JP2820953B2 - Underwater concrete composition - Google Patents
Underwater concrete compositionInfo
- Publication number
- JP2820953B2 JP2820953B2 JP1089696A JP8969689A JP2820953B2 JP 2820953 B2 JP2820953 B2 JP 2820953B2 JP 1089696 A JP1089696 A JP 1089696A JP 8969689 A JP8969689 A JP 8969689A JP 2820953 B2 JP2820953 B2 JP 2820953B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- cement
- concrete
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、作業性が良好でかつ初期強度発現に優れた
水中コンクリート組成物に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an underwater concrete composition having good workability and excellent initial strength development.
〈従来の技術とその課題〉 従来、水中コンクリートは普通ポルトランドセメント
などのコンクリートに粘稠剤、消泡剤及び流動化剤を併
用して、海洋土木等の水中構造物工事に多く用いられて
いる。<Conventional technology and its problems> Conventionally, underwater concrete is commonly used for underwater structures such as marine civil engineering by using a thickener, defoamer and fluidizer together with concrete such as ordinary Portland cement. .
しかしながら、打設現場の水中で流れがある場合、粘
稠剤を用いても、打設後、コンクリート中もペースト分
の流出などが起こり、コンクリート硬化体の強度低下な
どがあった。However, in the case where there is a flow in the water at the casting site, even if the thickener is used, after the casting, the outflow of the paste also occurs in the concrete, and the strength of the hardened concrete body is reduced.
特に、現在、最も使用されているセルロース系の粘稠
剤はセメントの凝結遅延性が大きく、そのため、ペース
ト流出時間が長くなりコンクリート硬化体の強度低下が
あり、また実用強度に達するまでの期間が非常にかかる
ため、工事期間が長くなり、膨大な経済的損失が生じる
などの課題があった。In particular, the cellulosic thickeners that are currently most used have a large setting retardation property of cement, so that the paste outflow time is long, the strength of the concrete hardened body is reduced, and the period until the practical strength is reached. Since it takes a long time, there are problems such as a long construction period and a huge economic loss.
これらを解決するために、セメントとして、早強ポル
トランドセメントやアルミナセメントを用い、また、塩
化カルシウム等の無機塩類を併用し、強度発現を促進さ
せることも提案されたが、早強ポルトランドセメントを
用いても、強度促進効果は低く、また、アルミナセメン
トを普通ポルトランドセメントと併用すると、硬化が早
く、本来、大量打設・ポンプ打設において必要な2〜3
時間もの作業時間を得るため、凝結遅延剤を大量に使用
せざるを得ず、初期強度の低下、膨張性の発現及び安定
性の欠如等の課題があった。In order to solve these problems, it has been proposed to use early-strength Portland cement or alumina cement as cement, or to use inorganic salts such as calcium chloride in combination to promote the development of strength. However, the effect of promoting strength is low, and when alumina cement is used in combination with ordinary Portland cement, it hardens quickly, and it is necessary to use 2-3 in the case of mass casting and pumping.
In order to obtain a long working time, a large amount of setting retarder has to be used, and there are problems such as a decrease in initial strength, development of swelling property and lack of stability.
さらに、塩化カルシウム等の無機塩類を併用した場合
は、初期強度発現の面からは上記無機塩類を多量に併用
せざるを得ず、鉄筋の発錆やアルカリ骨材反応の発生及
び作業時間の確保が困難等の課題があった。Furthermore, when inorganic salts such as calcium chloride are used in combination, the inorganic salts have to be used in a large amount from the viewpoint of initial strength development, and rusting of the reinforcing steel bar and occurrence of alkali-aggregate reaction and securing of work time are required. Had difficulties.
本発明者らは、上記課題を解決すべく、種々検討を重
ねた結果、特定の組成を用いることにより、作業時間の
調整が可能で、初期強度発現性の優れたコンクリートが
得られる知見を得て本発明を完成するにいたった。The present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, by using a specific composition, it has been found that the working time can be adjusted and a concrete excellent in initial strength development can be obtained. Thus, the present invention has been completed.
〈課題を解決するための手段〉 即ち、本発明はセメント100重量部、粘稠剤0.2〜1.2
重量部、水40〜70重量部、消泡剤、流動化剤、カルシウ
ムアルミネート類、無水セッコウ及び凝結調節剤からな
る水中コンクリート組成物である。<Means for solving the problem> That is, the present invention provides 100 parts by weight of cement, a thickener of 0.2 to 1.2.
It is an underwater concrete composition comprising parts by weight, 40 to 70 parts by weight of water, an antifoaming agent, a superplasticizer, calcium aluminates, anhydrous gypsum and a setting regulator.
以下、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail.
本発明におけるセメントとは、普通・早強・超早強・
中庸熱等の各種ポルトランドセメントや、これらのポル
トランドセメントに高炉スラグ等のシリカ分を混合した
各種混合セメント及び白色セメント等である。The cement in the present invention is ordinary / early strong / very early strong /
Various portland cements such as moderate heat, various mixed cements obtained by mixing these portland cements with silica such as blast furnace slag, and white cements.
本発明における粘稠剤とは、メチルセルロース・エチ
ルセルロース・ヒドロキシエチルセルロース・ヒドロキ
シエチルメチルセルロース・ヒドロキシプロピルメチル
セルロース・ヒドロキシブチルメチルセルロース・ヒド
ロキシエチルエチルセルロース・カルボキシメチルセル
ロース等のセルロースエーテル系、ポリアクリルアミド
・アクリル酸ソーダ等のアクリル系、ポリビニールアル
コール及びカゼイン等である。The viscous agent in the present invention includes cellulose ethers such as methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, hydroxyethylethylcellulose, carboxymethylcellulose, and acrylics such as polyacrylamide and sodium acrylate. , Polyvinyl alcohol and casein.
粘稠剤の使用量はセメント100重量部に対し、0.2〜1.
2重量部であり、0.4〜1.0重量部が好ましい。0.2重量部
未満では、打ち込み時にコンクリートが流出して良好な
コンクリートが得られない。また、1.2重量部を越える
とコンクリートの流動性が悪くなり好ましくない。The amount of the thickener used is 0.2 to 1.
2 parts by weight, preferably 0.4 to 1.0 part by weight. If the amount is less than 0.2 parts by weight, concrete flows out at the time of driving, and good concrete cannot be obtained. If it exceeds 1.2 parts by weight, the fluidity of the concrete deteriorates, which is not preferable.
本発明における水の使用量はセメント100重量部に対
し、40〜70重量部であり、45〜65重量部が好ましい。40
重量部未満では、流動性、施工性及び充填性が悪くな
る。また、70重量部を越えると材料分離が大きくなり強
度低下する。The amount of water used in the present invention is 40 to 70 parts by weight, preferably 45 to 65 parts by weight, based on 100 parts by weight of cement. 40
If the amount is less than the weight part, the fluidity, the workability and the filling property deteriorate. On the other hand, if it exceeds 70 parts by weight, material separation increases and strength is reduced.
本発明における消泡剤とは、気泡の混入を少なくする
もので、シリコーン系、ノニオン系、アルコール系、脂
肪酸系、エーテル系、脂肪酸エステル系、リン酸エステ
ル系ポリエーテル系及びフッ素系等があり、具体的に
は、シリコーン系としてはオイル型、該オイル型をトル
エンなどの溶剤で溶かした溶液型、シリコーンオイルに
無機質の微粉末を添加したコンパウンド型及びさらに乳
化剤を用いたエマルジョン型等がある。The defoaming agent in the present invention is one that reduces the incorporation of air bubbles, and includes silicone type, nonionic type, alcohol type, fatty acid type, ether type, fatty acid ester type, phosphate ester type polyether type and fluorine type. Specifically, examples of the silicone type include an oil type, a solution type obtained by dissolving the oil type with a solvent such as toluene, a compound type obtained by adding inorganic fine powder to silicone oil, and an emulsion type obtained by further using an emulsifier. .
消泡剤の使用量は、特に制限されるものではないが、
セメント100重量部に対し、0.005〜0.2重量部が好まし
い。0.005重量部未満ではその効果が少なく、0.2重量部
を越えて使用してもそれほどその使用効果がえられな
い。The amount of the defoamer used is not particularly limited,
0.005 to 0.2 parts by weight based on 100 parts by weight of cement is preferred. If the amount is less than 0.005 parts by weight, the effect is small, and even if it exceeds 0.2 parts by weight, the effect is not so much obtained.
本発明における流動化剤とは、リグニンスルホン酸塩
・ナフタレンスルホン酸塩・メラミンスルホン酸塩等で
ある。The fluidizer in the present invention includes lignin sulfonate, naphthalene sulfonate, melamine sulfonate and the like.
本発明における流動化剤の使用量は、セメント100重
量部に対し、0.5〜3.0重量部が好ましい。0.5重量部未
満では、その効果が少なく、3.0重量部を越えて使用し
てもそれほどその使用効果がえられない。The amount of the fluidizing agent used in the present invention is preferably 0.5 to 3.0 parts by weight based on 100 parts by weight of cement. If the amount is less than 0.5 part by weight, the effect is small, and even if the amount exceeds 3.0 parts by weight, the effect is not so much obtained.
本発明におけるカルシウムアルミネート類(以下CA類
という)とはCaOとAl2O3との化合物で、具体的には、Ca
OをC、Al2O3をAとすると、C3A、C12A7、CA及びCA2等
のカルシウムアルミネート(以下Caアルミネートとい
う)やこれにハロゲン物質が混入した、例えばC3A3CaF2
やC11A7CaF2等と示されるカルシウムハロアルミネート
(以下CaXという)などで、このうち一種又は二種以上
が使用できる。特にCaアルミネートとCaXとの併用は好
ましい。In the present invention, calcium aluminates (hereinafter referred to as CAs) are compounds of CaO and Al 2 O 3 , specifically, Ca
Assuming that O is C and A 2 O 3 is A, calcium aluminates (hereinafter referred to as Ca aluminates) such as C 3 A, C 12 A 7 , CA and CA 2 and halogen substances mixed therein, for example, C 3 A 3 CaF 2
And C 11 in such as calcium halo aluminate represented as A 7 CaF 2 and the like (hereinafter referred to as CaX), these one or two or more can be used. Particularly, a combination of Ca aluminate and CaX is preferable.
CA類は、石灰質原料とアルミナ質原料を、又はそれに
ハロゲン原料を、生成物が所望のCA類になる割合に配合
し、キルンで焼成したり、電気炉で溶融して製造でき
る。また、電気炉で溶融した溶融体を圧縮空気などで吹
き飛ばすなど、急冷することにより非晶質のCA類が得ら
れる。The CAs can be produced by mixing a calcareous raw material and an alumina raw material or a halogen raw material in such a ratio that a product becomes a desired CAs, and calcining in a kiln or melting in an electric furnace. In addition, amorphous CAs can be obtained by quenching, for example, by blowing the melt melted in an electric furnace with compressed air or the like.
CA類は強度発現の面から、非晶質のものの使用が好ま
しい。It is preferable to use amorphous CAs from the viewpoint of strength development.
CA類の使用量は、セメント100重量部に対し、5〜20
重量部が好ましい。5重量部未満では強度発現が低くな
り、20重量部を越えると耐久性が悪くなる傾向がある。CA is used in an amount of 5 to 20 parts per 100 parts by weight of cement.
Parts by weight are preferred. If the amount is less than 5 parts by weight, the strength tends to be low, and if it exceeds 20 parts by weight, the durability tends to deteriorate.
CaアルミネートとCaXとの併用の場合は、Caアルミネ
ート70〜10重量部に対し、CaX30〜90重量部が凝結時間
を長くしても強度発現が得られることから好ましい。Ca
アルミネートが70〜10重量部の範囲外では初期強度発現
が悪くなる傾向がある。When Ca aluminate and CaX are used in combination, 30 to 90 parts by weight of CaX is preferable to 70 to 10 parts by weight of Ca aluminate because strength can be obtained even if the setting time is lengthened. Ca
If the aluminate is out of the range of 70 to 10 parts by weight, the initial strength tends to be poor.
非晶質Caアルミネートの場合は10〜40重量部が、結晶
質Caアルミネートの場合は30〜70重量部が好ましい。The amount is preferably 10 to 40 parts by weight in the case of amorphous Ca aluminate and 30 to 70 parts by weight in the case of crystalline Ca aluminate.
本発明における無水セッコウとは、X線回折パターン
でII型−CaSO4の形態を示すものであり、工業的に含ま
れる不純物には制約されない。The anhydrous gypsum in the present invention indicates the form of type II-CaSO 4 in an X-ray diffraction pattern, and is not limited by impurities industrially contained.
無水セッコウの粉末度はブレーン値(ポロシティー0.
5)で3,500cm2/g程度以上が好ましく、4,500〜7,000cm2
/gが好ましい。The fineness of anhydrous gypsum is determined by the Blaine value (porosity of 0.
In 5), it is preferably about 3,500 cm 2 / g or more, and 4,500 to 7,000 cm 2
/ g is preferred.
無水セッコウの使用量は、CA類100重量部に対し、50
〜300重量部が強度発現性から好ましく、80〜200重量部
がより好ましい。The amount of anhydrous gypsum is 50 parts per 100 parts by weight of CAs.
-300 parts by weight is preferred from the standpoint of strength development, and 80-200 parts by weight is more preferred.
本発明における凝結調節剤とは、クエン酸・酒石酸・
グルコン酸・リンゴ酸等のオキシカルボン酸又はその塩
や水酸化カルシウム・酸化カルシウム・アルミン酸ナト
リウム・炭酸ナトリウム・炭酸カリウム等の無機塩であ
る。The setting regulator in the present invention is citric acid, tartaric acid,
Oxycarboxylic acids such as gluconic acid and malic acid or salts thereof, and inorganic salts such as calcium hydroxide, calcium oxide, sodium aluminate, sodium carbonate and potassium carbonate.
凝結調節剤の使用量はその目的に応じ適宜決定すれば
良く、特に制限されるものではないが、通常、セメン
ト、CA類及び無水セッコウの合計100重量部に対して、
0.1〜2重量部が好ましい。0.1重量部未満では凝結が早
く、2重量部を越えると強度発現が悪くなる傾向があ
る。The amount of the setting regulator may be appropriately determined according to the purpose, and is not particularly limited.However, usually, cement, CA and a total of 100 parts by weight of anhydrous gypsum,
0.1 to 2 parts by weight is preferred. If the amount is less than 0.1 part by weight, the coagulation is rapid, and if it exceeds 2 parts by weight, the strength tends to be poor.
以上の材料のほか本発明では、各種セメント混和剤を
併用することができる。In addition to the above materials, various cement admixtures can be used in the present invention.
各材料の混合方法は特に限定されるものではなく、一
般に用いられる方法で良い。例えば、セメントなどの各
種コンクリート材料を同時に混合する方法や、セメン
ト、CA類、無水セッコウ、凝結調節剤、粘稠剤及び骨材
を混合した後に水を加え、混練りし、流動化剤を投入し
て、さらに混練りする方法などがある。The method of mixing the respective materials is not particularly limited, and a generally used method may be used. For example, a method of simultaneously mixing various concrete materials such as cement, a method of mixing cement, CA, anhydrous gypsum, a setting regulator, a thickener, and an aggregate, then adding water, kneading, and adding a fluidizing agent. Then, there is a method of further kneading.
〈実施例〉 以下、実施例を挙げ、本発明をさらに詳しく説明す
る。<Example> Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1. 第1表に示す化学組成を有するC3A3CaF2とC12A7と、
無水セッコウを第2表に示すように配合し、セメント10
0重量部に対し25重量部添加し、さらに、セメント100重
量部に対し、標準砂200重量部、水50重量部、粘稠剤と
して、第一工業薬品(株)製、商品名「ユニショットA
−10」(ヒドロキシエチルメチルセルロース系)0.6重
量部、消泡剤として、サンノプコ(株)製、「SN−Defo
rmer 14HP」(シリコーンオイルコンパウンド型)0.2重
量部、流動化剤として、第一工業薬品(株)製、商品名
「ユニショットF350」(メラミンスルフォン酸塩系)1.
5重量部及び第2表に示す量の凝結調節剤(グルコン酸
ナトリウム/炭酸ナトリウム重量比1/7)を添加混合し
て得られたモルタルの20℃における硬化時間(以下H.T.
という)と所定材令の圧縮強度発現を測定した。その結
果を第2表に併記する。Example 1. C 3 A 3 CaF 2 and C 12 A 7 having the chemical compositions shown in Table 1,
Anhydrous gypsum was blended as shown in Table 2 and cement 10
0 parts by weight, 25 parts by weight, and 100 parts by weight of cement, 200 parts by weight of standard sand, 50 parts by weight of water, and as a thickening agent, manufactured by Dai-ichi Kogyo Chemical Co., Ltd. A
-10 "(hydroxyethyl methylcellulose), 0.6 parts by weight, as an antifoaming agent," SN-Defo "manufactured by San Nopco Co., Ltd.
0.2 parts by weight of “rmer 14HP” (silicone oil compound type), as a fluidizing agent, manufactured by Daiichi Kogyo Chemical Co., Ltd., trade name “Unishot F350” (melamine sulfonate) 1.
The mortar obtained by adding and mixing 5 parts by weight and the setting modifier (sodium gluconate / sodium carbonate weight ratio 1/7) in the amounts shown in Table 2 at 20 ° C. (hereinafter referred to as HT)
) And the development of compressive strength at a given age. The results are shown in Table 2.
〈使用材料〉 無水セッコウ:新秋田化成(株)製、II型無水セッコ
ウ、ブレーン値(ポロシティー0.50)6,400cm2/g 炭酸ナトリウム:和光純薬社製、1級試薬 グルコン酸ナトリウム: 〃 、 〃 塩化カルシウム:和光純薬(株)製、特級試薬 アルミナセメント:電気化学工業(株)製、商品名「ア
ルミナセメント1号」 第2表から明らかなように、本発明の水中コンクリー
ト組成物を用いたものは、初期及び長期において強度発
現性は優れており、H.T.も幅広くとれ、打設に必要な時
間内で凝結の調整が可能であるが、比較例は強度発現が
悪い。<Materials used> Anhydrite: Shin-Akita Kasei Co., Ltd., Type II anhydrous gypsum, Blaine value (porosity 0.50) 6,400 cm 2 / g Sodium carbonate: Wako Pure Chemical Co., Ltd., primary reagent Sodium gluconate: 〃,カ ル シ ウ ム Calcium chloride: Wako Pure Chemical Co., Ltd., special grade reagent Alumina cement: Denki Kagaku Kogyo Co., Ltd., trade name “Alumina Cement No. 1” As is evident from Table 2, those using the underwater concrete composition of the present invention have excellent strength development in the initial and long term, have a wide range of HT, and adjust the setting within the time required for casting. However, the strength of the comparative example is poor.
実施例2. 実験No.1−9と実験No.1−13に示す配合を用い、水セ
メント比50%、細骨材率36.5%、水12Kg、セメント24K
g、細骨材26.7%、粗骨材48.6%、粘稠剤0.144Kg及び流
動化剤0.36Kgを配合し、コンクリートを作製し、スラン
プフロー(以下Slフローという)の経時変化と圧縮強度
発現を測定した。結果を第3表に示す。Example 2. Using the formulations shown in Experiment Nos. 1-9 and No. 1-13, a water-cement ratio of 50%, a fine aggregate ratio of 36.5%, water of 12 kg, and cement of 24 K were used.
g, 26.7% of fine aggregate, 48.6% of coarse aggregate, 0.144Kg of thickener and 0.36Kg of superplasticizer to make concrete, and show the change over time of slump flow (hereinafter referred to as Sl flow) and the development of compressive strength. It was measured. The results are shown in Table 3.
第3表から明らかなように、本発明の水中コンクリー
ト組成物を用いたものは、初期及び長期において強度発
現性は優れており、作業性もよい。また、直径10mmの鉄
筋を埋め込み、屋外養生で1か月放置しても発錆はみら
れなかった。一方、塩化カルシウムを用いた実験No.2−
2の比較例はSlフローから、コンクリートの作業性が悪
いことが明らかであり、鉄筋の表面全体に発錆が見られ
た。 As is clear from Table 3, those using the underwater concrete composition of the present invention have excellent strength development in the initial stage and long term, and also have good workability. No rust was observed even when a reinforcing bar with a diameter of 10 mm was embedded and left for one month in outdoor curing. On the other hand, Experiment No. 2-
In Comparative Example 2, it was clear from the Sl flow that the workability of concrete was poor, and rust was observed on the entire surface of the reinforcing bar.
実施例3. 実験No.1−9に示す配合を用い、水12Kg、セメント24
Kg、細骨材26,7Kg、粗骨材48.6Kg及び流動化剤0.33Kgに
粘稠剤の使用量を変化させ、最大骨材20mmを使用したこ
と以外は実施例1.と同様にコンクリートを作製して、粘
稠剤の使用量の変化による水質汚濁への影響を測定し
た。結果を第4表に示す。Example 3 Using the composition shown in Experiment No. 1-9, water 12 kg, cement 24
Kg, fine aggregate 26,7Kg, coarse aggregate 48.6Kg and fluidizing agent 0.33Kg, the amount of the thickener was changed, except that a maximum aggregate of 20 mm was used. It was prepared and the effect on water pollution due to changes in the amount of the thickener used was measured. The results are shown in Table 4.
試験方法: 1,000ccのビーカーに800ccの水を入れたものに作製し
たコンクリート500gを10等分以上に分割投入し、コンク
リートが静止するまで3分待つ。コンクリートの投入は
水面から静かに落下させ、10〜20秒以内に終了するよう
に行う。Test method: 500 g of concrete prepared in a 1,000 cc beaker filled with 800 cc of water is divided into 10 or more equal portions and waited for 3 minutes until the concrete comes to rest. The concrete should be dropped gently from the water surface and finished within 10 to 20 seconds.
次に、ビーカーの水を、コンクリートが混入しないよ
うに600cc分取し、この水を用いて懸濁物質の量を測定
する。Next, 600 cc of water in the beaker is taken out so that concrete is not mixed, and the amount of suspended matter is measured using this water.
〈発明の効果〉 本発明の水中コンクリート組成物を使用することによ
り、次の効果が得られる。 <Effect of the Invention> The following effects can be obtained by using the underwater concrete composition of the present invention.
(1)水中コンクリートの凝結時間の調節が可能であ
る。(1) It is possible to adjust the setting time of underwater concrete.
(2)初期強度の高い、作業性の良い水中コンクリート
が得られる。(2) Underwater concrete with high initial strength and good workability can be obtained.
(3)工期の短縮が計れる。(3) The construction period can be shortened.
(4)鉄筋を使用した場合発錆する可能性が低い。(4) The possibility of rusting is low when a reinforcing bar is used.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 24:04) 111:74 (58)調査した分野(Int.Cl.6,DB名) C04B 28/00,22/14 C04B 22/08,24/04──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 identification code FI C04B 24:04) 111: 74 (58) Field surveyed (Int.Cl. 6 , DB name) C04B 28 / 00,22 / 14 C04B 22 / 08,24 / 04
Claims (1)
部、水40〜70重量部、消泡剤、流動化剤、カルシウムア
ルミネート類、無水セッコウ及び凝結調節剤からなる水
中コンクリート組成物。1. An underwater concrete composition comprising 100 parts by weight of cement, 0.2 to 1.2 parts by weight of a thickener, 40 to 70 parts by weight of water, an antifoaming agent, a superplasticizer, calcium aluminates, anhydrous gypsum and a setting regulator. Stuff.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1089696A JP2820953B2 (en) | 1989-04-11 | 1989-04-11 | Underwater concrete composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1089696A JP2820953B2 (en) | 1989-04-11 | 1989-04-11 | Underwater concrete composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02271947A JPH02271947A (en) | 1990-11-06 |
JP2820953B2 true JP2820953B2 (en) | 1998-11-05 |
Family
ID=13977931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1089696A Expired - Fee Related JP2820953B2 (en) | 1989-04-11 | 1989-04-11 | Underwater concrete composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2820953B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013169533A1 (en) * | 2012-05-09 | 2013-11-14 | Halliburton Energy Services, Inc. | A calcium aluminate cement composition containing a set retarder of an organic acid and a polymeric mixture |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2686870B2 (en) * | 1991-12-26 | 1997-12-08 | 株式会社間組 | Underwater mortar |
KR20050032358A (en) * | 2003-10-01 | 2005-04-07 | (주)태광씨엔피 | Early strengthening type cement composition to restore surface and not separated underwater |
CN100334177C (en) * | 2004-11-16 | 2007-08-29 | 张国栋 | Aldehyde-free water soluble adhesive |
KR100839491B1 (en) * | 2008-03-28 | 2008-06-19 | 주식회사 에스알건설 | Mortar composite for repairing concrete structure in water and repairing method of concrete structure using the mortar composite |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58115051A (en) * | 1981-12-29 | 1983-07-08 | 株式会社トクヤマ | Admixing agent for underwater concrete |
JPS5951503A (en) * | 1983-08-01 | 1984-03-26 | 松下電器産業株式会社 | Thermistor |
-
1989
- 1989-04-11 JP JP1089696A patent/JP2820953B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013169533A1 (en) * | 2012-05-09 | 2013-11-14 | Halliburton Energy Services, Inc. | A calcium aluminate cement composition containing a set retarder of an organic acid and a polymeric mixture |
US8720563B2 (en) | 2012-05-09 | 2014-05-13 | Halliburton Energy Services, Inc | Calcium aluminate cement composition containing a set retarder of an organic acid and a polymeric mixture |
Also Published As
Publication number | Publication date |
---|---|
JPH02271947A (en) | 1990-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1179818A (en) | Cement admixture, cement composition, spraying material and spraying process using the same | |
JP2820953B2 (en) | Underwater concrete composition | |
EP1680376B1 (en) | Accelerator for hydraulic binder | |
JP2004002080A (en) | Cement composition | |
JP3171879B2 (en) | Cement admixture and cement composition | |
JP2001294469A (en) | Ultra rapid hardening, non-shrinkage grout | |
JP3096470B2 (en) | Rapidly hardened AE concrete composition | |
JP2968868B2 (en) | Cement admixture and cement composition | |
JP7083637B2 (en) | Concrete and its manufacturing method | |
JPH05213653A (en) | Hydraulic composition having high flowability and strength | |
JP7058913B2 (en) | Fast-hardening cement composition and fast-hardening mortar | |
JP2001316147A (en) | Admixture for cement and cement composition | |
JP6896578B2 (en) | Hydraulic powder composition | |
JP4709359B2 (en) | Hydraulic composition | |
JP4689072B2 (en) | Cement concrete, quick setting cement concrete, and preparation method | |
JP3219156B2 (en) | Cement admixture and cement composition | |
JP7542969B2 (en) | Fast-hardening grout composition and fast-hardening grout material | |
JPH11130499A (en) | Cement composition for spraying material and spraying method | |
JPH09286651A (en) | Hardening regulating method of cement | |
JPH107446A (en) | Cement additive and use of the same | |
JP4527269B2 (en) | Cement admixture and cement composition | |
JPH11302060A (en) | Quick-hardening cellular mortar | |
JPH0235699B2 (en) | ||
JP2929353B2 (en) | Chemical solution for soil stabilization and ground stabilization method using it | |
JP3367576B2 (en) | Hydration heat generation time adjusting material for cement and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |