JP2001031818A - Heat-resistant insulating film and production of raw board for printed circuit board and substrate by using the same film - Google Patents

Heat-resistant insulating film and production of raw board for printed circuit board and substrate by using the same film

Info

Publication number
JP2001031818A
JP2001031818A JP11208373A JP20837399A JP2001031818A JP 2001031818 A JP2001031818 A JP 2001031818A JP 11208373 A JP11208373 A JP 11208373A JP 20837399 A JP20837399 A JP 20837399A JP 2001031818 A JP2001031818 A JP 2001031818A
Authority
JP
Japan
Prior art keywords
heat
temperature
δhm
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11208373A
Other languages
Japanese (ja)
Other versions
JP3990513B2 (en
Inventor
Shingetsu Yamada
紳月 山田
Norio Kurosaki
礼郎 黒崎
Yuji Nakamura
雄二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP20837399A priority Critical patent/JP3990513B2/en
Publication of JP2001031818A publication Critical patent/JP2001031818A/en
Application granted granted Critical
Publication of JP3990513B2 publication Critical patent/JP3990513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-resistant and insulating film excellent in resistance to soldering, flexibility, chemical resistance, mechanical strength and electrical characteristics, etc., and excellent in thermoformability at a low temperature and obtain a raw board for printed circuit board using the above film as a film-like insulating material. SOLUTION: This heat-resistant and insulating film comprises a film-like insulator consisting essentially of a styrene-based resin composition having syndiotactic structure and a thermoplastic resin having compatibility with the styrene-based resin composition and having >=35 wt.% of the above styrene-based resin composition and having >=260 deg.C crystal melting peak temperature measured when temperature is raised by differential scanning calorimetry. This raw board for printed circuit boards is obtained by optionally providing a through hole in the above heat-resistant and insulating film and packing an electroconductive paste into the hole and thermally fusing a conductive foil to at least one face of the film. In the raw board, crystal melting calorie ΔHm and crystallization calorie ΔHc generated by crystallization during heat-up, measured when heated up by differential scanning calorimetry after heat fusion satisfy the following relationship: [(ΔHm-ΔHc)/ΔHm]<=0.6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱絶縁性フィル
ムとこれを用いたプリント配線基板用素板及びプリント
配線基板の製造方法に関する。さらに詳しくは、はんだ
耐熱性、可とう性、耐薬品性、機械的強度、電気的特性
等に優れ、かつ低温での熱成形性(熱融着性)に優れた
熱可塑性樹脂フィルムおよびこのフィルムをプリント配
線基板用絶縁材として使用した、素板および基板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant insulating film, a substrate for a printed wiring board using the same, and a method for manufacturing a printed wiring board. More specifically, a thermoplastic resin film having excellent solder heat resistance, flexibility, chemical resistance, mechanical strength, electrical properties, and the like, and having excellent thermoforming properties (heat fusing properties) at low temperatures and this film. The present invention relates to a method for manufacturing a base plate and a substrate using the same as an insulating material for a printed wiring board.

【0002】[0002]

【従来の技術】従来、最も一般的なプリント配線基板と
しては、絶縁材として、ガラスクロス(ガラス繊維の不
織布)に熱硬化性のエポキシ樹脂を含浸して得られるプ
リプレグ(以下、ガラスエポキシ樹脂と表記する)を用
い、通常、圧力10〜40kgf/cm、温度170
〜230℃、時間30〜120分程度の条件で熱プレス
成形により銅箔等の導体箔を貼り合わせた基板が使用さ
れている。
2. Description of the Related Art Conventionally, the most common printed wiring board is a prepreg (hereinafter referred to as a glass epoxy resin) obtained by impregnating a glass cloth (nonwoven fabric of glass fiber) with a thermosetting epoxy resin as an insulating material. The pressure is usually 10 to 40 kgf / cm 2 , and the temperature is 170.
A substrate is used in which a conductor foil such as a copper foil is bonded by hot press molding under the conditions of about 230 ° C. and a time of about 30 to 120 minutes.

【0003】ガラスエポキシ樹脂は、はんだ耐熱性や耐
薬品性等に優れ、比較的安価であるものの、ガラス繊維
を含有しているため、落下等の衝撃が加わった際にクラ
ックが入り導通不良を起こしたり、また熱プレス成形時
に行うエポキシ樹脂の硬化時間に長時間を要し、生産性
が悪いといった問題点があった。
[0003] Glass epoxy resin is excellent in solder heat resistance and chemical resistance, and is relatively inexpensive. However, since it contains glass fiber, cracks occur when a shock such as dropping is applied, resulting in poor conduction. There is a problem in that it takes a long time to cure the epoxy resin at the time of hot press molding, and the productivity is poor.

【0004】また、近年、ノートブックパソコンや携帯
電話を始めとする電子機器の小型軽量化に呼応して、配
線の高密度化や回路基板の小型軽量化が求められ、これ
に対応する目的で、熱可塑性樹脂フィルムを絶縁体層と
した多層基板の検討が活発に行われている。
In recent years, in response to the reduction in size and weight of electronic devices such as notebook personal computers and mobile phones, there has been a demand for higher density wiring and smaller and lighter circuit boards. Investigations on multilayer substrates using a thermoplastic resin film as an insulating layer are being actively conducted.

【0005】熱可塑性樹脂フィルムをプリント配線基板
用絶縁材として用いた場合、種々の利点が期待できる。
従来のガラスエポキシ樹脂と比較すれば、回路基板の小
型軽量化が実現でき、耐衝撃性が改善され、熱プレス成
形時の成形時間が短縮でき、生産性においても有利であ
る。本来、プリント配線基板用絶縁材には、その製造工
程上、はんだ耐熱性が要求されるが、耐熱性熱可塑性樹
脂が使用できれば、高温での電気的特性にも優れ、高温
雰囲気下での回路の信頼性を得ることも期待できる。
[0005] When a thermoplastic resin film is used as an insulating material for a printed wiring board, various advantages can be expected.
Compared with the conventional glass epoxy resin, the circuit board can be reduced in size and weight, the impact resistance can be improved, the molding time during hot press molding can be reduced, and the productivity is also advantageous. Originally, the insulation material for printed wiring boards requires solder heat resistance in the manufacturing process, but if a heat-resistant thermoplastic resin can be used, the electrical characteristics at high temperatures will be excellent, and the circuit under high temperature atmosphere will be excellent. We can expect to get the reliability of

