JP4709359B2 - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP4709359B2
JP4709359B2 JP2000273750A JP2000273750A JP4709359B2 JP 4709359 B2 JP4709359 B2 JP 4709359B2 JP 2000273750 A JP2000273750 A JP 2000273750A JP 2000273750 A JP2000273750 A JP 2000273750A JP 4709359 B2 JP4709359 B2 JP 4709359B2
Authority
JP
Japan
Prior art keywords
weight
parts
polycarboxylic acid
polymer compound
acid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000273750A
Other languages
Japanese (ja)
Other versions
JP2001163655A (en
Inventor
博 中西
高央 市村
彰一 小川
一夫 山田
孝一 副田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000273750A priority Critical patent/JP4709359B2/en
Publication of JP2001163655A publication Critical patent/JP2001163655A/en
Application granted granted Critical
Publication of JP4709359B2 publication Critical patent/JP4709359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、C3Aを主成分とするセメント系水硬性組成物に関する。
【0002】
【従来技術とその問題点】
C3A、即ちCaO・3Al23の如く水和活性の極めて高い化合物を大量に含有するセメントは、初期強度発現性はかなり優れるものの、反面水添加混練時に急激な流動性の低下が生じ易く、混練後の作業が著しく制約を受け易い。このような流動性低下の防止策として、クエン酸などの公知の有機系遅延剤を使用して初期水和反応を抑制する方法や、ナフタレンスルホン酸ホルマリン縮合物又はメラミンスルホン酸ホルマリン縮合物等の公知の分散剤を使用する方法、更には前者と後者の方法を同時に併用する方策も挙げられる。前者即ちクエン酸などの有機系遅延剤の使用は、初期水和反応が過度に抑制され易く、初期強度発現性までが低下することがある。また、後者の分散剤を使用する方法は、高流動性を確保する上で添加量を増大させたり、水セメント比を高くせねばならず、この結果凝結が遅延したり、強度発現性が低下することがある。更に、両者を併用する場合には互いの影響で作用効果が低減され易いため、有機系遅延剤の配合量を単独使用する場合よりもかなり多くしないと安定した流動状態が一定時間維持できない。このことは水和反応の過度の抑制からもたらされるため、強度発現性の低下、とりわけ初期強度の発現性を損なう。
【0003】
【発明が解決する課題】
本発明は、前記問題点の解決、即ち、水和活性が極めて高く、初期強度発現性に優れた影響を及ぼすC3Aを主成分に含む水硬性組成物に対し、水添加後の混練物に一定時間流動性を付与でき、かつ凝結遅延や初期強度発現性低下が殆ど生じないようにした水硬性組成物を提供することを目的とする。
【0004】
【課題を解決する手段】
本発明者らは、前記課題に対し検討を重ねた結果、水和活性が極めて高く、早期強度発現性の優れたC3Aを主成分とし、これに初期から中長期に渡って安定した強度発現作用を付与させるためのC3S、C2SおよびC4Aに、凝結・水和調整作用を有する石膏を加えてセメント系組成物とし、該組成物の水添加時に高い流動性を付与させるための特定の高分子化合を配合することで混練時や混練後の作業性を高めることができ、凝結遅延や初期強度発現性低下を殆ど生じない水硬性組成物が得られたことから本発明を完成するに至った。
【0005】
即ち、本発明は、下記の(A)、(B)、(C)および(D)を含む水硬性組成物(但し、高強度湿式吹き付け用水硬性組成物を除く)である。
(A)C3Aを5〜50重量%と、C3S、C2SおよびC4AFを含むセメント形成成分。
(B)含有量がクリンカー焼成物100重量部に対し1〜30重量%である石膏類。
(C)含有量がセメント形成成分の固形分総量100重量部に対し、固形分換算で0.01〜5重量部である、下記の(i)、(ii)および(iii)の物性を有するポリカルボン酸系高分子化合物。
(i)ポリカルボン酸系高分子化合物が分子内に下記の(I)式と(II)式で表される構成単位を有する。
【0008】
〔式中、R1〜R4は、同一又は異なって、水素原子又はメチル基又はエチル基を表し、X1 (CH2)mCOOM1を表し、X2はCOOM1を表す。M1は、水素原子、アルカリ金属、アンモニウム又は有機アミンの何れかを表し、mは0〜2の整数を表す。R5は炭素数1〜3のアルキル基、Yは−CH2O−又は−COO−を表し、nは20〜300の整数を表す。〕
(ii)ポリカルボン酸系高分子化合物を構成する構成単位の含有量が単量体モル比換算で(I)式/(II)式=100/0.1〜100/100である。
(iii)ポリカルボン酸系高分子化合物の重量平均分子量がポリエチレングリコール換算で2000〜200000である。
(D)含有量がポリカルボン酸系高分子化合物の固形分100重量部に対し、1〜40重量部である遅延剤。
【0009】
【発明の実施の形態】
本発明の水硬性組成物はセメント形成成分、石膏類、遅延剤、およびポリカルボン酸系高分子化合物からなる。前者に関わる成分として、本発明ではC3AことCaO・3Al23を必須成分とし、且つC3SことCaO・3SiO2、C2SことCaO・2SiO2およびC4AFことCaO・4Al23・Fe2 3 を構成物質として含むものであってC3Aが5〜50重量%含まれるものである。尚、C3Aの含有量が5重量%未満では初期強度発現性が乏しくなるため好ましくなく、また50重量%を超えると流動性が著しく低下するため好ましくない。更にセメント形成成分には石膏類が必須成分として加わる。
【0010】
また、C3A、C3S、C2S、C4AFの各成分を供するための原料は、特に限定されるものではなく、例えば石灰石、粘土鉱物、石炭灰、高炉スラグを始めとする各種スラグ類、炭酸カルシウム、珪石粉、鉄粉、廃棄物や汚泥等の各種焼却灰、石灰処理した下水汚泥乾粉、その他セメント製造で使用されている原料などを用いることができる。
【0011】
かかる原料を例えばロータリーキルンなどで1200〜1500℃で焼成してクリンカーを作製し、これを粉砕したクリンカー粉砕物に、石膏類を加え、水硬性組成物を作製する。クリンカー粉砕方法や粉砕粒度は特に限定されず、一般のセメント製造で行われているのと概ね同様で良く、例えばクリンカー粉砕物の粒度は2000〜10000cm2/gとすることができる。このクリンカー粉砕物に石膏類を添加するが、本発明で使用する石膏類は特に限定されず、例えば無水石膏、半水石膏、二水石膏を挙げることができる。その配合量は概ねクリンカー焼成物100重量部に対し1〜30重量部が好ましい。配合量が1重量部未満では水和反応調整効果が乏しいため好ましくなく、また配合量が30重量部を超えると膨張するため好ましくない。
【0012】
更に、本発明の水硬性組成物は、ポリカルボン酸系高分子化合物を含むものである。該ポリカルボン酸系高分子化合物は、分子内に次の(I)式と(II)式で表される構成単位を有するものが好ましい。また、ポリカルボン酸系高分子化合物の含有量は水硬性組成物を構成するC3A等のセメント形成成分に対し、固形分換算で0.01〜5重量%とする。
【0013】
【化5】

Figure 0004709359
【0014】
【化6】
Figure 0004709359
【0015】
〔式中、R1〜R4は、同一又は異なって、水素原子又はメチル基又はエチル基を表し、X1は水素原子又はメチル基又は(CH2)mCOOM1を表し、X2はCOOM1を表す。M1は、水素原子、アルカリ金属、アンモニウム又は有機アミンの何れかを表し、mは0〜2の整数を表す。R5は炭素数1〜3のアルキル基、Yは−CH2O−又は−COO−を表し、nは20〜300の整数を表す。〕該ポリカルボン酸系高分子化合物は、水硬性組成物中のC3A等のセメント形成成分の固形分総量100重量部に対し、固形分換算で好ましくは0.01〜5重量部、より好ましくは0.05〜3重量部を含むのが良く、0.01重量部未満の配合では配合効果が殆ど得られないので好ましくなく、また5重量部を超える配合では凝結遅延や硬化後の強度発現性が不良となることがあるので好ましくない。また、ポリカルボン酸系高分子化合物を構成する構成単位の含有量が単量体モル比換算で(I)式/(II)式=100/0.1〜100/100であることが好ましい。これは、(I)式/(II)式の値が100/0.1より大であると流動性の低下が大きくなり、100/100未満であると泡沫安定性や分散性が低下するため何れも好ましくないことによる。
【0016】
また、該ポリカルボン酸系高分子化合物の重量平均分子量はポリエチレングリコール換算で2000〜200000であることが好ましい。重量平均分子量が2000未満や、200000を超えると何れも分散性が低下するため好ましくない。
【0017】
また、本発明の水硬性組成物は、前記ポリカルボン酸系高分子化合物に加えて、セメント用やコンクリート用の公知混和剤(混和材)を適宜含むことができる。
【0018】
本発明の水硬性組成物は、遅延剤を含。遅延剤は公知のものであれば何れのものでも良く、例えばオキシカルボン酸やその塩、ケト酸又はその塩、アミノカルボン酸又はその塩、糖類、糖アルコール類等の公知の有機系遅延剤、ケイフッ化物、硼酸類、燐酸類、亜鉛化合物、鉛化合物、銅化合物等の公知無機系遅延剤が挙げられる。このうち、オキシカルボン酸若しくはその塩、糖類、糖アルコール類がより好ましい。遅延剤の添加量は、ポリカルボン酸系高分子化合物の配合量の固形分換算100重量部に対し、1〜40重量部であり、1重量部未満では流動性保持の改善効果が殆ど認められないため好ましくなく、40重量部を超えると過度の凝結遅延を起こすことがあるため好ましくない。その配合添加の際は、ポリカルボン酸系高分子化合物に予め混合してポリカルボン酸系高分子化合物と共に配合添加しても良い。
【0019】
また、本発明の水硬性組成物は、骨材として、通常のコンクリートやモルタル等で使用されている公知骨材であれば何れのものでも含むことができる。このような公知骨材としては、例えば川砂、陸砂、砕石、珪砂等の天然骨材が特に好ましいが、他にフライアッシュ、スラグ、水洗を施した海砂、炭酸カルシウム等を用いることができる。骨材配合量は水硬性成分100重量部に対し、30〜1000重量部、コンクリートを製造する場合では好ましくは100〜700重量部とする。30重量部未満では組成物の収縮量が増大するので好ましくなく、1000重量部を超えると水添加時の流動性と硬化体強度の低下を来すので好ましくない。
【0020】
本発明の水硬性組成物に水を配合する際の配合量は、該組成物中のセメント形成成分100重量部に対し、20〜100重量部とする。水の配合中や配合直後は混練を行うのが望ましいが、本水硬性組成物は混練停止後も直ぐには硬化せず、暫くの間は良好な流動状態を維持することができるので、その間に施工作業等を特段の制約なく行うことができる。
【0021】
【実施例】
以下、本発明を実施例を用いて具体的に説明する。
石灰石粉、アルミ灰、粘土並びに鉄粉の混合物を約1400℃で焼成した後、粉砕しブレーン比表面積を4000cm2/gにした表1の鉱物成分を含むクリンカー粉砕物に、SO3換算で2.2重量%の半水石膏を添加し、これを再粉砕してブレーン比表面積4700cm2/gの表2に記した化学組成(重量%)の2種類のセメント組成物(A、B)を作製した。このセメント組成物に、細骨材として最大粒径5mmの小笠産陸砂、更に表3に記したモル組成比(配合割合をモル%で表す)の単量体を公知手法で共重合させて得た高分子化合物(1〜5)の固形分濃度約25%溶液又はナフタレンスルホン酸ホルマリン縮合物を主成分とする市販分散剤(N)、遅延剤並びに水を表4に記した配合割合でホバートミキサーで3分間混練し、水硬性組成物(実施例1〜13、比較例1〜3)を作製した。作製した水硬性組成物の混練終了直後から一定時間経たモルタルフロー値、該混練物を用いたモルタル供試体によるモルタル圧縮強さを、何れもJIS R5201に準拠した方法で調整・測定した。結果を表4に記す。
【0022】
【表1】
Figure 0004709359
【0023】
【表2】
Figure 0004709359
【0024】
【表3】
Figure 0004709359
【0025】
【表4】
Figure 0004709359
【0026】
また、前記セメント組成物に、前記小笠産陸砂と粗骨材として最大粒径約20mmの砕石を混合した骨材(重量比で小笠産陸砂:粗骨材=1:1.5)、表3に記したモル組成比(配合割合をモル%で表す)の単量体を公知手法で共重合させてなる高分子化合物(1〜6)の固形分濃度約25%の溶液又はナフタレンスルホン酸ホルマリン縮合物を主成分とする市販分散剤(N)、遅延剤並びに水を表5記載の配合量となるように強制2軸型ミキサーにて混合・混練したもの(実施例14〜28、比較例4〜6)を、JIS A1101に準じた方法にて混練直後と混練後60分経過した時点でのスランプを測定した。更にこの混練物を直径10cm、高さ20cmの円柱型枠に充填し、24時間経過後脱型して得た成形物の圧縮強度を測定した。スランプ値並びに圧縮強度の測定結果等を表5に併せて記す。
【0027】
【表5】
Figure 0004709359
【0028】
【発明の効果】
本発明の水硬性組成物は、水添加後も適度な流動性を一定時間維持することができる。それ故、施工や型枠成形などの作業時間を十分確保できると共に、凝結遅延を起こすこともなく、硬化後は極めて優れた初期強度発現性を示し、中長期に渡っても安定した強度発現性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cement-based hydraulic composition containing C3A as a main component.
[0002]
[Prior art and its problems]
C3A, that is, a cement containing a large amount of a compound having a very high hydration activity such as CaO.3Al 2 O 3 has a considerably excellent initial strength, but on the other hand, a sudden drop in fluidity is likely to occur during water addition and kneading. The work after kneading is extremely restricted. As a preventive measure for such a decrease in fluidity, a method of suppressing an initial hydration reaction using a known organic retarder such as citric acid, a naphthalene sulfonic acid formalin condensate or a melamine sulfonic acid formalin condensate, etc. A method of using a known dispersant, and a method of simultaneously using the former method and the latter method can also be mentioned. The former, ie, the use of an organic retarder such as citric acid, tends to excessively suppress the initial hydration reaction, and may reduce the initial strength development. In addition, the method using the latter dispersant has to increase the amount added to ensure high fluidity or increase the water-cement ratio. As a result, setting is delayed or strength development is reduced. There are things to do. Furthermore, when both are used in combination, the action and effect are likely to be reduced due to mutual influences. Therefore, a stable fluid state cannot be maintained for a certain period of time unless the amount of the organic retarder blended is significantly increased compared to the case where the organic retarder is used alone. Since this results from excessive suppression of the hydration reaction, it deteriorates strength development, particularly initial strength development.
[0003]
[Problems to be solved by the invention]
The present invention solves the above problems, that is, the kneaded product after addition of water is constant for a hydraulic composition containing C3A as a main component, which has a very high hydration activity and has an excellent effect on initial strength development. It is an object of the present invention to provide a hydraulic composition which can impart temporal fluidity and hardly causes a setting delay or a decrease in initial strength development.
[0004]
[Means for solving the problems]
As a result of repeated investigations on the above problems, the present inventors have C3A as a main component, which has extremely high hydration activity and excellent early strength development, and has a stable strength development action from the beginning to the middle to long term. C3S for imparting a, C2S and C4A F, the addition of gypsum having a condensation-hydration modulating effects and cementitious compositions, specific polymer for imparting high fluidity upon addition of water of the composition compounds can improve the workability after kneading time and kneading by compounding, leading to completion of the present invention since the hydraulic compositions that do not produce a setting retardation and early strength development decreases mostly obtained It was.
[0005]
That is, the present invention is a hydraulic composition containing the following (A), (B), (C) and (D) (excluding a hydraulic composition for high strength wet spraying) .
(A) A cement-forming component containing 5 to 50% by weight of C3A and C3S, C2S and C4AF.
(B) Gypsum whose content is 1 to 30% by weight with respect to 100 parts by weight of the clinker fired product.
(C) The content of the following (i), (ii) and (iii) is 0.01 to 5 parts by weight in terms of solid content with respect to 100 parts by weight of the total solid content of the cement-forming component. Polycarboxylic acid polymer compound.
(I) The polycarboxylic acid polymer compound has structural units represented by the following formulas (I) and (II) in the molecule.
[0008]
Wherein, R 1 to R 4 are the same or different, represent a hydrogen atom or a methyl or ethyl group, X 1 represents a (CH 2) mCOOM 1, X 2 represents COOM 1. M 1 represents any of a hydrogen atom, an alkali metal, ammonium, or an organic amine, and m represents an integer of 0 to 2. R 5 represents an alkyl group having 1 to 3 carbon atoms, Y represents —CH 2 O— or —COO—, and n represents an integer of 20 to 300. ]
(Ii) The content of the structural unit constituting the polycarboxylic acid polymer compound is (I) formula / (II) formula = 100 / 0.1 to 100/100 in terms of monomer molar ratio.
(Iii) The weight average molecular weight of the polycarboxylic acid polymer compound is 2000 to 200000 in terms of polyethylene glycol.
(D) A retarder whose content is 1 to 40 parts by weight with respect to 100 parts by weight of the solid content of the polycarboxylic acid polymer compound.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The hydraulic composition of the present invention comprises a cement forming component , gypsum, a retarder, and a polycarboxylic acid polymer compound. As a component related to the former, in the present invention, C3A, CaO.3Al 2 O 3 is an essential component, and C3S, CaO.3SiO 2 , C2S, CaO.2SiO 2 , and C4AF, CaO.4Al 2 O 3 .Fe 2 O. 3 be those containing, as a constituent, in which C3A is contained 5 to 50 wt%. If the content of C3A is less than 5% by weight, the initial strength developability becomes poor, and if it exceeds 50% by weight, the fluidity is remarkably lowered. Furthermore, gypsum is added as an essential component to the cement-forming component.
[0010]
Moreover, the raw material for providing each component of C3A, C3S, C2S, C4AF is not specifically limited, For example, various slags including limestone, clay mineral, coal ash, blast furnace slag, calcium carbonate, silica stone Various incineration ash such as powder, iron powder, waste and sludge, lime-treated sewage sludge dry powder, and other raw materials used in cement production can be used.
[0011]
The raw material is fired at, for example, a rotary kiln at 1200 to 1500 ° C. to produce a clinker, and gypsum is added to the pulverized clinker to produce a hydraulic composition. The clinker pulverization method and the pulverized particle size are not particularly limited, and may be substantially the same as those performed in general cement production. For example, the particle size of the clinker pulverized product can be 2000 to 10000 cm 2 / g. Gypsum is added to the pulverized clinker, and the gypsum used in the present invention is not particularly limited, and examples thereof include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. The blending amount is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the clinker fired product. If the blending amount is less than 1 part by weight, the effect of adjusting the hydration reaction is poor, which is not preferable.
[0012]
Furthermore, the hydraulic composition of the present invention contains a polycarboxylic acid polymer compound. The polycarboxylic acid polymer compound preferably has structural units represented by the following formulas (I) and (II) in the molecule. In addition, the content of the polycarboxylic acid polymer compound is 0.01 to 5% by weight in terms of solid content with respect to a cement-forming component such as C3A constituting the hydraulic composition.
[0013]
[Chemical formula 5]
Figure 0004709359
[0014]
[Chemical 6]
Figure 0004709359
[0015]
[Wherein, R 1 to R 4 are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group, X 1 represents a hydrogen atom, a methyl group, or (CH 2 ) mCOOM 1 , and X 2 represents COOM 1 Represents. M 1 represents any of a hydrogen atom, an alkali metal, ammonium, or an organic amine, and m represents an integer of 0 to 2. R 5 represents an alkyl group having 1 to 3 carbon atoms, Y represents —CH 2 O— or —COO—, and n represents an integer of 20 to 300. The polycarboxylic acid-based polymer compound is preferably 0.01 to 5 parts by weight, more preferably in terms of solids, based on 100 parts by weight of the total solids of cement-forming components such as C3A in the hydraulic composition. It is preferable to contain 0.05 to 3 parts by weight, and blending less than 0.01 part by weight is not preferable because almost no blending effect can be obtained. Is not preferable because it may become defective. Moreover, it is preferable that content of the structural unit which comprises a polycarboxylic acid type high molecular compound is (I) type | formula / (II) type | formula = 100 / 0.1-100 / 100 in conversion of monomer molar ratio. This is because when the value of the formula (I) / (II) is larger than 100 / 0.1, the decrease in fluidity is large, and when it is less than 100/100, the foam stability and dispersibility are decreased. Both are not preferable.
[0016]
Moreover, it is preferable that the weight average molecular weight of this polycarboxylic acid-type high molecular compound is 2000-200000 in conversion of polyethyleneglycol. If the weight average molecular weight is less than 2,000 or exceeds 200,000, any of them is not preferable because the dispersibility is lowered.
[0017]
Moreover, the hydraulic composition of the present invention can appropriately contain a known admixture (admixture) for cement or concrete in addition to the polycarboxylic acid polymer compound.
[0018]
The hydraulic composition of the present invention, including a retarder. The retarder may be any known one, for example, oxycarboxylic acids and salts thereof, keto acids or salts thereof, aminocarboxylic acids or salts thereof, known organic retarders such as saccharides, sugar alcohols, Known inorganic retarders such as silicofluorides, boric acids, phosphoric acids, zinc compounds, lead compounds, copper compounds and the like can be mentioned. Of these, oxycarboxylic acids or salts thereof, saccharides, and sugar alcohols are more preferable. The addition amount of the retarder is 1 to 40 parts by weight with respect to 100 parts by weight in terms of solid content of the blended amount of the polycarboxylic acid polymer compound , and if it is less than 1 part by weight, the improvement effect of fluidity retention is almost recognized. It is not preferable because it is not present, and an amount exceeding 40 parts by weight is not preferable because excessive setting delay may occur. At the time of compounding addition, it may be mixed in advance with the polycarboxylic acid polymer compound and added together with the polycarboxylic acid polymer compound.
[0019]
In addition, the hydraulic composition of the present invention can include any known aggregate that is used in ordinary concrete, mortar, or the like as the aggregate. As such a known aggregate, natural aggregates such as river sand, land sand, crushed stone, and quartz sand are particularly preferable, but fly ash, slag, washed sea sand, calcium carbonate, and the like can also be used. . The aggregate content is 30 to 1000 parts by weight with respect to 100 parts by weight of the hydraulic component, and preferably 100 to 700 parts by weight when producing concrete. If the amount is less than 30 parts by weight, the amount of shrinkage of the composition increases, which is not preferable.
[0020]
The amount of water added to the hydraulic composition of the present invention is 20 to 100 parts by weight with respect to 100 parts by weight of the cement-forming component in the composition. While it is desirable to knead during or immediately after the mixing of water, the hydraulic composition does not harden immediately after the kneading is stopped, and can maintain a good fluid state for a while. Construction work and the like can be performed without any particular restrictions.
[0021]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Limestone powder, after firing the aluminum ash, a mixture of clay and iron at about 1400 ° C., the clinker grinding comprising ground mineral ingredients in Table 1 in which the Blaine specific surface area 4000 cm 2 / g, 2 converted to SO 3 2 wt% hemihydrate gypsum was added and reground to obtain two types of cement compositions (A, B) of the chemical composition (wt%) listed in Table 2 having a Blaine specific surface area of 4700 cm 2 / g. Produced. This cement composition was copolymerized with fine sand aggregate of Ogasa land sand having a maximum particle size of 5 mm and a monomer having a molar composition ratio (mixing ratio expressed in mol%) shown in Table 3 by a known method. The obtained polymer compound (1-5) solid content concentration of about 25% solution or commercially available dispersant (N) mainly composed of naphthalene sulfonic acid formalin condensate, retarder and water in the blending ratios shown in Table 4 It knead | mixed for 3 minutes with the Hobart mixer, and produced the hydraulic composition (Examples 1-13, Comparative Examples 1-3). The mortar flow value after a certain period of time immediately after the kneading of the prepared hydraulic composition and the mortar compressive strength by the mortar specimen using the kneaded material were both adjusted and measured by a method based on JIS R5201. The results are shown in Table 4.
[0022]
[Table 1]
Figure 0004709359
[0023]
[Table 2]
Figure 0004709359
[0024]
[Table 3]
Figure 0004709359
[0025]
[Table 4]
Figure 0004709359
[0026]
Moreover, the aggregate (the Ogasa land sand: coarse aggregate = 1: 1.5 by weight ratio) which mixed the crushed stone with a maximum particle size of about 20 mm as the coarse sand aggregate with the Ogasa land sand in the cement composition, A solution having a solid composition concentration of about 25% or naphthalene sulfone obtained by copolymerizing monomers having a molar composition ratio (mixing ratio expressed in mol%) shown in Table 3 by a known method. What knead | mixed and kneaded the commercially available dispersing agent (N) which has an acid formalin condensate as a main component, a retarder, and water with the forced biaxial mixer so that it might become the compounding quantity of Table 5 (Examples 14-28, In Comparative Examples 4 to 6, slumps were measured immediately after kneading and 60 minutes after kneading by a method according to JIS A1101. Further, this kneaded product was filled into a cylindrical mold having a diameter of 10 cm and a height of 20 cm, and the compression strength of the molded product obtained by demolding after 24 hours was measured. Table 5 also shows the slump value and the measurement result of the compressive strength.
[0027]
[Table 5]
Figure 0004709359
[0028]
【The invention's effect】
The hydraulic composition of the present invention can maintain appropriate fluidity for a certain period of time even after the addition of water. Therefore, it is possible to secure sufficient work time for construction and mold forming, etc., without causing a delay in setting, and exhibiting excellent initial strength development after curing, and stable strength development over the medium to long term Indicates.

Claims (1)

下記の(A)、(B)、(C)および(D)を含むことを特徴とする水硬性組成物(但し、高強度湿式吹き付け用水硬性組成物を除く)
(A)C3Aを5〜50重量%と、C3S、C2SおよびC4AFを含むセメント形成成分。
(B)含有量がクリンカー焼成物100重量部に対し、1〜30重量%である石膏類。
(C)含有量がセメント形成成分の固形分総量100重量部に対し、固形分換算で0.01〜5重量部である、下記の(i)、(ii)および(iii)の物性を有するポリカルボン酸系高分子化合物。
(i)ポリカルボン酸系高分子化合物が分子内に下記の(I)式と(II)式で表される構成単位を有する。
Figure 0004709359
Figure 0004709359
〔式中、R 1 〜R 4 は、同一又は異なって、水素原子又はメチル基又はエチル基を表し、X 1 は(CH 2 )mCOOM 1 を表し、X 2 はCOOM 1 を表す。M 1 は、水素原子、アルカリ金属、アンモニウム又は有機アミンの何れかを表し、mは0〜2の整数を表す。R 5 は炭素数1〜3のアルキル基、Yは−CH 2 O−又は−COO−を表し、nは20〜300の整数を表す。〕
(ii)ポリカルボン酸系高分子化合物を構成する構成単位の含有量が単量体モル比換算で(I)式/(II)式=100/0.1〜100/100である。
(iii)ポリカルボン酸系高分子化合物の重量平均分子量がポリエチレングリコール換算で2000〜200000である。
(D)含有量がポリカルボン酸系高分子化合物の固形分100重量部に対し、1〜40重量部である遅延剤。
A hydraulic composition comprising the following (A), (B), (C) and (D) (excluding a hydraulic composition for high-strength wet spraying):
(A) A cement-forming component containing 5 to 50% by weight of C3A and C3S, C2S and C4AF.
(B) Gypsum whose content is 1 to 30% by weight with respect to 100 parts by weight of the clinker fired product.
(C) The content of the following (i), (ii) and (iii) is 0.01 to 5 parts by weight in terms of solid content with respect to 100 parts by weight of the total solid content of the cement-forming component. Polycarboxylic acid polymer compound.
(I) The polycarboxylic acid polymer compound has structural units represented by the following formulas (I) and (II) in the molecule.
Figure 0004709359
Figure 0004709359
[Wherein, R 1 to R 4 are the same or different and each represents a hydrogen atom, a methyl group or an ethyl group, X 1 represents (CH 2 ) mCOOM 1 , and X 2 represents COOM 1 . M 1 represents any of a hydrogen atom, an alkali metal, ammonium, or an organic amine, and m represents an integer of 0 to 2. R 5 represents an alkyl group having 1 to 3 carbon atoms, Y represents —CH 2 O— or —COO—, and n represents an integer of 20 to 300. ]
(Ii) The content of the structural unit constituting the polycarboxylic acid polymer compound is (I) formula / (II) formula = 100 / 0.1 to 100/100 in terms of monomer molar ratio.
(Iii) The weight average molecular weight of the polycarboxylic acid polymer compound is 2000 to 200000 in terms of polyethylene glycol.
(D) A retarder whose content is 1 to 40 parts by weight with respect to 100 parts by weight of the solid content of the polycarboxylic acid polymer compound.
JP2000273750A 1999-09-27 2000-09-08 Hydraulic composition Expired - Fee Related JP4709359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273750A JP4709359B2 (en) 1999-09-27 2000-09-08 Hydraulic composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11-271683 1999-09-27
JP27168399 1999-09-27
JP1999271683 1999-09-27
JP2000273750A JP4709359B2 (en) 1999-09-27 2000-09-08 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2001163655A JP2001163655A (en) 2001-06-19
JP4709359B2 true JP4709359B2 (en) 2011-06-22

Family

ID=26549835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273750A Expired - Fee Related JP4709359B2 (en) 1999-09-27 2000-09-08 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP4709359B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448274B2 (en) * 2002-01-23 2010-04-07 株式会社日本触媒 Method of constructing cement admixture and cement composition
JP4344111B2 (en) * 2002-01-25 2009-10-14 株式会社日本触媒 Cement admixture and cement composition
JP7303525B2 (en) * 2020-01-09 2023-07-05 株式会社大林組 ADDITIVE FOR HYDRAULIC COMPOSITION, AND HYDRAULIC COMPOSITION
JP7393762B2 (en) * 2020-01-09 2023-12-07 株式会社大林組 Additives for hydraulic compositions and hydraulic compositions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717749A (en) * 1993-06-30 1995-01-20 Chichibu Onoda Cement Corp Production of highly flowable rapid-hardening cement mix material
JPH08217508A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH10279341A (en) * 1997-04-02 1998-10-20 Denki Kagaku Kogyo Kk Cement composition
JPH11199301A (en) * 1998-01-13 1999-07-27 Taiheiyo Cement Corp Hydraulic cement composition
JPH11217250A (en) * 1998-01-27 1999-08-10 Taiheiyo Cement Corp Cement composition
JP3665804B2 (en) * 1998-06-03 2005-06-29 竹本油脂株式会社 Ready-mixed concrete for high-strength wet spraying, method for forming a high-strength hardened body to be sprayed, and high-strength hardened body to be obtained by spraying the same

Also Published As

Publication number Publication date
JP2001163655A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
KR20010034109A (en) Process for producing dispersant for powdery hydraulic composition
JPH0341420B2 (en)
JP2004352515A (en) High interstitial phase type cement composition
JPH0680456A (en) Fluid hydraulic composition
JPH06100338A (en) Highly fluid cement
JP4709359B2 (en) Hydraulic composition
JP6985177B2 (en) Hydraulic composition and concrete
JP2001294469A (en) Ultra rapid hardening, non-shrinkage grout
JP2017031037A (en) Anti-washout underwater concrete composition and cured body thereof
JP2004352516A (en) High interstitial phase type cement composition
JP5721212B2 (en) Initial expansive cement composition
JP2001097759A (en) Quick hardening type grout composition
JP6896578B2 (en) Hydraulic powder composition
JP3698348B2 (en) Hydraulic compound
JP4679707B2 (en) High-strength cement admixture and cement composition using the same
JP2820953B2 (en) Underwater concrete composition
JP2003146725A (en) Water-hardenable composition
JPS63129052A (en) Cementitious self-leveling material composition
JP2002080259A (en) Hydraulicity composition
JP4689072B2 (en) Cement concrete, quick setting cement concrete, and preparation method
JP3973331B2 (en) Construction method of quick setting cement concrete
JP2004091259A (en) Cement blend and method for using the same
JP2006062888A (en) Quick-hardening admixture and quick-hardening cement composition
JP3844416B2 (en) Construction method of quick setting cement concrete
JP2002080258A (en) Concrete composition and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Ref document number: 4709359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees