, and the value of the above equation was calculated.

【0037】[0037]

【表1】 [Table 1]

【0038】〔実施例1〕製造例1で得られた厚さ25
μmのフィルム状絶縁体の両面に、厚さ12μmの電気
化学的に表面を粗面化した電解銅箔を重ねて、真空雰囲
気下760mmHg、プレス温度180℃、プレス圧力
30kg/cm、プレス時間20分の条件で熱融着
し、両面銅張積層板を作製した。作製した両面銅張積層
板のフィルム状絶縁体に対し、前記 (2)(ΔHm−ΔH
c)/ΔHmの測定試験を前記同じ方法で行ない、式値
を表2に示した。また、上記得られた両面銅張積層板に
対して、後述する(3) の方法で接着強度と、後述する
(4)の方法で耐折強度を調べ、この結果を表2中に併記
した。次に、上記得られた両面銅張積層板にサブトラク
ティブ法によって回路パターンを形成し、導電性回路を
エッチングにより形成したFPCを製造した。得られた
FPCのハンダ耐熱性を下記の(5) の試験方法で調べ、
この結果を表2中に併記した。また、得られたFPCの
層間剥離の有無を下記の(6) の方法で調べ、この結果を
表2中に併記した。
Example 1 Thickness 25 obtained in Production Example 1
Electrochemically roughened electrolytic copper foil having a thickness of 12 μm is superposed on both sides of a film-shaped insulator of μm, and 760 mmHg in a vacuum atmosphere, a press temperature of 180 ° C., a press pressure of 30 kg / cm 2 , and a press time Heat bonding was performed for 20 minutes to produce a double-sided copper-clad laminate. (2) (ΔHm−ΔH)
The measurement test of c) / ΔHm was performed in the same manner as described above, and the formula values are shown in Table 2. Further, for the obtained double-sided copper-clad laminate, the adhesive strength by the method (3) described later,
The bending strength was examined by the method (4), and the results are shown in Table 2. Next, a circuit pattern was formed on the obtained double-sided copper-clad laminate by a subtractive method, and an FPC in which a conductive circuit was formed by etching was manufactured. The solder heat resistance of the obtained FPC was examined by the following test method (5).
The results are shown in Table 2. Also, the presence or absence of delamination of the obtained FPC was examined by the following method (6), and the results are also shown in Table 2.

【0039】(3) 接着強度 JIS C6481の常態の引き剥がし強さに準拠し
て、FPCの銅箔の引き剥がし強さを測定し、その平均
値をkgf/cmで示した。
(3) Adhesive Strength The peel strength of the copper foil of the FPC was measured in accordance with the normal peel strength of JIS C6481, and the average value was shown in kgf / cm.

【0040】(4) 耐折強度 JIS C6481の耐折強度試験に準拠して、FPC
の耐折強度試験を実施し、FPCの破断までの回数を示
した。
(4) Folding strength According to the bending strength test of JIS C6481, FPC
Was performed, and the number of times until the FPC was broken was shown.

【0041】(5) ハンダ耐熱性 JIS C6481の常態のハンダ耐熱性に準拠し、2
60℃のハンダ浴に試験片のFPC素板の銅箔側がハン
ダ浴に接触する状態で10秒間浮かべた後、浴から取り
出して室温まで放冷し、その膨れや剥がれ箇所の有無を
目視観察し、その良否を評価した。
(5) Solder heat resistance According to the normal solder heat resistance of JIS C6481, 2
After the test piece was floated on a solder bath at 60 ° C. for 10 seconds while the copper foil side of the FPC plate was in contact with the solder bath, the test piece was taken out of the bath, allowed to cool to room temperature, and visually inspected for swelling or peeling. , The quality was evaluated.

【0042】(6) FPCをエポキシ樹脂に包埋し、精
密切断機で断面観察用サンプルを作製し、走査型電子顕
微鏡(SEM)で切断面を観察し、フィルム状絶縁体と
銅箔製の導電性回路との層間剥離の有無を評価した。
(6) The FPC is embedded in epoxy resin, a sample for cross-section observation is prepared with a precision cutting machine, and the cut surface is observed with a scanning electron microscope (SEM). The presence or absence of delamination with the conductive circuit was evaluated.

【0043】[0043]

【表2】 [Table 2]

【0044】〔実施例2〕実施例1において、フィルム
状絶縁体として製造例2を使用し、両面銅張積層板を作
製する際のプレス温度を190℃、プレス時間を20分
に変更したこと以外は実施例1と同様にしてFPCを作
製し、試験(3) 〜(6) の評価を表2中に併記した。
Example 2 In Example 1, the production temperature was changed to 190 ° C. and the press time was changed to 20 minutes in the production of the double-sided copper-clad laminate using Production Example 2 as the film-like insulator. Except for the above, an FPC was manufactured in the same manner as in Example 1, and the evaluations of Tests (3) to (6) are also shown in Table 2.

【0045】〔比較例1〕実施例2において、両面銅張
積層板を作製する際のプレス温度を180℃、プレス時
間を10分に変更したこと以外は実施例2と同様にして
FPCを作製し、試験(3) 〜(6) の評価を表2中に併記
した。
Comparative Example 1 An FPC was produced in the same manner as in Example 2 except that the press temperature and the press time for producing a double-sided copper-clad laminate were changed to 180 ° C. and the press time was changed to 10 minutes. Table 2 also shows the evaluations of Tests (3) to (6).

【0046】〔比較例2〕実施例1において、フィルム
状絶縁体として製造例3を使用し、両面銅張積層板を作
製する際のプレス温度を220℃、プレス時間を20分
に変更したこと以外は実施例1と同様にしてFPCを作
製し、試験(3) 〜(6) の評価を表2中に併記した。
[Comparative Example 2] In Example 1, the production temperature was changed to 220 ° C. and the press time was changed to 20 minutes in the production of the double-sided copper-clad laminate using Production Example 3 as the film-like insulator. Except for the above, an FPC was manufactured in the same manner as in Example 1, and the evaluations of Tests (3) to (6) are also shown in Table 2.

【0047】〔実施例3〕実施例1において、フィルム
状絶縁体として製造例4を使用し、両面銅張積層板を作
製する際のプレス温度を190℃、プレス時間を20分
に変更したこと以外は実施例1と同様にしてFPCを作
製し、試験(3) 〜(6) の評価を表2中に併記した。
Example 3 In Example 1, the production temperature was changed to 190 ° C. and the press time was changed to 20 minutes in the production of the double-sided copper-clad laminate using Production Example 4 as the film-like insulator. Except for the above, an FPC was manufactured in the same manner as in Example 1, and the evaluations of Tests (3) to (6) are also shown in Table 2.

【0048】表2の結果からも明らかなように、実施例
1の両面銅張積層板の接着強度は、1.3kgf/10
cmという良好な値であり、ハンダ耐熱性試験の結果は
基板に膨れや剥がれが一切観察されず、また導電性回路
形成後のFPCに対するSEM観察でも層間剥離は全く
観察されなかった。
As is clear from the results in Table 2, the adhesive strength of the double-sided copper-clad laminate of Example 1 was 1.3 kgf / 10
cm, and the results of the solder heat resistance test showed that no swelling or peeling was observed on the substrate, and no delamination was observed by SEM observation of the FPC after forming the conductive circuit.

【0049】実施例2の両面銅張積層板の接着強度も
1.2kgf/10cmという良好な値であり、ハンダ
耐熱性試験の結果も良好であり、またエッチングによる
導電性回路形成後のFPCに対するSEM観察でも層間
剥離は全く観察されなかった。これに対して、比較例1
のFPCに対するSEM観察では層間の密着性があり一
応良好であったが、ハンダ耐熱性では基板に膨れや剥が
れが観察され、不良という結果であった。
The adhesive strength of the double-sided copper-clad laminate of Example 2 was a good value of 1.2 kgf / 10 cm, the result of the solder heat resistance test was good, and the FPC after the conductive circuit was formed by etching was used. No delamination was observed at all by SEM observation. On the other hand, Comparative Example 1
In the SEM observation with respect to FPC, the adhesion between the layers was good because of the adhesion, but the solder heat resistance was such that swelling and peeling were observed on the substrate, which was a result of failure.

【0050】また、比較例2のFPCは、両面銅張積層
板の接着強度が0.1kgf/10cmという不良な値
であり、エッチングによる導電性回路形成後に回路部分
の銅箔が剥離した。また、実施例3の結果から、ゴム状
弾性体を15重量%加えることにより、銅張板としての
耐折強度が格段に向上したことが分かる。
In the FPC of Comparative Example 2, the adhesive strength of the double-sided copper-clad laminate was a poor value of 0.1 kgf / 10 cm, and the copper foil of the circuit portion was peeled off after the formation of the conductive circuit by etching. Also, from the results of Example 3, it can be seen that the addition of 15% by weight of the rubber-like elastic body significantly improved the bending strength of the copper clad board.

【0051】[0051]

【発明の効果】本発明のフレキシブルプリント配線基板
は、以上説明したように、シンジオタクチック構造を有
するスチレン系樹脂組成物と、該スチレン系樹脂組成物
と相溶性のある熱可塑性樹脂を主成分とし、所定の熱的
特性が所定の関係を満たす熱可塑性樹脂組成物からなる
フィルム状絶縁体を絶縁層とし、それに重ねて導電性回
路を形成した導体箔を設けることによって、この種の基
板に通常要求される可撓性、機械的強度および充分なハ
ンダ耐熱性を有し、かつ銅箔等の導体箔と絶縁層とが比
較的低温の熱融着により積層一体化されており、優れた
接着強度を有するという利点がある。
As described above, the flexible printed wiring board of the present invention comprises a styrene resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin composition. By providing a film-like insulator made of a thermoplastic resin composition having a predetermined thermal property satisfying a predetermined relationship as an insulating layer, and providing a conductive foil having a conductive circuit formed thereon by superimposing the film-shaped insulator on the insulating layer. It has the required flexibility, mechanical strength and sufficient solder heat resistance, and a conductor foil such as a copper foil and an insulating layer are laminated and integrated by relatively low-temperature heat fusion. It has the advantage of having adhesive strength.

【0052】また、フレキシブルプリント配線基板の製
造方法に係る発明は、接着剤の塗布等の工程が省略され
ているので、上記の利点を有するフレキシブルプリント
配線基板を効率よく製造できる方法である。
Further, the invention relating to the method for manufacturing a flexible printed wiring board is a method for efficiently manufacturing a flexible printed wiring board having the above-mentioned advantages because steps such as application of an adhesive are omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フレキシブルプリント配線基板の製造工程を示
す模式図
FIG. 1 is a schematic view showing a manufacturing process of a flexible printed wiring board.

【図2】フレキシブルプリント配線基板の製造工程を示
す模式図
FIG. 2 is a schematic view showing a manufacturing process of a flexible printed wiring board.

【符号の説明】[Explanation of symbols]

1 フィルム状絶縁体 2 銅箔 3 孔 4 銅めっき 5 両面銅張積層板 DESCRIPTION OF SYMBOLS 1 Film-shaped insulator 2 Copper foil 3 Hole 4 Copper plating 5 Double-sided copper-clad laminate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、該スチレン系樹脂組成物と相溶性の
ある熱可塑性樹脂を主成分とし上記スチレン系樹脂組成
物の含有率が35重量%以上のフィルム状絶縁体であっ
て、示差走査熱量測定で昇温した時に測定される結晶融
解ピーク温度が260℃以上であり、結晶融解熱量ΔH
mと昇温中の結晶化により発生する結晶化熱量ΔHcと
の関係が下記の式(I) で示される関係を満たす熱可塑性
樹脂組成物からなるフィルム状絶縁体を設け、このフィ
ルム状絶縁体の片面または両面に重ねて導体箔を熱融着
し、この導体箔に導電性回路を形成してなるフレキシブ
ルプリント配線基板。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6
1. A styrenic resin composition having a syndiotactic structure, and a thermoplastic resin compatible with the styrenic resin composition as a main component, and the content of the styrenic resin composition is 35% by weight or more. Having a crystal melting peak temperature of 260 ° C. or higher when measured by differential scanning calorimetry and a crystal melting heat ΔH.
A film-like insulator made of a thermoplastic resin composition, wherein the relationship between m and the heat of crystallization ΔHc generated by crystallization during the temperature rise satisfies the relationship represented by the following formula (I), is provided. A flexible printed wiring board obtained by heat-sealing a conductor foil on one or both surfaces of the above and forming a conductive circuit on the conductor foil. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6
【請求項2】 導体箔が、表面粗化されている導体箔で
ある請求項1記載のフレキシブルプリント配線基板。
2. The flexible printed circuit board according to claim 1, wherein the conductive foil is a surface-roughened conductive foil.
【請求項3】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、該スチレン系樹脂組成物と相溶性の
ある熱可塑性樹脂を主成分とし上記スチレン系樹脂組成
物の含有率が35重量%以上のフィルム状絶縁体であっ
て、示差走査熱量測定で昇温した時に測定される結晶融
解ピーク温度が260℃以上であり、結晶融解熱量ΔH
mと昇温中の結晶化により発生する結晶化熱量ΔHcと
の関係が下記の式(I) で示される関係を満たすようにフ
ィルム状絶縁体を成形加工し、このフィルム状絶縁体の
片面または両面に導体箔を重ねて前記熱可塑性樹脂組成
物が下記の式(II)で示される関係を満たすように熱融着
した後、前記導体箔をエッチングして導電性回路を形成
することからなるフレキシブルプリント配線基板の製造
方法。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
3. A styrene resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin composition as a main component, and the content of the styrene resin composition is 35% by weight or more. Having a crystal melting peak temperature of 260 ° C. or higher when measured by differential scanning calorimetry and a crystal melting heat ΔH.
m is formed into a film-like insulator so that the relationship between m and the heat of crystallization ΔHc generated by crystallization during temperature rise satisfies the relationship represented by the following formula (I). After the conductor foil is laminated on both sides and the thermoplastic resin composition is heat-sealed so as to satisfy a relationship represented by the following formula (II), the conductive foil is etched to form a conductive circuit. A method for manufacturing a flexible printed wiring board. Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項4】 フィルム状絶縁体の片面または両面に重
ねる導体箔が、表面粗化されている導体箔である請求項
3記載のフレキシブルプリント配線基板の製造方法。
4. The method for manufacturing a flexible printed circuit board according to claim 3, wherein the conductor foil to be laminated on one or both surfaces of the film-shaped insulator is a conductor foil having a roughened surface.
【請求項5】 スチレン系樹脂組成物と相溶性のある熱
可塑性樹脂が変性ポリフェニレンエーテル樹脂であるこ
とを特徴とする請求項1乃至4記載のフレキシブルプリ
ント配線基板およびその製造方法。
5. The flexible printed circuit board according to claim 1, wherein the thermoplastic resin compatible with the styrene resin composition is a modified polyphenylene ether resin.
【請求項6】 フィルム状絶縁体が、ゴム状弾性体を1
0〜20重量%の範囲で含有してなることを特徴とする
請求項1乃至5記載のフレキシブルプリント配線基板お
よびその製造方法。
6. The film-like insulator is made of one rubber-like elastic body.
6. The flexible printed circuit board according to claim 1, wherein the flexible printed circuit board is contained in a range of 0 to 20% by weight.
JP11210097A 1999-07-26 1999-07-26 Flexible printed wiring board and its manufacture Pending JP2001036203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11210097A JP2001036203A (en) 1999-07-26 1999-07-26 Flexible printed wiring board and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11210097A JP2001036203A (en) 1999-07-26 1999-07-26 Flexible printed wiring board and its manufacture

Publications (1)

Publication Number Publication Date
JP2001036203A true JP2001036203A (en) 2001-02-09

Family

ID=16583775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11210097A Pending JP2001036203A (en) 1999-07-26 1999-07-26 Flexible printed wiring board and its manufacture

Country Status (1)

Country Link
JP (1) JP2001036203A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142830A (en) * 1993-11-18 1995-06-02 Idemitsu Kosan Co Ltd Printed wiring board laminate material
JPH10265592A (en) * 1997-03-25 1998-10-06 Shin Etsu Polymer Co Ltd Production of prepreg for printed wiring board
JPH11172061A (en) * 1997-12-15 1999-06-29 Idemitsu Petrochem Co Ltd Styrene resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142830A (en) * 1993-11-18 1995-06-02 Idemitsu Kosan Co Ltd Printed wiring board laminate material
JPH10265592A (en) * 1997-03-25 1998-10-06 Shin Etsu Polymer Co Ltd Production of prepreg for printed wiring board
JPH11172061A (en) * 1997-12-15 1999-06-29 Idemitsu Petrochem Co Ltd Styrene resin composition

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
KR100220264B1 (en) Manufacture of multilayer wiring board
TWI609779B (en) Copper foil containing adhesive layer,copper clad laminate and printed wiring board
JP3514731B2 (en) Manufacturing method of three-dimensional printed wiring board
WO2007013330A1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
EP1369450A1 (en) Polyaryl ketone resin film and laminates therof with metal
JP4064897B2 (en) Multilayer circuit board and manufacturing method thereof
JP3514667B2 (en) Heat fusible insulating sheet
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JP2001036203A (en) Flexible printed wiring board and its manufacture
JP3514668B2 (en) Coverlay film
JP3995836B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and manufacturing method thereof
JP4248697B2 (en) Heat sealable insulation sheet
JPH10190225A (en) Manufacture of multiplayer printed wiring board
JP4965102B2 (en) Conductive paste composition for via hole filling
JP4094211B2 (en) Method for producing metal foil laminate
JP3990513B2 (en) Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board
JPH0691812A (en) Metal base printed circuit board
JP2006015727A (en) High heat resistance laminate which uses poly 4-methyl-1-pentene, and its application
JP3947329B2 (en) Coverlay film
JPH05114784A (en) Double sided flexible metal plated laminate board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403