【0006】しかしながら、これら耐熱性熱可塑性樹脂
は、成形加工温度が高いため、導体貼り合わせや基板の
多層化には、エポキシ樹脂等の接着剤を使用したり、2
60℃以上の高温での熱プレス成形を行う必要があり、
昇温・降温に時間がかかることを考えると、生産性にお
ける熱可塑性樹脂の優位性を損なうこととなっている。
さらには、結晶性樹脂の場合には、融点近傍の温度まで
加熱しないと接着性が得られず、融点を超えると一転し
て樹脂が流れ出し、流動変形してしまうという問題点も
ある。
However, these heat-resistant thermoplastic resins have a high molding temperature, so that an adhesive such as an epoxy resin or the like may be used for bonding conductors or forming a multilayer substrate.
It is necessary to perform hot press molding at a high temperature of 60 ° C or more,
Considering that it takes time to raise and lower the temperature, the advantage of the thermoplastic resin in productivity is impaired.
Furthermore, in the case of a crystalline resin, there is a problem that the adhesiveness cannot be obtained unless the resin is heated to a temperature close to the melting point, and when the temperature exceeds the melting point, the resin starts to flow out and undergoes flow deformation.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、はん
だ耐熱性、可とう性、耐薬品性、機械的強度、電気的特
性等に優れ、かつ低温での熱成形性(熱融着性)に優れ
た耐熱絶縁性フィルムとこれをフィルム状絶縁材として
使用した、プリント配線基板用素板を提供し、また、工
業的に有利な基板の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide excellent solder heat resistance, flexibility, chemical resistance, mechanical strength, electrical properties, etc., and low-temperature thermoformability (heat-fusibility). An object of the present invention is to provide a heat-resistant insulating film excellent in (1) and a substrate for a printed wiring board using the same as a film-like insulating material, and to provide an industrially advantageous method for manufacturing a substrate.

【0008】[0008]

【課題を解決するための手段】本発明者等は、鋭意検討
を重ねた結果、シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、当該スチレン系樹脂と相溶性のある
熱可塑性樹脂を主成分とする耐熱絶縁性フィルムを用
い、さらに、プリント配線基板を組み立て加工する際の
フィルムの熱特性を特定の範囲に制御することにより、
上記課題を解決することのできる、プリント配線基板用
素板およびこれを用いる基板の製造方法を見出し、本発
明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a styrene resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin are the main components. By using a heat-resistant insulating film to be, further, by controlling the thermal characteristics of the film when assembling and processing the printed wiring board to a specific range,
The present inventors have found a raw plate for a printed wiring board and a method for manufacturing a substrate using the same, which can solve the above problems, and have completed the present invention.

【0009】すなわち、本発明の主旨とするところは、
シンジオタクチック構造を有するスチレン系樹脂組成物
と、当該スチレン系樹脂と相溶性のある熱可塑性樹脂を
主成分とし上記スチレン系樹脂組成物の含有率が35重
量%以上のフィルム状絶縁体であって、示差走査熱量測
定で昇温した時に測定される結晶融解ピーク温度が26
0℃以上であり、結晶融解熱量△Hmと昇温中の結晶化
により発生する結晶化熱量△Hcとが、下記の関係式を
満たすことを特徴とする耐熱絶縁性フィルムに存する。
That is, the gist of the present invention is as follows.
A styrene-based resin composition having a syndiotactic structure, and a film-like insulator mainly containing a thermoplastic resin compatible with the styrene-based resin and having a styrene-based resin composition content of 35% by weight or more. The crystal melting peak temperature measured when the temperature is increased by differential scanning calorimetry is 26.
0 ° C. or higher, and the heat-resistant insulating film is characterized in that the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature increase satisfy the following relational expression.

【0010】 [(△Hm−△Hc)/△Hm]≦0.4 また、本発明の別の主旨は、上記の耐熱絶縁性フィルム
に、必要とあれば通孔を設けて導電性ペーストを充填し
た後、その少なくとも一面に、導体箔を熱融着してなる
プリント配線基板用素板であって、該熱融着後におい
て、示差走査熱量測定で昇温した時に測定される、結晶
融解熱量ΔHmと昇温中の結晶化により発生する結晶化
熱量ΔHcとが、下記の関係式を満たす [(ΔHm−ΔHc)/ΔHm]≦0.6 ことを特徴とするプリント配線基板用素板に存する。
[(△ Hm- △ Hc) / △ Hm] ≦ 0.4 Further, another gist of the present invention is to provide a conductive paste by providing a through-hole in the heat-resistant insulating film if necessary. After filling, at least one surface thereof is a base plate for a printed wiring board obtained by heat-sealing a conductive foil, and after the heat-sealing, the crystal melting is measured when the temperature is raised by differential scanning calorimetry. The amount of heat ΔHm and the amount of heat of crystallization ΔHc generated by crystallization during temperature rise satisfy the following relational expression: [(ΔHm−ΔHc) / ΔHm] ≦ 0.6. Exist.

【0011】さらに、本発明の別の主旨は、上記のプリ
ント配線基板用素板を、その導体箔に回路形成に必要な
エッチング処理を施した後、耐熱絶縁性フィルムを介し
て融着し、多層化するプリント配線基板の製造方法にお
いて、該熱融着後において、上記結晶融解熱量ΔHmと
結晶化熱量ΔHcとが、下記の関係式を満たす [(ΔHm−ΔHc)/ΔHm]≧0.7 ことを特徴とするプリント配線基板の製造方法に存す
る。
[0011] Further, another gist of the present invention is that the above-mentioned printed wiring board base plate is subjected to an etching process required for forming a circuit on its conductive foil, and then fused through a heat-resistant insulating film, In the method of manufacturing a printed wiring board having a multilayer structure, after the heat fusion, the heat of crystal fusion ΔHm and the heat of crystallization ΔHc satisfy the following relational expression [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 A method for manufacturing a printed wiring board is characterized in that:

【0012】[0012]

【発明の実施の形態】以下、本発明を、詳しく説明す
る。本発明において、耐熱絶縁性フィルムを構成する第
1の成分であるシンジオタクチック構造を有するスチレ
ン系樹脂は、立体化学構造がシンジオタクチック構造、
すなわちC−C結合から形成される主鎖に対して、側鎖
であるフェニル基や置換フェニル基が交互に反対方向に
位置する立体構造を有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, the styrene-based resin having a syndiotactic structure as the first component constituting the heat-resistant insulating film has a stereochemical structure having a syndiotactic structure,
That is, it has a three-dimensional structure in which phenyl groups and substituted phenyl groups, which are side chains, are alternately located in opposite directions to the main chain formed from CC bonds.

【0013】上記スチレン系樹脂の含有量は耐熱絶縁性
フィルムの35重量%以上、35〜70重量%の範囲が
好適であり、35重量%未満でははんだ耐熱性に劣り、
70重量%を越えると導体箔との接着性に劣り易い傾向
がある。
The content of the styrene resin is preferably 35% by weight or more and 35 to 70% by weight of the heat-resistant insulating film. If the content is less than 35% by weight, the solder heat resistance is poor.
If it exceeds 70% by weight, the adhesion to the conductor foil tends to be poor.

【0014】また、耐熱絶縁性フィルムを構成する第2
の成分である上記スチレン系樹脂と相溶性のある熱可塑
性樹脂としては、溶融成形時に均一な分散が可能な樹脂
であればよく、ポリオレフィン系、ポリスチレン系、ポ
リエステル系、ポリアミド系、ポリフェニレンエーテル
系、ポリフェニレンスルフィド系の樹脂などが挙げられ
るが、これに限定されるものではない。本発明において
は、変性ポリフェニレンエーテル(変性PPE)が好適
に使用される。このスチレン系樹脂と相溶性のある熱可
塑性樹脂の含有量は耐熱絶縁性フィルムの30〜65重
量%の範囲が好適であり、30重量%未満では導体箔と
の接着性に劣り易い傾向があり、65重量%を越えると
はんだ耐熱性に劣り易い傾向がある。
Further, a second heat-insulating film may be used.
As the thermoplastic resin having compatibility with the styrene-based resin as the component, any resin capable of being uniformly dispersed at the time of melt molding may be used, and polyolefin-based, polystyrene-based, polyester-based, polyamide-based, polyphenylene ether-based, Examples include polyphenylene sulfide-based resins, but are not limited thereto. In the present invention, a modified polyphenylene ether (modified PPE) is preferably used. The content of the thermoplastic resin compatible with the styrene resin is preferably in the range of 30 to 65% by weight of the heat-resistant insulating film, and if it is less than 30% by weight, the adhesiveness to the conductor foil tends to be poor. If it exceeds 65% by weight, the solder heat resistance tends to be poor.

【0015】耐熱絶縁性フィルムには上記成分以外に機
械的強度を向上する目的で、さらに、ゴム状弾性体を含
有させてもよく、ゴム状弾性体としては、スチレン−ブ
タジエンブロック共重合体(SBR)、水素添加スチレ
ン−ブタジエンブロック共重合体(SEB)、スチレン
−ブタジエン−スチレンブロック共重合体(SBS)、
水素添加スチレン−ブタジエン−スチレンブロック共重
合体(SEBS)などが挙げられるが、これに限定され
るものではない。本発明においては、上記ゴム状弾性体
のうちSEBSが好適に使用される。ゴム状弾性体は耐
熱絶縁性フィルムの10〜20重量%の範囲で含有する
のが好ましく、10重量%未満では強度の改良効果が少
なく、20重量%を越えるものでは耐熱性が低下する傾
向がある。
The heat-resistant insulating film may further contain a rubber-like elastic material for the purpose of improving mechanical strength in addition to the above-mentioned components. As the rubber-like elastic material, a styrene-butadiene block copolymer ( SBR), hydrogenated styrene-butadiene block copolymer (SEB), styrene-butadiene-styrene block copolymer (SBS),
Examples include, but are not limited to, hydrogenated styrene-butadiene-styrene block copolymer (SEBS). In the present invention, SEBS is preferably used among the rubbery elastic bodies. The rubber-like elastic body is preferably contained in the range of 10 to 20% by weight of the heat-resistant insulating film, and if it is less than 10% by weight, the effect of improving the strength is small, and if it exceeds 20% by weight, the heat resistance tends to decrease. is there.

【0016】さらに、本発明において、耐熱絶縁性フィ
ルムは、特定の物性を有することが必要である。すなわ
ち、上記組成からなるフィルムであって、示差走査熱量
測定で昇温した時に測定される結晶融解ピーク温度が2
60℃以上であり、結晶融解熱量△Hmと昇温中の結晶
化により発生する結晶化熱量△Hcとが、下記の関係式
を満たすことが必要である。
Further, in the present invention, the heat-resistant insulating film needs to have specific physical properties. That is, a film having the above composition, wherein the crystal melting peak temperature measured when the temperature is raised by differential scanning calorimetry is 2
It is 60 ° C. or higher, and the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature rise must satisfy the following relational expression.

【0017】[(△Hm−△Hc)/△Hm]≦0.4 上記フィルムの結晶融解ピーク温度が260℃未満で
は、はんだ耐熱性が低下するという問題がある。
[(△ Hm- △ Hc) / △ Hm] ≦ 0.4 When the crystal melting peak temperature of the above film is less than 260 ° C., there is a problem that the solder heat resistance is reduced.

【0018】本発明において最も重要な制御因子である
熱特性は、フィルムの結晶融解熱量ΔHmと昇温中の結
晶化により発生する結晶化熱量ΔHcとの次の関係式に
よって表される。
The thermal characteristic, which is the most important control factor in the present invention, is represented by the following relational expression between the heat of crystal fusion ΔHm of the film and the heat of crystallization ΔHc generated by crystallization during temperature rise.

【0019】[(ΔHm−ΔHc)/ΔHm] すなわち、この熱特性は、JIS K7121、JIS
K7122に準じた示差走査熱量測定で、昇温したと
きのDSC曲線に現れる2つの転移熱の測定値、結晶融
解熱量ΔHm(J/g)と結晶化熱量ΔHc(J/g)
の値から上記式に従って算出される。
[(ΔHm−ΔHc) / ΔHm] That is, the thermal characteristics are defined by JIS K7121 and JIS K7121.
In differential scanning calorimetry according to K7122, measured values of two heats of transition appearing in the DSC curve when the temperature is raised, heat of crystal fusion ΔHm (J / g) and heat of crystallization ΔHc (J / g)
Is calculated according to the above equation from the value of.

【0020】この関係式[(ΔHm−ΔHc)/ΔH
m]の値は、原料ポリマーの種類・分子量・組成物の比
率等にも依存するが、耐熱絶縁性フィルムの成形・加工
条件に大きく依存する。すなわち、フィルム状に製膜す
る際に、原料ポリマーを溶融させた後、速やかに冷却す
ることにより、該数値を小さく制御することができる。
また、これらの数値は、各工程でかかる熱履歴を調整す
ることにより、制御することができる。熱履歴とは、す
なわち、フィルムの温度と、その温度になっていた時間
を指し、温度が高いほど、時間が長いほど、該数値は大
きくなる傾向にある。
This relational expression [(ΔHm−ΔHc) / ΔH
The value of m] also depends on the type and molecular weight of the raw material polymer, the ratio of the composition, and the like, but greatly depends on the molding and processing conditions of the heat-resistant insulating film. That is, when the film is formed into a film, the raw material polymer is melted and then cooled immediately, whereby the numerical value can be controlled to be small.
Further, these numerical values can be controlled by adjusting the heat history in each step. The thermal history refers to the temperature of the film and the time during which the temperature has been reached, and the numerical value tends to increase as the temperature increases or as the time increases.

【0021】上記耐熱絶縁性フィルムにおいて、この値
が0.4を超えていると、導体箔との熱融着による接着
を行う前の結晶化度がすでに高く、導体箔との熱融着に
よる接着成形温度を高温で行う必要があったり、導体箔
との熱融着による接着の際に結晶化が過度に進行してし
まい、熱融着による基板の多層化が困難となる。
In the heat-resistant insulating film, if this value exceeds 0.4, the degree of crystallinity before bonding with the conductor foil by heat fusion is already high, and It is necessary to perform the bonding at a high temperature, or crystallization proceeds excessively during bonding with the conductor foil by thermal fusion, making it difficult to form a multilayer substrate by thermal fusion.

【0022】次に、この関係式の制御の態様で最も重要
なことは、プリント配線基板を製造する過程において、
まず、耐熱絶縁性フィルムの少なくとも一面に導体箔を
熱融着してなるプリント配線基板用素板について、該熱
融着後の測定に基づく値が、下記の関係式を満たすこと
にある。
Next, the most important aspect of the control of the relational expression is that in the process of manufacturing the printed wiring board,
First, the value based on the measurement after the heat fusion of the base plate for a printed wiring board obtained by thermally fusing a conductive foil to at least one surface of a heat-resistant insulating film is to satisfy the following relational expression.

【0023】[(ΔHm−ΔHc)/ΔHm]≦0.6 この値が0.6を超えると、基板の多層化工程での熱融
着による接着性が低下し、多層化が困難になる。同様
に、導体箔との熱融着前の耐熱絶縁性フィルムについて
も、上記関係式の値はできるだけ小さい方がよい。例え
ば、熱融着前に0.6を超えていると、導体箔との熱融
着による接着を行う前の結晶性がすでに高く、導体箔と
の熱融着による接着成形温度を高温で行う必要があった
り、導体箔との熱融着による接着の際に結晶化が過度に
進行してしまい、熱融着による基板の多層化が困難とな
る。
[(ΔHm−ΔHc) / ΔHm] ≦ 0.6 If this value exceeds 0.6, the adhesiveness due to thermal fusion in the multilayering process of the substrate is reduced, and multilayering becomes difficult. Similarly, for the heat-resistant insulating film before the heat-sealing with the conductor foil, the value of the above relational expression is preferably as small as possible. For example, if it exceeds 0.6 before heat fusion, the crystallinity before bonding by heat fusion with the conductor foil is already high, and the bonding molding temperature by heat fusion with the conductor foil is performed at a high temperature. It is necessary or crystallization proceeds excessively during bonding by thermal fusion with the conductor foil, making it difficult to form a multilayer substrate by thermal fusion.

【0024】最終的には、多層化後のはんだ耐熱性を実
現するために、上記プリント配線基板用素板を、耐熱絶
縁性フィルムを介して融着し、多層化してなるプリント
配線基板について、該熱融着後の測定に基づく値が、下
記の関係式を満たすことになる。
Finally, in order to realize the solder heat resistance after the multilayering, the printed wiring board base plate is fused with a heat-resistant insulating film through a heat-resistant insulating film to obtain a multilayer printed wiring board. The value based on the measurement after the heat fusion satisfies the following relational expression.

【0025】[(ΔHm−ΔHc)/ΔHm]≧0.7 この値が0.7未満では、結晶化が不十分であるため、
はんだ耐熱性が低下するので好ましくない。
[(ΔHm−ΔHc) / ΔHm] ≧ 0.7 If this value is less than 0.7, crystallization is insufficient.
It is not preferable because solder heat resistance is reduced.

【0026】本発明において、耐熱絶縁性フィルムを構
成する樹脂組成物には、その性質を損なわない程度に、
他の樹脂や添加剤、例えば、熱安定剤、紫外線吸収剤、
光安定剤、核剤、着色剤、滑剤、難燃剤、無機フィラー
等の充填材等の各種添加剤を適宜配合してもかまわな
い。また、耐熱絶縁性フィルムの表面に、ハンドリング
性の改良等のために、エンボス加工やコロナ処理等を適
宜ほどこしてもかまわない。
In the present invention, the resin composition constituting the heat-resistant insulating film is added to such an extent that its properties are not impaired.
Other resins and additives, such as heat stabilizers, UV absorbers,
Various additives such as a light stabilizer, a nucleating agent, a coloring agent, a lubricant, a flame retardant, and a filler such as an inorganic filler may be appropriately compounded. Further, the surface of the heat-resistant insulating film may be appropriately subjected to embossing, corona treatment, or the like in order to improve handling properties.

【0027】耐熱絶縁性フィルムの製膜方法としては、
公知の方法、例えばTダイを用いる押出キャスト法やカ
レンダー法等を採用することができ、特に限定されるも
のではないが、フィルムの製膜性や安定生産性等の面か
ら、Tダイを用いる押出キャスト法が好ましい。Tダイ
を用いる押出キャスト法での成形温度は、組成物の流動
特性や製膜性等によって適宜調整されるが、概ね融点以
上、310℃以下である。また、該フィルムの厚みは、
通常25〜300μmである。
As a method of forming a heat-resistant insulating film,
A known method, for example, an extrusion casting method using a T-die, a calendar method, or the like can be employed, and is not particularly limited. However, from the viewpoint of film forming properties and stable productivity, a T-die is used. Extrusion casting is preferred. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics, film forming properties, and the like of the composition, but is generally from the melting point to 310 ° C. In addition, the thickness of the film,
Usually, it is 25 to 300 μm.

【0028】本発明のプリント配線基板は耐熱絶縁性フ
ィルムを使用し、目的に応じた層数の基板を製造するこ
とが出来るが、まず、耐熱絶縁性フィルムに所定の通孔
を設け、ここに導電性ペーストを充填した後、その両面
に導体箔、例えば銅箔を熱融着してプリント配線基板用
素板(「両面銅張板」ともいう。)とし、ついで、導体
箔にエッチング処理により導電パターンを形成し、得ら
れた素材を2枚用い中間に所定の通孔を設け、導電性ペ
ーストを充填した耐熱絶縁性フィルムを介在させて4層
基板を製造できる。導電パターン相互間は、導電ペース
トによって接続される。同様にして6層以上の基板を作
成することも可能である。
The printed wiring board of the present invention uses a heat-resistant insulating film, and can be manufactured in a number of layers according to the purpose. First, a predetermined through hole is provided in the heat-resistant insulating film. After the conductive paste is filled, a conductor foil, for example, a copper foil, is heat-sealed on both surfaces to form a printed wiring board blank (also referred to as a “double-sided copper-clad board”). A four-layer substrate can be manufactured by forming a conductive pattern, using two obtained materials, providing a predetermined through hole in the middle, and interposing a heat-resistant insulating film filled with a conductive paste. The conductive patterns are connected to each other by a conductive paste. Similarly, it is also possible to create a substrate having six or more layers.

【0029】本発明に使用される導体箔としては、例え
ば銅、金、銀、アルミニウム、ニッケル、錫等の、厚さ
5〜70μm程度の金属箔が挙げられる。金属箔として
は、通常銅箔が使用され、さらに表面を黒色酸化処理等
の化成処理を施したものが、好適に使用される。
Examples of the conductor foil used in the present invention include metal foils having a thickness of about 5 to 70 μm, such as copper, gold, silver, aluminum, nickel and tin. As the metal foil, a copper foil is usually used, and a metal foil whose surface has been subjected to a chemical conversion treatment such as a black oxidation treatment is preferably used.

【0030】プリント配線基板の製造方法においてその
熱融着方法としては、加熱、加圧できる方法であれば公
知の方法を採用することができ、特に限定されるもので
はないが、例えば、熱プレス法や熱ラミネートロール
法、又はこれらを組み合わせた方法を好適に採用するこ
とができる。
In the method of manufacturing a printed wiring board, a known method can be adopted as a method of heat fusion as long as it can be heated and pressed, and is not particularly limited. A method, a heat laminating roll method, or a method combining these methods can be suitably employed.

【0031】[0031]

【実施例】以下に、実施例でさらに詳しく説明するが、
これらにより本発明は何ら制限を受けるものではない。
なお、本明細書中に表示されるフィルムについての種々
の測定および評価は、次のようにして行った。
The present invention will be described in more detail with reference to the following examples.
The present invention is not limited by these.
Various measurements and evaluations of the film displayed in the present specification were performed as follows.

【0032】(1)ガラス転移温度、結晶化温度、結晶
融解ピーク温度 パーキンエルマー(株)製DSC−7を用いて、試料1
0mgをJIS K7121に準じて、加熱速度を10
℃/分で昇温した時のサーモグラムから求めた。
(1) Glass transition temperature, crystallization temperature, crystal melting peak temperature Sample 1 was prepared using DSC-7 manufactured by Perkin Elmer Co., Ltd.
0 mg according to JIS K7121 at a heating rate of 10
It was determined from the thermogram when the temperature was raised at ° C / min.

【0033】(2)(ΔHm−ΔHc)/ΔHm パーキンエルマー(株)製DSC−7を用いて、試料1
0mgをJIS K7122に準じて、加熱速度を10
℃/分で昇温した時のサーモグラムから、結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、算出した。
(2) (ΔHm−ΔHc) / ΔHm Sample 1 was obtained by using DSC-7 manufactured by PerkinElmer Co., Ltd.
0 mg according to JIS K7122, heating rate is 10
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were calculated from the thermogram when the temperature was raised at a rate of ° C./min.

【0034】(3)接着強度 JIS C6481の常態の引き剥がし強さに準拠し
て、両面の銅箔をそれぞれ測定し、その平均値をkgf
/cmで表示した。
(3) Adhesive strength Copper foils on both sides were measured in accordance with the normal peel strength of JIS C6481, and the average value was measured in kgf.
/ Cm.

【0035】(4)はんだ耐熱性 JIS C6481の常態のはんだ耐熱性に準拠し、2
60℃のはんだ浴に試験片を銅箔側とはんだ浴とが接触
するように10秒間浮かべ、室温まで冷却した後、膨れ
やはがれ等の有無を目視によって調べ、良否を判定し
た。
(4) Solder heat resistance According to the normal solder heat resistance of JIS C6481, 2
The test piece was floated in a solder bath at 60 ° C. for 10 seconds so that the copper foil side and the solder bath were in contact with each other, cooled to room temperature, and visually inspected for swelling or peeling to determine the quality.

【0036】(5)耐折性 両面銅張板を作製し、180度の耐折試験を実施し、フ
ィルムにクラックが入った場合の耐折回数を調べた。
(5) Folding Resistance A double-sided copper-clad board was prepared and subjected to a 180 ° bending resistance test to determine the number of times the film was cracked when a crack was formed.

【0037】(実施例1)シンジオタクチック構造を有
するスチレン系樹脂組[出光石油化学(株)製、ザレッ
ク](以下、単にSPSと略記することがある)60重
量%と、変性PPE[三菱エンジニアリングプラスチッ
クス社製、ユピエース]40重量%とからなる混合組成
物を、Tダイを備えた三菱重工(株)製40mmφ二軸
混練押出機(L/D=35)を用いて押し出し、調温機
能を備えたキャストロールに直ちに接触させて固化させ
て、厚さ100μmのフィルムを得た。押出条件は以下
の通りであった。
Example 1 A styrenic resin group having a syndiotactic structure [Zarek, manufactured by Idemitsu Petrochemical Co., Ltd.] (hereinafter sometimes abbreviated simply as SPS) 60% by weight and modified PPE [Mitsubishi Engineering Plastics Co., Ltd., Iupiece] 40% by weight was extruded using a 40 mmφ twin screw kneading extruder (L / D = 35) manufactured by Mitsubishi Heavy Industries, Ltd. equipped with a T die, and the temperature was adjusted. The film was immediately brought into contact with a cast roll having a function and solidified to obtain a film having a thickness of 100 μm. Extrusion conditions were as follows.

【0038】 押出設定温度 290〜310℃ 押出量 20Kg/h キャストロール温度 95℃ (実施例2)実施例1において、混合組成物の割合をS
PS40重量%と、変性PPE60重量%に変更した以
外は同様にして、フィルムを得た。
Extrusion set temperature 290 to 310 ° C. Extruded amount 20 kg / h Cast roll temperature 95 ° C. (Example 2) In Example 1, the proportion of the mixed composition was set to S
A film was obtained in the same manner except that PS was changed to 40% by weight and modified PPE was changed to 60% by weight.

【0039】(参考例1〜3)実施例1において、混合
組成物の割合を、それぞれ、SPS100重量%(参考
例1)、SPS30重量%と、変性PPS70重量%
(参考例2)および、変性PPE100重量%(参考例
3)に変更した以外は同様にして、フィルムを得た。次
に、上記実施例および参考例で得られたフィルムについ
て、それぞれ、ガラス転移温度、結晶化温度、結晶化熱
量ΔHc、結晶融解ピーク温度、結晶融解熱量ΔHmを
測定し、(ΔHm−ΔHc)/ΔHmを算出した。結果
を、表1にまとめて示した。
(Reference Examples 1 to 3) In Example 1, the proportions of the mixed compositions were respectively 100% by weight of SPS (Reference Example 1), 30% by weight of SPS, and 70% by weight of modified PPS.
A film was obtained in the same manner as in (Reference Example 2) except that the modified PPE was changed to 100% by weight (Reference Example 3). Next, with respect to the films obtained in the above Examples and Reference Examples, the glass transition temperature, the crystallization temperature, the heat of crystallization ΔHc, the crystal melting peak temperature, and the heat of crystal fusion ΔHm were measured, and (ΔHm−ΔHc) / ΔHm was calculated. The results are summarized in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】(実施例3)実施例1で得られたフィルム
をA4サイズにカットし、両面に厚さ18μmの電解銅
箔を積層し、圧力30kgf/cm、温度160℃、
時間10分の条件で、熱プレスにより接着させ、両面銅
貼り板を作製した。さらに、エッチングにより回路を形
成した後、この回路を形成した両面銅貼り板2組の間
に、新たなフィルムを積層し、圧力30kgf/c
、温度180℃、時間20分の条件で、熱プレスに
より多層化し、4層基板を作製した。加工工程中におけ
る銅箔の剥離等は何ら問題なく、得られた4層基板は、
層間の密着性および銅箔との接着強度も十分であり、ま
た、はんだ耐熱性も良好であった。
Example 3 The film obtained in Example 1 was cut into A4 size, electrolytic copper foil having a thickness of 18 μm was laminated on both sides, and the pressure was 30 kgf / cm 2 , the temperature was 160 ° C.
Bonding was performed by a hot press under the conditions of a time of 10 minutes to produce a double-sided copper-clad plate. Further, after a circuit is formed by etching, a new film is laminated between the two sets of double-sided copper-clad boards on which the circuit is formed, and a pressure of 30 kgf / c is applied.
Under a condition of m 2 , a temperature of 180 ° C., and a time of 20 minutes, a multilayer was formed by hot pressing to produce a four-layer substrate. The peeling of the copper foil during the processing step has no problem, and the obtained four-layer substrate
The adhesion between the layers and the adhesive strength with the copper foil were sufficient, and the solder heat resistance was also good.

【0042】(比較例1)実施例3において、両面銅貼
り板を作製する際の熱プレス温度を180℃に変更した
以外は同様にして、4層基板を作製した。得られた4層
基板は、層間の密着性が不十分であり容易に剥離した。
(Comparative Example 1) A four-layer substrate was produced in the same manner as in Example 3, except that the hot pressing temperature for producing the double-sided copper-clad board was changed to 180 ° C. The obtained four-layer substrate had insufficient adhesion between the layers and was easily peeled.

【0043】(実施例4)実施例3において、実施例1
で得られたフィルムを実施例2で得られたフィルムに、
また、両面銅貼り板を作製する際の熱プレス温度を17
0℃に、4層基板を作製する際の熱プレス条件を温度1
90℃、時間30分に変更した以外は同様にして、4層
基板を作製した。加工工程中における銅箔の剥離等は何
ら問題なく、得られた4層基板は、層間の密着性および
銅箔との接着強度も十分であり、また、はんだ耐熱性も
良好であった。
(Embodiment 4) In Embodiment 3, Embodiment 1
To the film obtained in Example 2,
In addition, the hot press temperature for producing a double-sided copper-clad board is 17
At 0 ° C, the hot pressing conditions for producing a four-layer substrate were set at a temperature of 1
A four-layer substrate was prepared in the same manner except that the temperature was changed to 90 ° C. and the time was 30 minutes. There was no problem in peeling of the copper foil during the processing step, and the obtained four-layer substrate had sufficient adhesion between the layers and adhesive strength with the copper foil, and also had good soldering heat resistance.

【0044】(比較例2)実施例4において、4層基板
を作製する際の熱プレス条件を温度170℃、時間10
分に変更した以外は同様にして、4層基板を作製した。
得られた4層基板は、層間の密着性はあったが、はんだ
耐熱性は不良であった。
(Comparative Example 2) In Example 4, the hot pressing conditions for producing a four-layer substrate were set to 170 ° C. for 10 hours.
A four-layer substrate was produced in the same manner except that the number of minutes was changed.
The resulting four-layer substrate had good adhesion between layers, but poor soldering heat resistance.

【0045】(比較例3)実施例3において、実施例1
で得られたフィルムを参考例2で得られたフィルムに、
また、両面銅貼り板を作製する際の熱プレス温度220
℃、時間20分に変更した以外は同様にして、両面銅貼
り板を作製した。これらの実施例および比較例で得られ
た両面銅貼り板および4層基板についての評価結果を、
表2にまとめて示した。
(Comparative Example 3)
To the film obtained in Reference Example 2,
In addition, a hot press temperature of 220 when producing a double-sided copper-clad board is used.
A double-sided copper-clad board was produced in the same manner except that the temperature was changed to 20 ° C. for 20 minutes. Evaluation results for the double-sided copper-clad board and the four-layer board obtained in these Examples and Comparative Examples
The results are summarized in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】表1、2中、実施例1〜4についてみる
と、フィルムの原料組成が規定範囲内にあり、かつ特定
の熱特性を有する場合は、低温(250℃以下)での導
体箔との積層が可能であり、また、多層基板を作製する
際に、(ΔHm−ΔHc)/ΔHmの値を、導体箔との
熱融着による接着工程後は0.6以下に、基板の多層化
工程後は0.7以上に、それぞれ制御すれば、低温(2
50℃以下)での多層化が可能であり、かつ、はんだ耐
熱性が良好なことが分かる。一方、比較例1〜2のよう
に、多層基板を作製する際の(ΔHm−ΔHc)/ΔH
mの値を規定範囲内に制御していない場合は、多層化が
困難になったり、はんだ耐熱性が不良となることが分か
る。さらに、比較例3のように、フィルムの原料組成が
規定範囲外では、得られた両面銅貼り板の銅箔との接着
強度が低く多層化が困難なことが分かる。
Referring to Examples 1 to 4 in Tables 1 and 2, when the raw material composition of the film is within the specified range and has a specific thermal characteristic, the conductor foil at a low temperature (250 ° C. or lower) is used. When a multilayer substrate is produced, the value of (ΔHm−ΔHc) / ΔHm is reduced to 0.6 or less after the bonding step by heat fusion with a conductive foil. After the process, the temperature is controlled to 0.7 or more, and if each is controlled, the low temperature (2
It can be seen that multi-layering at 50 ° C. or lower is possible and the soldering heat resistance is good. On the other hand, as in Comparative Examples 1 and 2, (ΔHm−ΔHc) / ΔH
When the value of m is not controlled within the specified range, it can be seen that multilayering becomes difficult and solder heat resistance becomes poor. Further, as in Comparative Example 3, when the raw material composition of the film is out of the specified range, it can be seen that the adhesive strength with the copper foil of the obtained double-sided copper-clad board is low and it is difficult to form a multilayer.

【0048】[0048]

【発明の効果】本発明によれば、はんだ耐熱性、可とう
性、耐薬品性、機械的強度、電気的特性等に優れ、かつ
低温での熱成形性(熱融着性)に優れた耐熱絶縁性フィ
ルムとこれをフィルム状絶縁材として使用した、プリン
ト配線基板用素板および基板の製造方法が提供できる。
According to the present invention, the heat resistance, the flexibility, the chemical resistance, the mechanical strength, the electrical properties, etc., are excellent, and the thermoformability (heat fusion property) at a low temperature is excellent. A heat-resistant insulating film and a method for manufacturing a substrate for a printed wiring board and a method for manufacturing a substrate using the same as a film-like insulating material can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101:00 53:02) Fターム(参考) 4J002 AA01X AC003 AC083 AC113 BB00X BC00X BC03W BN143 BN213 CF00X CH07X CL00X CN02X GQ01 5E346 AA12 AA15 AA22 AA26 AA32 AA43 BB01 CC08 DD02 EE02 EE06 EE08 EE14 EE42 FF18 FF35 GG28 HH11 HH18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 101: 00 53:02) F-term (Reference) 4J002 AA01X AC003 AC083 AC113 BB00X BC00X BC03W BN143 BN213 CF00X CH07X CL00X CN02X GQ01 5E346 AA12 AA15 AA22 AA26 AA32 AA43 BB01 CC08 DD02 EE02 EE06 EE08 EE14 EE42 FF18 FF35 GG28 HH11 HH18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、当該スチレン系樹脂組成物と相溶性
のある熱可塑性樹脂を主成分とし上記スチレン系樹脂組
成物の含有率が35重量%以上のフィルム状絶縁体であ
って、示差走査熱量測定で昇温した時に測定される結晶
融解ピーク温度が260℃以上であり、結晶融解熱量△
Hmと昇温中の結晶化により発生する結晶化熱量△Hc
とが、下記の関係式を満たすことを特徴とする耐熱絶縁
性フィルム。 [(△Hm−△Hc)/△Hm]≦0.4
1. A styrenic resin composition having a syndiotactic structure, and a thermoplastic resin compatible with the styrenic resin composition as a main component, and the content of the styrenic resin composition is 35% by weight or more. Having a crystal melting peak temperature of 260 ° C. or higher measured when the temperature is increased by differential scanning calorimetry;
Hm and the heat of crystallization generated by the crystallization during the heating △ Hc
Satisfies the following relational expression: [(△ Hm- △ Hc) / △ Hm] ≦ 0.4
【請求項2】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、当該スチレン系樹脂組成物と相溶性
のある熱可塑性樹脂を主成分とし上記スチレン系樹脂組
成物の含有率が35重量%以上のフィルム状絶縁体であ
って、示差走査熱量測定で昇温した時に測定される結晶
融解ピーク温度が260℃以上である耐熱絶縁性フィル
ムに、必要とあれば通孔を設けて導電性ペーストを充填
した後、その少なくとも一面に、導体箔を熱融着してな
るプリント配線基板用素板であって、該熱融着後におい
て、示差走査熱量測定で昇温した時に測定される、結晶
融解熱量ΔHmと昇温中の結晶化により発生する結晶化
熱量ΔHcとが、下記の関係式を満たす [(ΔHm−ΔHc)/ΔHm]≦0.6 ことを特徴とするプリント配線基板用素板。
2. A styrenic resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrenic resin composition as a main component, and the content of the styrenic resin composition is 35% by weight or more. The film-like insulator of the above, the crystal melting peak temperature measured when the temperature is raised by differential scanning calorimetry is 260 ℃ or more heat-resistant insulating film, if necessary, through holes provided conductive paste After filling, at least one surface thereof is a base plate for a printed wiring board obtained by heat-sealing a conductive foil, and after the heat-sealing, the crystal melting is measured when the temperature is raised by differential scanning calorimetry. A substrate for a printed circuit board, wherein the heat quantity ΔHm and the heat quantity of crystallization ΔHc generated by crystallization during temperature rise satisfy the following relational expression: [(ΔHm−ΔHc) / ΔHm] ≦ 0.6.
【請求項3】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、当該スチレン系樹脂組成物と相溶性
のある熱可塑性樹脂を主成分とし上記スチレン系樹脂組
成物の含有率が35重量%以上のフィルム状絶縁体であ
って、示差走査熱量測定で昇温した時に測定される結晶
融解ピーク温度が260℃以上である耐熱絶縁性フィル
ムに、必要とあれば通孔を設けて導電性ペーストを充填
した後、その少なくとも一面に、導体箔を熱融着してな
るプリント配線基板用素板の製造方法であって、該熱融
着後において、示差走査熱量測定で昇温した時に測定さ
れる、結晶融解熱量ΔHmと昇温中の結晶化により発生
する結晶化熱量ΔHcとが、下記の関係式を満たす [(ΔHm−ΔHc)/ΔHm]≦0.6 ことを特徴とするプリント配線基板用素板の製造方法。
3. A styrene resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin composition as a main component, and the content of the styrene resin composition is 35% by weight or more. The film-like insulator of the above, the crystal melting peak temperature measured when the temperature is raised by differential scanning calorimetry is 260 ℃ or more heat-resistant insulating film, if necessary, through holes provided conductive paste After filling, at least one surface thereof is a method for producing a printed wiring board base plate by heat-sealing a conductive foil, which is measured when the temperature is raised by differential scanning calorimetry after the heat-sealing. And a heat of crystallization ΔHm and a heat of crystallization ΔHc generated by crystallization during temperature increase satisfy the following relational expression: [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 Elementary Plate manufacturing method.
【請求項4】 請求項3記載のプリント配線基板用素板
の製造方法において、上記耐熱絶縁性フィルムと導体箔
との熱融着を、該耐熱絶縁性フィルムのガラス転移温度
以上、結晶化温度未満の温度で行うことを特徴とするプ
リント配線基板用素板の製造方法。
4. The method according to claim 3, wherein the heat-sealing of the heat-resistant insulating film and the conductive foil is performed at a temperature equal to or higher than a glass transition temperature of the heat-resistant insulating film. A method for producing a bare plate for a printed wiring board, which is performed at a temperature of less than.
【請求項5】 請求項3乃至請求項4記載の製造方法に
より得られたプリント配線基板用素板を、その導体箔に
回路形成に必要なエッチング処理を施した後、耐熱絶縁
性フィルムを介して熱融着し、多層化するプリント配線
基板の製造方法において、該熱融着後において、上記結
晶融解熱量ΔHmと結晶化熱量ΔHcとが、下記の関係
式を満たす [(ΔHm−ΔHc)/ΔHm]≧0.7 ことを特徴とするプリント配線基板の製造方法。
5. The printed wiring board base plate obtained by the manufacturing method according to claim 3 is subjected to an etching treatment required for forming a circuit on a conductive foil thereof, and then through a heat-resistant insulating film. In the method for manufacturing a printed wiring board that is heat-sealed and multilayered, the heat of crystal fusion ΔHm and the heat of crystallization ΔHc satisfy the following relational expression after the heat fusion: [(ΔHm−ΔHc) / ΔHm] ≧ 0.7. A method for manufacturing a printed wiring board.
【請求項6】 請求項5記載のプリント配線基板の製造
方法において、上記耐熱絶縁性フィルムと導体箔との熱
融着及び多層化の際の熱融着を、いずれも、190℃以
下の温度で行うことを特徴とするプリント配線基板の製
造方法。
6. The method for manufacturing a printed wiring board according to claim 5, wherein the heat-sealing of the heat-resistant insulating film and the conductive foil and the heat-sealing at the time of multilayering are performed at a temperature of 190 ° C. or less. A method for manufacturing a printed wiring board, characterized in that:
【請求項7】 ゴム状弾性体を10〜20重量%の範囲
で含有してなることを特徴とする請求項1乃至6記載の
耐熱絶縁性フィルム。
7. The heat-resistant insulating film according to claim 1, comprising a rubber-like elastic body in a range of 10 to 20% by weight.
JP20837399A 1999-07-23 1999-07-23 Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board Expired - Fee Related JP3990513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20837399A JP3990513B2 (en) 1999-07-23 1999-07-23 Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20837399A JP3990513B2 (en) 1999-07-23 1999-07-23 Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board

Publications (2)

Publication Number Publication Date
JP2001031818A true JP2001031818A (en) 2001-02-06
JP3990513B2 JP3990513B2 (en) 2007-10-17

Family

ID=16555221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20837399A Expired - Fee Related JP3990513B2 (en) 1999-07-23 1999-07-23 Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board

Country Status (1)

Country Link
JP (1) JP3990513B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142830A (en) * 1993-11-18 1995-06-02 Idemitsu Kosan Co Ltd Printed wiring board laminate material
JPH07186332A (en) * 1993-12-27 1995-07-25 Toyobo Co Ltd Insulating film
JPH10265592A (en) * 1997-03-25 1998-10-06 Shin Etsu Polymer Co Ltd Production of prepreg for printed wiring board
JPH11172061A (en) * 1997-12-15 1999-06-29 Idemitsu Petrochem Co Ltd Styrene resin composition
JP2000040421A (en) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd Electric part
JP2000216511A (en) * 1999-01-22 2000-08-04 Idemitsu Petrochem Co Ltd Multilayer printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142830A (en) * 1993-11-18 1995-06-02 Idemitsu Kosan Co Ltd Printed wiring board laminate material
JPH07186332A (en) * 1993-12-27 1995-07-25 Toyobo Co Ltd Insulating film
JPH10265592A (en) * 1997-03-25 1998-10-06 Shin Etsu Polymer Co Ltd Production of prepreg for printed wiring board
JPH11172061A (en) * 1997-12-15 1999-06-29 Idemitsu Petrochem Co Ltd Styrene resin composition
JP2000040421A (en) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd Electric part
JP2000216511A (en) * 1999-01-22 2000-08-04 Idemitsu Petrochem Co Ltd Multilayer printed wiring board

Also Published As

Publication number Publication date
JP3990513B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
KR100823403B1 (en) Polyaryl ketone resin film and laminates thereof with metal
WO2000059274A1 (en) Method for manufacturing three-dimensional printed wiring board
CN110066557B (en) Resin-coated copper foil, preparation method thereof, copper-clad plate containing resin-coated copper foil and printed circuit board
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP4787195B2 (en) Conductive paste composition for via hole filling and multilayer wiring board using the same
JP4996838B2 (en) Multilayer wiring board
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
JP4234896B2 (en) HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM
CN103702511A (en) High thermal conductivity metal substrate and manufacturing method thereof
JP3514667B2 (en) Heat fusible insulating sheet
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JP2001031818A (en) Heat-resistant insulating film and production of raw board for printed circuit board and substrate by using the same film
JP3803241B2 (en) Method of joining heat-resistant resin molded body and metal body and joined body
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4965102B2 (en) Conductive paste composition for via hole filling
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JP4248697B2 (en) Heat sealable insulation sheet
JP4094211B2 (en) Method for producing metal foil laminate
JP3995836B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and manufacturing method thereof
CN105898983B (en) Printed wiring board and its manufacturing method
JP2008103427A (en) Separation film
JP3947329B2 (en) Coverlay film
KR100874080B1 (en) Heat-resistant film and metal laminate thereof
JP2007096122A (en) Connection bonding sheet for multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees