JPS58115051A - Admixing agent for underwater concrete - Google Patents

Admixing agent for underwater concrete

Info

Publication number
JPS58115051A
JPS58115051A JP21133481A JP21133481A JPS58115051A JP S58115051 A JPS58115051 A JP S58115051A JP 21133481 A JP21133481 A JP 21133481A JP 21133481 A JP21133481 A JP 21133481A JP S58115051 A JPS58115051 A JP S58115051A
Authority
JP
Japan
Prior art keywords
underwater concrete
water
admixture
concrete
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21133481A
Other languages
Japanese (ja)
Other versions
JPH0338224B2 (en
Inventor
日下 一実
岩倉 博之
立畑 節郎
河野 一生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP21133481A priority Critical patent/JPS58115051A/en
Publication of JPS58115051A publication Critical patent/JPS58115051A/en
Publication of JPH0338224B2 publication Critical patent/JPH0338224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は水中コンクリート用混和剤に餉し、水中を自由
に落下させて流し込んでも分離かなく、彼化して所望の
強度を発挿できる水中コンクリートを提供するものであ
る。
[Detailed Description of the Invention] The present invention provides underwater concrete that is mixed with an admixture for underwater concrete and that does not separate even when poured freely in water, hardens, and develops desired strength. .

従来、水中コンクリートはトレミー管、コンクリートポ
ンプ、パケットなどを用いて、まだ向まらないコンクリ
ートがまオ)りの水によって洗われることを最小限にと
どめるように注意してルエされて―る。しかしながら、
実際にはコンクリートが水によって洗われて分離し、コ
ンクリートとしての硬化体にならなかつたり、著しく強
度が低6下している場合があるのが実情である。
Traditionally, underwater concrete is poured using tremie pipes, concrete pumps, packets, etc., taking care to minimize the amount of unwashed concrete being washed away by the surrounding water. however,
In reality, concrete may be washed away by water and separated, and may not become a hardened concrete or its strength may be significantly reduced.

近年、上記したトレミー管などの器具を使用せず、直接
に水中を落下させて流し込んでも分陰せず、水底に堆積
して硬化できる水中コンクリートか開発されている。本
発明もかかる良好な水中コンクリートを目的とし、鋭意
研究の結果、該水中コンクリートとして有効な混和剤を
見出した屯のである。
In recent years, underwater concrete has been developed that does not require the use of devices such as the tremie tubes mentioned above, and can be poured directly into water without shading, and can be deposited and hardened on the bottom of the water. The present invention also aims at producing such good underwater concrete, and as a result of extensive research, we have discovered an admixture that is effective for such underwater concrete.

即ち、本発明によれば水溶性セルロースエーテル、水溶
性の金属硫拳塩または金属塩化物。
That is, according to the invention, water-soluble cellulose ethers, water-soluble metal sulfate salts or metal chlorides.

および消泡剤よりなる水中コンクリート用混和剤である
It is an admixture for underwater concrete consisting of an antifoaming agent and an antifoaming agent.

本発り1で用いられる水溶性セルロースエーテルトシて
は、メチルセルロース、エチルセルロースなどのアルキ
ルセルロース類;ヒドロキシメチルセルロース、ヒドロ
キ・ジエチルセルロース、ヒドロキシブロピク七、ルロ
ースなどのヒドロキシアルキルセルロース類;エチルヒ
ドロキシエチルカルロース、メチルヒドロキシプロピル
セルロース類の非イオン性セルロースエーテル;カルボ
キシメチルヒドロキシエチルセルロースなどのイオン性
セルロースエーテルの186以上が使用される。特にヒ
ドロキシアルキルセルロースが好ましく、そのうち一般
にヒドロキシエチルセルロースが使用される。さらに、
ヒドロキシエチルセルロースは、セルロース分子の単位
あたり反応したエチレンオキサイドのモル数−b: %
に2.6〜5を有するものが好ましく、金bmとの相開
作用により水中コンクリートとして凝結硬化速度が大き
く且つ圧縮@度も良好である。
Water-soluble cellulose ethers used in this invention include alkylcelluloses such as methylcellulose and ethylcellulose; hydroxyalkylcelluloses such as hydroxymethylcellulose, hydroxydiethylcellulose, hydroxybropic 7, and lulose; ethylhydroxyethylcallose; , non-ionic cellulose ethers such as methylhydroxypropyl cellulose; ionic cellulose ethers such as carboxymethyl hydroxyethyl cellulose. Particularly preferred are hydroxyalkylcelluloses, among which hydroxyethylcellulose is generally used. moreover,
Hydroxyethyl cellulose has the number of moles of ethylene oxide reacted per unit of cellulose molecule - b: %
It is preferable to have a value of 2.6 to 5, and due to the phase opening effect with gold BM, the setting and hardening speed as underwater concrete is high and the compaction rate is also good.

本発明に用いられる水溶性の金j11硫饅墳としては、
一般si N mナトリウム、硫亀リチウム。
The water-soluble gold j11 sulfur mound used in the present invention includes:
General si N m sodium, lithium sulphate.

硫酸カリウムなどか、また金属塩化物としては塩化ナト
リウム、塩化リチウム、電化カリウム。
Potassium sulfate, etc., and metal chlorides such as sodium chloride, lithium chloride, and electrified potassium.

鴇化カルシウムなどの一麺以上が使用される。More than one noodle such as calcium tofu is used.

これら金−塩の添加による効果は、セルロースエーテル
のみの添加に比べて、コンクリートの水中における流出
(分離)防止および圧縮強度を着しく増大させる作用を
発揮する。かかる金kI4塩の鰯加縁は、セルロースエ
ーテル100重倣部に対して、2〜300重量部、特に
5〜2001kii部を混合することが好ましい。即ち
金m塩の絵加蓋が上記の配合割合より少な一場合には、
水中コンクリートとして流出(分離)防止と圧に強度の
効果が十分に発揮されず、また多ψ場合にはkm、ゲル
化などの現象を生じるため作業性が急くなり、経済的に
も好ましくない。
The effect of adding these gold-salts is to prevent the concrete from flowing out (separation) in water and to significantly increase the compressive strength, compared to the addition of only cellulose ether. It is preferable to mix 2 to 300 parts by weight, particularly 5 to 2001 parts by weight, of the gold kI4 salt with respect to 100 parts of cellulose ether. In other words, if the amount of gold m-salt is less than the above-mentioned mixing ratio,
As underwater concrete, it is not sufficiently effective in preventing outflow (separation) and in terms of pressure and strength, and in the case of a large number of ψ km, phenomena such as gelation occur, which increases workability and is economically unfavorable.

また、本発明においては、とドロキシエチルセルロース
100重蓋部に対して消泡剤0.5〜15嵐量部、好ま
しくはlN10重量部を用いることも、特に水中□コン
クリートとして充分な圧縮強度を得るために至ってム要
である。消泡剤としては公知のものが特に制限されず、
例えはNopco  I””L 8Nデフォ−マー14
−)IP(以上サンノブユwNm)、  工、P。デア
オーマ61(一方社油脂工業−w)、アンチ70ス1’
 1−工[i薬■製)、ニラサン・ディスホーム(日本
油脂■鯛)、ミラクルバブノン−8(−片山化学工業研
究所)などがある。
In addition, in the present invention, it is also possible to use 0.5 to 15 parts by weight of an antifoaming agent, preferably 10 parts by weight, per 100 parts by weight of droxyethyl cellulose, in order to obtain sufficient compressive strength especially as underwater □ concrete. It is very necessary to obtain it. The antifoaming agent is not particularly limited to known antifoaming agents.
For example, Nopco I””L 8N deformer 14
-) IP (more than Sannobuyu wNm), Eng., P. Deaoma 61 (Hipposha Yushi Kogyo-w), Anti-70s 1'
These include 1-Technology [manufactured by I-yaku ■], Nirasan Disform (Nippon Oil Company ■Tai), and Miracle Babunone-8 (-Katayama Chemical Industry Research Institute).

本発明の水中コンクリート用混和剤を、コンクリートに
添加・混合する118様はrIに制限されない。・一般
にはセメント成分に水を加えてスラリーとする−1に、
添加剤を予めセメント成分に混合する1様が゛好ましく
採用される。
The manner in which the underwater concrete admixture of the present invention is added to and mixed with concrete is not limited to rI.・Generally, water is added to the cement ingredients to make a slurry.
One method in which the additive is mixed with the cement components in advance is preferably adopted.

セメント成分としては普通メルトランドセメント、早強
ポルトランドセメントなどのポルトランドセメント、そ
のIfか^炉セメント、シリカセメント、フライアッシ
ュセメントなどの混合セメントも適宜用いられる。さら
に、必要に応じて砂、砂利などの細骨材および粗骨材、
その鐘か凝結−如剤などセメント添加剤を混合すること
ができる。したがって、本発明におけるコンクリートと
は、通常のコンクリ−)%1合のけかモルタルi!に’
合、ペースト配合も含めて馳相、するものである。
As the cement component, Portland cement such as ordinary meltland cement and early strength Portland cement, mixed cement such as If furnace cement, silica cement, and fly ash cement may also be used as appropriate. In addition, fine and coarse aggregates such as sand and gravel are added as needed.
It can be mixed with cement additives such as additives or coagulation agents. Therefore, the concrete in the present invention refers to ordinary concrete (1%) or mortar (i!). To'
In addition, paste formulation is also included.

本発明の水中コンクリート添加剤は、コンクリートのセ
メント成分1o1に針部に対して、−飯に025〜2.
04 k1部、好ましくは0,5〜07血瀘部を用いる
ことによって、水中コンクリートとしての効果か発揮さ
れる。上記の添加蓋は2.0重一部より多くても構わな
いが、経済的でない。
The underwater concrete additive of the present invention is applied to the cement component of concrete by 0.25 to 0.1 to the needle part.
By using 0.04 k1 part, preferably 0.5 to 0.7 k1 part, the effect as an underwater concrete is exhibited. Although the above-mentioned addition lid may be larger than 2.0 weight parts, it is not economical.

かくして本発明により1製された水中コンクリートは、
セメント成分と細骨材および粗骨材との粕漬か良好であ
るため、これを水中自由落下して水底に流し込んでも分
離せず、硬化して強度穴なるコンクリートを形成する。
Thus, the underwater concrete produced according to the present invention is
Since the cement components and fine aggregate and coarse aggregate are mixed well, they do not separate even if they fall freely into the water and are poured to the bottom of the water, and harden to form concrete with strong holes.

また、囲りの水を醜さなφ効果もある。したがって、岸
壁改良工事、倫脚袖強工事など各種の水中工事に極めて
有用である。
There is also a φ effect that makes the surrounding water look ugly. Therefore, it is extremely useful for various underwater construction works such as quay wall improvement work and lankyakusode reinforcement work.

以下、実施例を示すが、本発明はこれらによって伺ら制
限されるものでない。
Examples will be shown below, but the present invention is not limited thereto.

実hI例1 1!!lI辿ポルトランドセメント4.151 、細骨
材785g、粗骨拐899fおよσ水203fを一定配
合とするコンクリート組成に、ヒドロキシエチルセルロ
ース936%、硫酸ソーダ4.7%および消泡剤として
ノプコPDI(サンノプコ社製)1.7%を主成分とす
る混和剤と、助剤としてNL4000(ポリシス物#)
をそれぞれ11表に示す如くセメン)letに対して所
定割合で添加した。
Actual hI example 1 1! ! A concrete composition containing 4.151 grams of Portland cement, 785 grams of fine aggregate, 899 grams of coarse aggregate, and 203 grams of σ water is mixed with 936% hydroxyethyl cellulose, 4.7% sodium sulfate, and Nopco PDI (as an antifoaming agent). San Nopco Co., Ltd.) 1.7% admixture as the main component and NL4000 (policys product #) as an auxiliary agent.
were added to cement in a predetermined ratio as shown in Table 11.

次いで、まだ固まらないコンクリートの性状と峡化コン
クリートの圧縮Ii+1!度について測定した。次11
定は次の試験方法によった。
Next, the properties of concrete that has not hardened yet and the compression of gorged concrete Ii+1! The temperature was measured. Next 11
The determination was based on the following test method.

1)セメント流出率:赤塚組三、関搏共著「水中コンク
リート」此島出版会、P250〜251記級の水中コン
クリートのセメント流出率の試験方法による。
1) Cement runoff rate: According to the test method for cement runoff rate of underwater concrete in "Underwater Concrete" co-authored by Gumizo Akatsuka and Rin Seki, Konoshima Publishing, graded P250-251.

2)水中庄動強*:水中に沈めたl 10 X 20c
mノ型枠にまだ固まらないコンクリートな油し込み、突
き俸は使用せずに水中成型した後気中に引きあけ、型枠
を木づちで軽くしたとき表面をならす、以下J工5A1
132コンクリートの強度試験用供試体の作り方および
J工S  A  1108コンクリートの仔−試験方法
による。
2) Underwater strong motion*: submerged l 10 x 20c
Oil is applied to concrete that has not hardened yet into the formwork, and after forming in water without using a hammer, it is pulled open in the air, and the surface is smoothed when the formwork is lightened with a mallet.
132 How to make concrete strength test specimens and J Engineering SA 1108 Concrete test method.

本実施例の結果を第1表に示す。The results of this example are shown in Table 1.

第1& なお、第2表のJ161は混和剤を添加しない場合の比
較例に相当し、水中圧縮強度は水中成型時に材料分陰を
起すため測定できず。
J161 in Table 1 and Table 2 corresponds to a comparative example in which no admixture is added, and the underwater compressive strength cannot be measured because material shadowing occurs during underwater molding.

実施例2 普通lルトランドセメント858 N、 4111it
材1623Nおよび水4209を一定m’合とするモル
タル組成に、第2表に示すセルロール類。
Example 2 Ordinary Rutland cement 858N, 4111it
The cellulose shown in Table 2 was added to the mortar composition with a constant m' content of material 1623N and water 4209.

金kI4地および消泡剤をそれぞ1+セメント置に対し
て058%、0.029%および0.01%(2) ’
41+合で給加し、得られた各モルタルについて水中に
おけるを鋼の枠度と水中圧縮IiI&I膣をルIノ定し
た。
058%, 0.029% and 0.01% (2) of gold kI4 base and antifoam agent for 1+cement placement, respectively.
The steel frame strength in water and the underwater compression IiI & I vagina were determined for each mortar obtained.

(9) 測定は次の方法によった。(9) The measurement was performed using the following method.

1)懸濁の程良:1000−のメスシリンダーに予め・
10 ’00−の水を入れ、次に紳9あかったモルタル
50−を計り取や、水中落下させる。落下1分経過後、
ホールピペットを用ψてメスシリンダーのaI41J1
位M(4o。
1) Good suspension: Preliminarily place in a 1000-meter graduated cylinder.
Add 10'00 of water, then measure out 50' of hot mortar and drop it into the water. After 1 minute of falling,
Using a whole pipette, measure the graduated cylinder aI41J1.
Rank M (4o.

−)より試料を採取し、以下J工5xo102工場排水
試飄方法により、IL![S物質の門を求めた。
-), and IL! [Searching for the gate of S substances.

2)水中圧縮%pJ:水中に沈めたΦ5X10c+++
の型枠を用いて、実th例1と1一様に試験した。
2) Underwater compression %pJ: Φ5X10c+++ submerged in water
Examples 1 and 1 were tested uniformly using the molds.

なお、混和剤の成分として用いたセルロース順を下記に
示す。
The order of cellulose used as a component of the admixture is shown below.

(lO) 結果を第2表に示した。(lO) The results are shown in Table 2.

上記の結果から、高粘度の水溶性セルロースエーテルを
使用するはど圧縮強度が大きくなり一般に10,000
op以上、%に50,0OOOP以上のものか好ましい
1、なお、上記で使用した水溶性セルロースエーテルH
KOのMSは2.8゜+1JJ *HIc SのM 8
4i1.8であり、HICOの方か圧縮強廉か大きく、
※HICCの方が凝結油層が葛L<il!址であっな。
From the above results, the use of water-soluble cellulose ether with high viscosity increases the compressive strength, which is generally 10,000
OP or more, preferably 50,0OOOP or more in %1, and the water-soluble cellulose ether H used above
KO's MS is 2.8° + 1JJ *HIc S's M 8
It is 4i1.8, and HICO or compression strength is larger.
*The condensed oil layer is smaller in HICC! It's there.

(11) 第2 表 (12)(11) Table 2 (12)

Claims (1)

【特許請求の範囲】 1)水溶性セルロースエーテル、水溶性の金属硫t1N
堝または金属塩化物、および消泡剤を主とする水中コン
クリート用混和剤 2)水%性セルロースエーテルがヒドロキシア、ルキル
セルロースである特許請求の範囲第1項記除の水中コン
クリート用混和剤 3)  ヒドロキシアルキルセルロースがヒドロキシエ
チルセルロースである特許請求の範囲第2項記級の水中
コンクリート用混、和剤4)  ヒドロキシエチルセル
ロースのエチレンオキサイドのモル数か26〜5である
特許請求の範囲第394記載の水中コンク、リート用混
和剤 5)金に4硫酸地か硫酸ナトリウムである特許請求のs
b第1項記載の水中コンクリート用混和剤 6)金mm化物が塩化ナトリウムまたは地化カルシウム
である特許請求の範囲第1項記載の水中コンクリート用
混和剤 7)水溶性セルロースエーテル100mkt部に対して
、金属硫酸塩または全属地化物が2〜30.0本一部お
よび消泡剤が05〜151kM部である特許請求の範囲
第1項記載の水中コンクリート用混和剤
[Claims] 1) Water-soluble cellulose ether, water-soluble metal sulfur t1N
2) An admixture for underwater concrete mainly containing a pot or a metal chloride, and an antifoaming agent 2) An admixture for underwater concrete 3 according to claim 1, wherein the water-based cellulose ether is hydroxya or alkylcellulose. ) The hydroxyalkyl cellulose is hydroxyethyl cellulose, a mixture and additive for underwater concrete according to claim 2. 4) The number of moles of ethylene oxide in the hydroxyethyl cellulose is 26 to 5, according to claim 394. Admixture for underwater concrete and leet 5) Patent claim s which is gold with 4 sulfuric acid or sodium sulfate
b) The admixture for underwater concrete according to claim 1 6) The admixture for underwater concrete according to claim 1, wherein the gold mmide is sodium chloride or calcium chloride 7) Based on 100 mkt parts of water-soluble cellulose ether , an admixture for underwater concrete according to claim 1, comprising 2 to 30.0 parts of a metal sulfate or a total metal compound and 05 to 151 km of an antifoaming agent.
JP21133481A 1981-12-29 1981-12-29 Admixing agent for underwater concrete Granted JPS58115051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21133481A JPS58115051A (en) 1981-12-29 1981-12-29 Admixing agent for underwater concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21133481A JPS58115051A (en) 1981-12-29 1981-12-29 Admixing agent for underwater concrete

Publications (2)

Publication Number Publication Date
JPS58115051A true JPS58115051A (en) 1983-07-08
JPH0338224B2 JPH0338224B2 (en) 1991-06-10

Family

ID=16604229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21133481A Granted JPS58115051A (en) 1981-12-29 1981-12-29 Admixing agent for underwater concrete

Country Status (1)

Country Link
JP (1) JPS58115051A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065755A (en) * 1983-09-20 1985-04-15 電気化学工業株式会社 Underwater concrete composition
JPS60260456A (en) * 1984-06-07 1985-12-23 ダイセル化学工業株式会社 Cement composition for underwater construction
JPS62132750A (en) * 1985-12-06 1987-06-16 日本海上工事株式会社 Underwater cement composition
JPS6433043A (en) * 1987-07-30 1989-02-02 Sumitomo Cement Co Special underwater concrete composition
JPH02271947A (en) * 1989-04-11 1990-11-06 Denki Kagaku Kogyo Kk Underwater concrete composition
US5554218A (en) * 1995-04-03 1996-09-10 Evans; Shawn Cement compositions and methods of underwater application
JP2014141380A (en) * 2013-01-25 2014-08-07 Penta Ocean Construction Co Ltd Thickener for underwater concrete and method for placing underwater concrete using the same
JP2015101524A (en) * 2013-11-27 2015-06-04 五洋建設株式会社 Admixture for concrete in water, concrete in water and manufacturing method for concrete in water
JP2018035021A (en) * 2016-08-30 2018-03-08 五洋建設株式会社 Low strength concrete, and manufacturing method of low strength concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2326647A1 (en) * 1973-05-25 1974-12-12 Sicotan Kunststoff Constructional material for use under water - polymer added to cement gives high water and erosion resistance
JPS54122335A (en) * 1978-03-16 1979-09-21 Tokuyama Soda Co Ltd Adhesive composition
JPS54138023A (en) * 1978-04-17 1979-10-26 Tairu Council Amerika Inc Dry ageing mortar and improvement of its water retention

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2326647A1 (en) * 1973-05-25 1974-12-12 Sicotan Kunststoff Constructional material for use under water - polymer added to cement gives high water and erosion resistance
JPS54122335A (en) * 1978-03-16 1979-09-21 Tokuyama Soda Co Ltd Adhesive composition
JPS54138023A (en) * 1978-04-17 1979-10-26 Tairu Council Amerika Inc Dry ageing mortar and improvement of its water retention

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065755A (en) * 1983-09-20 1985-04-15 電気化学工業株式会社 Underwater concrete composition
JPH0443864B2 (en) * 1983-09-20 1992-07-17 Denki Kagaku Kogyo Kk
JPS60260456A (en) * 1984-06-07 1985-12-23 ダイセル化学工業株式会社 Cement composition for underwater construction
JPH0517186B2 (en) * 1984-06-07 1993-03-08 Daicel Chem
JPS62132750A (en) * 1985-12-06 1987-06-16 日本海上工事株式会社 Underwater cement composition
JPS6433043A (en) * 1987-07-30 1989-02-02 Sumitomo Cement Co Special underwater concrete composition
JPH02271947A (en) * 1989-04-11 1990-11-06 Denki Kagaku Kogyo Kk Underwater concrete composition
US5554218A (en) * 1995-04-03 1996-09-10 Evans; Shawn Cement compositions and methods of underwater application
JP2014141380A (en) * 2013-01-25 2014-08-07 Penta Ocean Construction Co Ltd Thickener for underwater concrete and method for placing underwater concrete using the same
JP2015101524A (en) * 2013-11-27 2015-06-04 五洋建設株式会社 Admixture for concrete in water, concrete in water and manufacturing method for concrete in water
JP2018035021A (en) * 2016-08-30 2018-03-08 五洋建設株式会社 Low strength concrete, and manufacturing method of low strength concrete

Also Published As

Publication number Publication date
JPH0338224B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
EP0208535B1 (en) Process of producing a flowing concrete
SA516380523B1 (en) Ultra–High Performance Concretes Having A Low Cement Content
JP3728975B2 (en) Self-flowing hydraulic composition
JPS58115051A (en) Admixing agent for underwater concrete
JPH0680456A (en) Fluid hydraulic composition
JP3341812B2 (en) One-powder type polymer cement composition for semi-flexible pavement
US7678191B2 (en) Fast-setting pourable mortars with high fluidity
CN110894151A (en) 3D printing building ink capable of being constructed in winter and preparation method thereof
JP2019151517A (en) Concrete composition and hardened concrete
JP2567322B2 (en) Highly Fillable Fresh Concrete for Cast-in-Place
JP2701028B2 (en) Cement-based self-leveling material
JP2004331459A (en) Cement composition and hardened cement having resistance to sulfuric acid
US3951674A (en) Concrete additive
JP3312641B2 (en) One-powder type polymer cement composition for semi-flexible pavement
JPS60195046A (en) Cementitious self leveling material composition
JPH10139516A (en) One-powder type fiber reinforced mortar composition for coating and its production
JPH05221701A (en) Concrete additive for underground continuous wall, concrete using the additive and formation of underground continuous wall with the concrete
JP7359686B2 (en) Admixtures for mortar and concrete, cement compositions, mortar compositions and concrete compositions containing the same, and methods for producing cured mortar and cured concrete
JP2001206754A (en) Highly flowable concrete
JPS61186253A (en) High strength underwater mortar concrete composition
JP3103195B2 (en) Concrete composition
JP2839770B2 (en) Concrete composition with excellent filling and fluidity
JPS59227752A (en) Concrete admixing agent
JP3228803B2 (en) Admixture for concrete
JPS6121949A (en) Admixing agent for underwater work cement composition