JP3802601B2 - Initial strength expression type low heat generation slag cement - Google Patents
Initial strength expression type low heat generation slag cement Download PDFInfo
- Publication number
- JP3802601B2 JP3802601B2 JP4010996A JP4010996A JP3802601B2 JP 3802601 B2 JP3802601 B2 JP 3802601B2 JP 4010996 A JP4010996 A JP 4010996A JP 4010996 A JP4010996 A JP 4010996A JP 3802601 B2 JP3802601 B2 JP 3802601B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- heat
- slag
- hydration
- age
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
- C04B28/082—Steelmaking slags; Converter slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/20—Retarders
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【産業上の利用分野】
本発明は水和発熱を抑制した低発熱スラグセメントに関し、特に、低発熱性と強度発現性を兼ね備えた初期強度発現型低発熱スラグセメントに関するものである。
【0002】
【従来の技術】
ダムや橋脚等のマスコンクリートでは、セメントの水和に伴う発熱によりコンクリートに熱応力が発生し、これが極端な場合にはひび割れを生じる。マスコンクリート構造物のスケールが巨大化するに従い、この問題が深刻化している。
【0003】
この問題に対応して、高ビーライト系ポルトランドセメントや高ビーライト系混合セメント等の種々の低発熱セメントが開発されているが、これらの低発熱セメントは、発熱量の低下に伴い初期強度の発現性も低下するという問題がある。セメントの発熱と強度発現は、どちちらも水和反応によりもたらされるものであるから、発熱量と強度には相関があり、一般に、発熱量/強度の値はほぼ一定であると考えられている。
【0004】
高ビーライト系ポルトランドセメントでは、ビーライトの水和熱がその他のクリンカー成分の水和熱と比べて極めて小さいことから、発熱量が低い割りには強度発現性に優れていると考えられる。しかしながら、実際には、ビーライトの水和反応は他のクリンカー成分と比べて非常に遅く、91日材齢では期待する強度が得られるものの、28日材齢では水和反応が不十分であって強度発現性が低く発熱量/初期強度の値は、通常のセメントに比べて大きな差は認められない。
【0005】
これに対し、特開平6−287046号公報、特公平7−74086号公報には、ビーライト(C2 S)を大量に含むクリンカーを用いた低発熱セメントが開示されている。しかしながら、これらはビーライトを75%以上も含む特殊なものであり、このようなクリンカーは工業的に製造しにくいという問題がある。また、特開平2−287046号公報にも同様な低発熱セメントが開示されているが、高炉水砕スラグの配合比率が高く、初期強度発現性に問題がある。
【0006】
【発明が解決しようとする課題】
したがって、本発明の目的は、従来の高ビーライト系ポルトランドセメントや高ビーライト系混合セメント等の低発熱セメントに比較して同等以上の低発熱性を有するとともに28日材齢までの初期強度の発現性も著しく改善された初期強度発現型低発熱スラグセメントを提供することにある。
【0007】
【問題を解決するための手段】
本発明者らは、かかる課題を解決すべく鋭意研究を行った結果、C2Sを50〜70重量%含有するポルトランドセメントに、ブレーン比表面積が6000〜8000cm2/gである高炉水砕スラグを配合することにより、28日材齢までの発熱量/強度の値が従来のセメントより顕著に低くなることを見出し、本発明を完成した。
すなわち、本発明は、C2S含有量が50〜70重量%であるポルトランドセメントと、ブレーン比表面積が6000〜8000cm2/gである高炉水砕スラグと、二水せっこう及び/又は無水せっこうとを配合してなるスラグセメントであって、ポルトランドセメントと高炉水砕スラグの配合比率(重量基準)が30/70であり、全セメントに対するSO3含有率が2〜3重量%であり、JIS R 5203に基づく28日材齢までの水和セメントの水和熱が250J/g以下であり、JIS R 5201に基づく28日材齢のモルタルの圧縮強度が35N/mm2以上であり、かつ、前記水和熱/圧縮強度の値が6.5(J/g)/(N/mm2)以下であることを特徴とする初期強度発現型低発熱スラグセメントである。
【0008】
【発明の実施態様】
以下、本発明の初期強度発現型低発熱スラグセメント(以下、本発明セメントという)について詳細に説明する。本発明でC2 Sとは、ポルトランドセメントの主成分のうち2CaO・SiO2 の組成を有するものであり、ビーライトとも呼ばれる水和熱の低い水硬性成分である。ポルトランドセメントのC2 S含有量が40重量%未満では低発熱性が達成できず、70重量%を超えると製造コストが高くなって経済性が損なわれる。このポルトランドセメントは、C2 S含有量が40〜70重量%のポルトランドセメントクリンカーを原料として製造することもできるし、C2 S含有量が40重量%より高いポルトランドセメントと低いポルトランドセメントを所定割合で混合して製造することもできる。
【0009】
また、本発明で高炉水砕スラグとは、製鉄所の高炉から発生する溶融状スラグを水砕、急冷したものであり、ガラス質の含有量が高く、潜在水硬性を有するものである。通常の高炉セメントに用いられる高炉水砕スラグはブレーン比表面積が4000cm2 /g程度に微粉砕したものであるが、本発明セメントにはブレーン比表面積が5000〜8000cm2 /gに微粉砕した高炉水砕スラグを用いる。高炉水砕スラグの粉末度がブレーン比表面積で5000cm2 /g未満では強度発現性が不十分であり、8000cm2 /gを超えると製造コストが高くなって経済性が損なわれる。
【0010】
本発明セメントにおいて、ポルトランドセメントと高炉水砕スラグの配合比率は、重量基準で50/50〜30/70である。高炉水砕スラグの配合比率がこれより低下すると、強度発現性は高くなるが水和熱が減少しない。また、ポルトランドセメントの配合比率がこれより低くなると、水和熱は減少するが強度発現性が改善されない。
【0011】
さらに、本発明セメントには、ポルトランドセメントと高炉水砕スラグからなるスラグセメントに、調製した全セメントに対するSO3 含有率が2〜3重量%になるように、二水せっこう及び/又は無水せっこうを配合する。せっこうの配合比率がSO3 換算で2重量%未満では凝結の調整が困難であり、3重量%を超えると残存せっこうによる長期強度の低下を招くことになり、好ましくない。
【0012】
本発明セメントに、必要に応じて、水和反応を抑制する公知の凝結遅延剤、例えば、オキシカルボン酸、リグニンスルホン酸、グルコン酸及びこれらの塩から選ばれた1種又は2種以上を配合してもよい。また、本発明セメントにその他の微量添加剤を配合してもよいが、炭酸カルシウムは配合しないか配合しても1%以下とするのがよい。
【0013】
本発明セメントは、特定された成分とその配合比率に加えて、本発明セメント及びこれから調製したモルタルの物性が特定範囲にあるものである。すなわち、JIS R 5203(1995改正)試験に基づく28日材齢までの水和セメントペーストの水和熱が250J/g以下で、28日材齢のモルタルの圧縮強度が35N/mm2 以上であり、かつ、前記水和熱/圧縮強度の値が6.5(J/g)/(N/mm2 )以下であることを要する。なお、28日材齢までの水和セメントペーストの水和熱とは、JIS R 5203に基づく試験方法により、水/セメント比40%のセメントペーストを20℃で28日間養生したのちの水和セメントと、未水和セメントとをそれぞれ酸に溶解し、その際の溶解熱を測定し、ヘッスの法則に基づいて、その差により求める。すなわち、未水和セメントの溶解熱Tcと水和セメントの溶解熱Twを測定し、Tc−Twを28日材齢までの水和熱とする。本発明では、セメントに水を加えて成型した翌日を材齢1日目として、28日材齢までの期間中に発生した熱量の総和をいう。また、28日材齢のモルタルの圧縮強度とは、JIS R 5201(1987年改正)に基づく試験方法により測定したものである。
【0014】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0015】
実施例1〜3及び参考例1〜5
C2S含有量が20重量%の普通ポルトランドセメントと、C2S含有量が60重量%の高ビーライト系ポルトランドセメント(市販品)を所定の割合で混合して、C2S含有量が異なる高ビーライト系ポルトランドセメントを調製した。このポルトランドセメントに、ブレーン比表面積が6000cm2 /gと、7000cm2 /gになるように微粉砕した高炉水砕スラグと、二水せっこうを所定の配合比率で混合して、スラグセメントを製造した。スラグセメントの配合比率を表1に掲げる。表1において、PCはポルトランドセメントを、スラグは高炉水砕スラグを表す。また、SO3 含有率は外割である。
【0016】
【表1】
【0017】
表1の本発明セメントを用いて調製した28日材齢のモルタルについて、JIS R 5201に従い圧縮強度試験を、また、JIS R 5203に従い28日材齢までの水和熱試験を行った。試験結果を表2に掲げる。
【0018】
【表2】
【0019】
表2から明らかなとおり、本発明セメントは、28日材齢までの水和熱量が250J/g以下で、モルタルの圧縮強度が35N/mm2 以上であり、かつ、水和熱/圧縮強度の値が6.5Jmm2 /gN以下となっており、28日材齢までの水和熱が低い割にはモルタルの圧縮強度が高いという従来の低発熱セメントにない特性を示している。
【0020】
参考例6
参考例3のスラグセメントに、凝結遅延剤としてオキシカルボン酸を0.4重量%添加したものを用いて、コンクリート断熱温度上昇試験を行った。コンクリートの配合は、単位セメント量を260kg/m3 、細骨材率(S/a)を41%、スランプが8cmになるように水/セメント比(W/C)を0.55に調整した。この練り上がりコンクリートを上部直径40cm、下部直径30cm、高さ40cmの円錐柱型断熱容器に投入し、マルイ株式会社製の空気循環式断熱温度上昇試験装置に設置して、供試体中心にセットした熱電対により温度の経時変化を測定した。投入時の練り上がり温度と、投入後14日経過して平衡に達している最高到達温度の差を断熱温度上昇値として求めたところ、断熱温度上昇値は27℃であった。また、凝結遅延剤を使用しない場合の断熱温度上昇値は30℃であった。
【0021】
比較例1〜11
実施例と同様に、所定のC2 S含有量のポルトランドセメントを調製し、このポルトランドセメントに、ブレーン比表面積が4000cm2 /gと、6000cm2 /gになるように微粉砕した高炉水砕スラグと、二水せっこうを所定の配合比率で混合して、比較例セメントを製造した。また、実施例と同様に、比較例セメントの水和熱試験及びこれから調製したモルタルについて試験を行った。比較例セメントの配合比率を表3に、試験結果を表4に掲げる。表3において、PCはポルトランドセメントを、スラグは高炉水砕スラグを表す。また、SO3 含有率は外割である。
【0022】
【表3】
【0023】
【表4】
【0024】
表4に掲げた比較例の試験結果には、28日材齢までの水和熱が250J/g以下又はモルタルの圧縮強度が35N/mm2 以上のどちらかだけを満たしているものはあるが、両方を同時に満たしているものはなく、前記水和熱/圧縮強度については6.5(J/g)/(N/mm2 )以下を満たすものは皆無である。比較例1〜3ではセメント中のC2 S量が少ないので、28日材齢までの水和熱が高い。比較例4では高炉水砕スラグを全く配合していない高ビーライトポルトランドセメントの試験結果を示しているが、圧縮強度が非常に低く、前記水和熱/圧縮強度の値が最高値を示した。比較例5〜7では高炉水砕スラグの配合量が低いため、28日材齢までの水和熱が高い。比較例8〜11では高炉水砕スラグの粉末度が低いので、モルタルの圧縮強度が低い。モルタルの圧縮強度を高めるために高炉水砕スラグの配合量を減らすと、比較例7のように28日材齢までの水和熱が高くなり、ポルトランドセメント中のC2 S量を減らしても、比較例3のように28日材齢までの水和熱が高くなることがわかる。
【0025】
【発明の効果】
本発明による高粉末度の高炉水砕スラグと特定の高ビーライト系ポルトランドセメントを用いたスラグ系セメントは、従来の高ビーライト系ポルトランドセメントや高ビーライト系混合セメントの欠点である、初期強度の発現性を大幅に改善し、低発熱特性もさらに伸長させることができる。また、本発明のスラグ系セメントに凝結遅延剤を添加すると、さらに、断熱温度上昇を低下させることが可能である。[0001]
[Industrial application fields]
The present invention relates to a low exothermic slag cement that suppresses hydration exotherm, and more particularly to an initial strength developing type low exothermic slag cement that has both low exothermic properties and strength development.
[0002]
[Prior art]
In mass concrete such as dams and piers, thermal stress is generated in the concrete due to the heat generated by the hydration of the cement, and cracks occur in extreme cases. As the scale of mass concrete structures grows larger, this problem becomes more serious.
[0003]
In response to this problem, various low heat-generating cements such as high belite-based Portland cement and high belite-type mixed cement have been developed. There is a problem that expression is also reduced. Since both the heat generation and strength development of cement are caused by the hydration reaction, there is a correlation between the heat generation amount and the strength, and it is generally considered that the value of the heat generation amount / strength is almost constant. Yes.
[0004]
In high belite-based Portland cement, the heat of hydration of belite is extremely small compared to the heat of hydration of other clinker components, and therefore, it is considered that the strength development is excellent for the low calorific value. However, in reality, the hydration reaction of belite is very slow compared to other clinker components, and the expected strength is obtained at the age of 91 days, but the hydration reaction is insufficient at the age of 28 days. The strength development is low and the calorific value / initial strength value is not significantly different from that of ordinary cement.
[0005]
On the other hand, Japanese Patent Application Laid-Open No. 6-287046 and Japanese Patent Publication No. 7-74086 disclose low heat generation cements using a clinker containing a large amount of belite (C 2 S). However, these are special ones containing 75% or more of belite, and there is a problem that such clinker is difficult to manufacture industrially. JP-A-2-287046 also discloses a similar low heat-generating cement, but has a high blending ratio of granulated blast furnace slag and has a problem in initial strength development.
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to have a low heat generation property equal to or higher than that of a low heat cement such as a conventional high belite system Portland cement or a high belite system cement, and an initial strength of up to 28 days of age. An object of the present invention is to provide a low heat exothermic slag cement having an initial strength that is remarkably improved.
[0007]
[Means for solving problems]
As a result of intensive studies to solve such problems, the inventors of the present invention have obtained a granulated blast furnace slag having a Blaine specific surface area of 6000 to 8000 cm 2 / g in Portland cement containing 50 to 70% by weight of C 2 S. As a result, it was found that the calorific value / strength value until the age of 28 days was significantly lower than that of conventional cement, and the present invention was completed.
That is, the present invention relates to Portland cement having a C 2 S content of 50 to 70% by weight, blast furnace granulated slag having a Blaine specific surface area of 6000 to 8000 cm 2 / g, dihydrate gypsum and / or anhydrous plaster. It is a slag cement formed by blending this with a blending ratio (weight basis) of Portland cement and granulated blast furnace slag of 30/70 , and the SO 3 content relative to the total cement is 2 to 3% by weight, The heat of hydration of hydrated cement up to 28 days of age based on JIS R 5203 is 250 J / g or less, and the compressive strength of mortar of 28 days of age based on JIS R 5201 is 35 N / mm 2 or more, and The initial strength development type low heat generation slag cement is characterized in that the value of heat of hydration / compressive strength is 6.5 (J / g) / (N / mm 2 ) or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the initial strength development type low heat generation slag cement of the present invention (hereinafter referred to as the present invention cement) will be described in detail. In the present invention, C 2 S has a composition of 2CaO · SiO 2 among the main components of Portland cement, and is a hydraulic component having a low heat of hydration, also called belite. If the C 2 S content of the Portland cement is less than 40% by weight, low exothermic properties cannot be achieved, and if it exceeds 70% by weight, the production cost increases and the economy is impaired. This Portland cement can be produced using a Portland cement clinker having a C 2 S content of 40 to 70% by weight, and a predetermined proportion of Portland cement having a C 2 S content higher than 40% by weight and a low Portland cement. It can also be mixed and manufactured.
[0009]
In the present invention, the granulated blast furnace slag is obtained by granulating and quenching molten slag generated from a blast furnace at a steel mill, having a high glassy content and having latent hydraulic properties. While blast furnace slag for use in conventional blast furnace cement is intended to Blaine specific surface area was finely pulverized to approximately 4000 cm 2 / g, the Blaine specific surface area in the present invention cement was finely pulverized to 5000~8000cm 2 / g blast furnace Use granulated slag. If the fineness of the granulated blast furnace slag is less than 5000 cm 2 / g in terms of Blaine specific surface area, the strength development is insufficient, and if it exceeds 8000 cm 2 / g, the production cost increases and the economic efficiency is impaired.
[0010]
In the present cement, the blending ratio of Portland cement and blast furnace granulated slag is 50/50 to 30/70 on a weight basis. If the blending ratio of granulated blast furnace slag is lower than this, strength development will be enhanced, but heat of hydration will not be reduced. Moreover, when the blending ratio of Portland cement is lower than this, the heat of hydration is reduced, but the strength development is not improved.
[0011]
Further, the cement of the present invention includes dihydrate gypsum and / or anhydrous plaster so that the slag cement composed of Portland cement and granulated blast furnace slag has a SO 3 content of 2 to 3 wt% with respect to the total cement prepared. Blend this. If the blending ratio of the gypsum is less than 2% by weight in terms of SO 3, it is difficult to adjust the setting, and if it exceeds 3% by weight, the long-term strength is lowered due to the remaining gypsum, which is not preferable.
[0012]
If necessary, the cement of the present invention is blended with one or more known setting retarders that suppress hydration reaction, such as oxycarboxylic acid, lignin sulfonic acid, gluconic acid and salts thereof. May be. Further, other trace additives may be blended in the cement of the present invention, but calcium carbonate is not blended or may be blended to 1% or less.
[0013]
In the cement according to the present invention, the physical properties of the cement according to the present invention and the mortar prepared therefrom are in a specific range in addition to the specified components and the blending ratio thereof. That is, the heat of hydration of hydrated cement paste up to 28 days of age based on JIS R 5203 (1995 revision) test is 250 J / g or less, and the compressive strength of mortar of 28 days of age is 35 N / mm 2 or more. And the value of the said heat | fever of hydration / compressive strength needs to be 6.5 (J / g) / (N / mm < 2 >) or less. The heat of hydration of the hydrated cement paste up to the age of 28 days is hydrated cement after curing the cement paste with a water / cement ratio of 40% at 20 ° C. for 28 days by a test method based on JIS R 5203. And unhydrated cement are each dissolved in acid, the heat of dissolution at that time is measured, and the difference is determined based on Hess's law. That is, the heat of dissolution Tc of the unhydrated cement and the heat of dissolution Tw of the hydrated cement are measured, and Tc-Tw is defined as the heat of hydration up to the age of 28 days. In the present invention, the total amount of heat generated during the period up to the 28th material age is defined as the first day of material age, which is the next day when cement is added with water. The compressive strength of mortar having a 28-day age is measured by a test method based on JIS R 5201 (revised in 1987).
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.
[0015]
Examples 1-3 and Reference Examples 1-5
And C 2 S ordinary Portland cement content of 20 wt%, and the C 2 S content of 60 wt% of high-belite-based Portland cement (commercially available) were mixed in a predetermined ratio, the C 2 S content Different high belite series Portland cement was prepared. This Portland cement, a Blaine specific surface area of 6000 cm 2 / g, a water-granulated blast furnace slag was milled so as to 7000 cm 2 / g, a mixture of gypsum at a predetermined mixing ratio, producing a slag cement did. The blending ratio of slag cement is listed in Table 1. In Table 1, PC represents Portland cement and slag represents blast furnace granulated slag. Further, the SO 3 content is an extra percentage.
[0016]
[Table 1]
[0017]
With respect to mortars having a 28-day age prepared using the present invention cement of Table 1, a compressive strength test was conducted according to JIS R 5201, and a hydration heat test up to the 28-day age was conducted according to JIS R 5203. The test results are listed in Table 2.
[0018]
[Table 2]
[0019]
As is apparent from Table 2, the cement of the present invention has a heat of hydration up to 28 days of age of 250 J / g or less, a mortar compressive strength of 35 N / mm 2 or more, and a heat of hydration / compressive strength. The value is not more than 6.5 Jmm 2 / gN, which indicates a characteristic not found in conventional low heat cement, in which the compressive strength of mortar is high for a low heat of hydration up to the age of 28 days.
[0020]
Reference Example 6
Using the slag cement of Reference Example 3 with 0.4% by weight of oxycarboxylic acid added as a setting retarder, a concrete heat insulation temperature rise test was conducted. The concrete composition was adjusted to a water / cement ratio (W / C) of 0.55 so that the unit cement amount was 260 kg / m 3 , the fine aggregate rate (S / a) was 41%, and the slump was 8 cm. . This kneaded concrete was put into a conical column type heat insulating container having an upper diameter of 40 cm, a lower diameter of 30 cm, and a height of 40 cm, installed in an air circulation type heat insulation temperature rise test apparatus manufactured by Marui, and set at the center of the specimen. The temperature change with time was measured by a thermocouple. When the difference between the kneading temperature at the time of charging and the maximum temperature that reached equilibrium after 14 days had elapsed from the time of charging was determined as the adiabatic temperature increase value, the adiabatic temperature increase value was 27 ° C. Moreover, the heat insulation temperature rise value when not using a setting retarder was 30 degreeC.
[0021]
Comparative Examples 1-11
As with the embodiment, were prepared Portland cement predetermined C 2 S content in the Portland cement, Blaine specific surface area and 4000 cm 2 / g, water-granulated blast furnace slag was milled so as to 6000 cm 2 / g Then, dihydrate gypsum was mixed at a predetermined blending ratio to produce a comparative cement. Moreover, the test was done about the hydration heat test of the comparative example cement, and the mortar prepared from it similarly to the Example. Table 3 shows the blending ratio of the comparative example cement, and Table 4 shows the test results. In Table 3, PC represents Portland cement, and slag represents blast furnace granulated slag. Further, the SO 3 content is an extra percentage.
[0022]
[Table 3]
[0023]
[Table 4]
[0024]
Some of the test results of the comparative examples listed in Table 4 satisfy either the heat of hydration up to 28 days of age, 250 J / g or less, or the mortar compressive strength of 35 N / mm 2 or more. No one satisfies both at the same time, and none of the heat of hydration / compressive strength satisfies 6.5 (J / g) / (N / mm 2 ) or less. In Comparative Examples 1 to 3, since the amount of C 2 S in the cement is small, the heat of hydration up to the age of 28 days is high. Comparative Example 4 shows the test results of high belite Portland cement containing no blast furnace granulated slag, but the compressive strength was very low, and the value of heat of hydration / compressive strength was the highest. . In Comparative Examples 5-7, since the blending amount of granulated blast furnace slag is low, the heat of hydration up to the age of 28 days is high. In Comparative Examples 8 to 11, since the fineness of the granulated blast furnace slag is low, the compressive strength of the mortar is low. When the amount of granulated blast furnace granulated slag is decreased in order to increase the compressive strength of the mortar, the heat of hydration up to the age of 28 days increases as in Comparative Example 7, and even if the amount of C 2 S in Portland cement is reduced. As shown in Comparative Example 3, it can be seen that the heat of hydration up to the age of 28 days becomes high.
[0025]
【The invention's effect】
The slag cement using the high fineness blast furnace granulated slag and the specific high belite system Portland cement according to the present invention is an initial strength which is a disadvantage of the conventional high belite system portland cement and the high belite system cement. Can be greatly improved, and low heat generation characteristics can be further extended. Moreover, when a setting retarder is added to the slag cement of the present invention, it is possible to further reduce the increase in the adiabatic temperature.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4010996A JP3802601B2 (en) | 1996-02-27 | 1996-02-27 | Initial strength expression type low heat generation slag cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4010996A JP3802601B2 (en) | 1996-02-27 | 1996-02-27 | Initial strength expression type low heat generation slag cement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09227182A JPH09227182A (en) | 1997-09-02 |
JP3802601B2 true JP3802601B2 (en) | 2006-07-26 |
Family
ID=12571703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4010996A Expired - Lifetime JP3802601B2 (en) | 1996-02-27 | 1996-02-27 | Initial strength expression type low heat generation slag cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3802601B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100984778B1 (en) * | 2010-04-01 | 2010-10-01 | 지산특수토건주식회사 | Slag mortar paste and high alkali salt contained in it |
JP7187380B2 (en) * | 2019-04-26 | 2022-12-12 | 太平洋セメント株式会社 | cement composition |
-
1996
- 1996-02-27 JP JP4010996A patent/JP3802601B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09227182A (en) | 1997-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101258115B (en) | Cement composition for grouting and grout material comprising the same | |
JP5818579B2 (en) | Neutralization suppression type early strong cement composition | |
JP5783625B2 (en) | Low temperature rapid hardening cement admixture and low temperature rapid hardening cement composition | |
JP2004292307A (en) | Hydraulic composition | |
JP2002003249A (en) | Cement admixture, cement composition and cement concrete with high flowability | |
JPH0761890B2 (en) | Method for producing a hydraulic binder that cures rapidly after compounding water | |
JP3267895B2 (en) | Cement clinker and cement composition | |
JP3260911B2 (en) | Cement clinker and method for producing the same | |
JP3802601B2 (en) | Initial strength expression type low heat generation slag cement | |
JP7542130B2 (en) | Cement admixture, cement composition, and method for producing concrete product | |
JPH0769704A (en) | Rapidly curable self-leveling plaster | |
JPH02120261A (en) | Low heat cement composition | |
JP3283094B2 (en) | Mixed cement | |
JPH0774086B2 (en) | Hydraulic cement | |
JPH0283248A (en) | High-strength-low-exothermic cement composition | |
JP7083637B2 (en) | Concrete and its manufacturing method | |
JP2820953B2 (en) | Underwater concrete composition | |
JPH0297441A (en) | Mixed cement | |
JP6896578B2 (en) | Hydraulic powder composition | |
JP2001180992A (en) | Cement clinker composition of reduced environmental load type | |
JPS6219796B2 (en) | ||
JP3105224B2 (en) | Cement admixture | |
JPH05116996A (en) | Cement admixture and production of cement hardened body | |
JPH11139851A (en) | Mortar or concrete low in heat generation | |
JP6084831B2 (en) | Cement composition and concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050808 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060306 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060428 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |