JP3799792B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3799792B2
JP3799792B2 JP01411898A JP1411898A JP3799792B2 JP 3799792 B2 JP3799792 B2 JP 3799792B2 JP 01411898 A JP01411898 A JP 01411898A JP 1411898 A JP1411898 A JP 1411898A JP 3799792 B2 JP3799792 B2 JP 3799792B2
Authority
JP
Japan
Prior art keywords
copper foil
insulating substrate
foil pattern
semiconductor device
open loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01411898A
Other languages
Japanese (ja)
Other versions
JPH11214568A (en
Inventor
規由 新井
健一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01411898A priority Critical patent/JP3799792B2/en
Publication of JPH11214568A publication Critical patent/JPH11214568A/en
Application granted granted Critical
Publication of JP3799792B2 publication Critical patent/JP3799792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits

Description

【0001】
【発明の属する技術分野】
この発明は、絶縁劣化を非破壊にて検出可能な半導体装置に関し、特に、金属パターンが形成された絶縁基板を備え、該絶縁基板の微細亀裂を検出可能な半導体装置に関するものである。
【0002】
【従来の技術】
図4(A)は従来の半導体装置を示す平面図、図4(B)は前記半導体装置の断面図、図5(A)は図4に示した半導体装置の一部を構成する絶縁基板の平面図、図5(B)は前記絶縁基板の断面図である。
【0003】
図4(A)、(B)において、1は銅板等の金属材からなるベース板、2はベース板1に後述の厚銅箔2cを介して半田付された絶縁基板、3、4は絶縁基板2に後述の厚銅箔パターン2bを介して半田付された電力用半導体素子、5は絶縁樹脂製のケース、6は主電流通電用の外部電極端子、6Aは制御用の外部電極端子、7はアルミワイヤであり、ケース5に外部電極端子6、6Aがインサートされ、ケース5の底部にはベース板1が接着されており、外部電極端子6、6Aと電力用半導体素子3、4とがアルミワイヤ7で接続されている。
【0004】
図5(A)、(B)において、2aは絶縁体であるセラミック板、2bはセラミック板2aの表側に形成された金属パターンとしての厚銅箔パターンであり、厚銅箔を接合後、パターンニングされたものであり、このパターンニングされた厚銅箔パターン2b上に、半導体素子としての電力用半導体素子3、4が半田付けされている。2cは金属板としての厚銅箔であり、セラミック板2aの裏側に、厚銅箔パターン2bと同様に接合されたものであり、セラミック板2aのほぼ裏側全面に接合された一枚板からなる。尚、絶縁基板2はセラミック板2a、厚銅箔パターン2b、厚銅箔2cにて構成され、厚銅箔2cがベース(図示せず)への半田付け面となる。
【0005】
従って、絶縁基板2におけるパターンニングされた厚銅箔パターン2b上に載置、半田付けされた電力用半導体素子3、4における発熱の大部分は厚銅箔パターン2b、セラミック板2a、厚銅箔2cを介してベース板1より放熱されるが、電力用半導体素子3、4とベース板1とはセラミック板2aにより電気的に絶縁されている。
【0006】
従来の半導体装置において、絶縁基板2は、以上のように構成されており、セラミック板2aは熱的あるいは機械的応力が加わっても大きなクラックを生じる事が少なく、比較的大きな絶縁耐力を有する構造となっている。しかし、ウエハからのカッティング等の加工工程において機械的応力が加わることにより微細なクラックを生じる事があり、この微細なクラックは所定の絶縁耐力を有するが、その後、熱応力等が繰り返し加わることにより、徐々に進行して大きなクラックに成長する可能性があり、絶縁耐力が低下し、故障の原因となる。
【0007】
従って、微細クラックの段階での検出が必要となるが、この微細クラックの検出のためには、絶縁基板2における表側の厚銅箔パターン2bと裏側の厚銅箔2cとの間にかなりの高電圧を印加する必要がある。
【0008】
即ち、半導体装置において、絶縁基板2における表側の厚銅箔パターン2bに電気的に接続されている全外部端子6、6Aと、裏側の厚銅箔2cに電気的に接続されているベース板1との間に、高電圧を印加して検出する。この際、何らかの接触不良が生じると電力半導体素子3、4そのものに最大定格電圧以上の電圧が印加され、素子そのものが破壊する。又、セラミック板2aの表面を伝わる沿面絶縁耐力を超えた電圧が印加された場合は、沿面放電により絶縁耐力が低下する。
【0009】
このように、セラミック板2aに対して、厚銅箔パターン2bと厚銅箔2cとの間に絶縁耐力の許容限界レベルまで高電圧を印加して検査する必要があるが、検査時の接触バラツキ等で、高電圧が電力半導体素子3、4に印加され、これらが破壊したり、クラックではなく絶縁基板2の沿面耐力を超えて沿面放電を生じることがあった。又、実際の使用中での絶縁劣化を検出する手段がなく、クラックの成長に起因する絶縁破壊を未然に防ぐことができなかった。
【0010】
【発明が解決しようとする課題】
従来の半導体装置の一部を構成する絶縁基板2は、以上のように構成されているので、絶縁基板2における微細クラックの有無の検出のためには、絶縁耐力の許容限界レベルまで高電圧を印加して検査する必要があるが、検査時の接触バラツキ等で、高電圧が電力半導体素子3、4に印加され、これらが破壊したり、クラックではなく絶縁基板2の沿面耐力を超えて沿面放電を生じ、絶縁基板2の絶縁劣化の検査が困難である等の問題点があった。又、実際の使用中におけるクラックの成長に起因する絶縁劣化を検出する手段がなく、絶縁破壊を未然に防止することができない等の問題点があった。
【0011】
本発明は、上記のような問題点を解消するためになされたものであり、セラミック板等から構成された絶縁基板の微細クラックを比較的低電圧印加により検出できる半導体装置を得ることを目的とする。
【0012】
【課題を解決するための手段】
第1の発明に係る半導体装置は、半導体素子を載置すべく金属パターンが形成された絶縁基板を備え、上記絶縁基板の外周部近傍に上記金属パターンから独立した開ループ金属パターンが形成され、上記開ループ金属パターンは、その両端部の近傍におけるループ部が所定の間隔で同一平面上にて平行にかつ二重に配置され、上記両端部にはそれぞれ一方の端部から他方の端部に向かって延設された通電用のパッドを有し、上記パッドは上記ループ部の上記平行にかつ二重に配置された部分の長手方向から見て互いに重なり部分を有しているものである。
【0015】
又、第の発明に係る半導体装置は、第1の発明に係る半導体装置において、開ループ金属パターンの厚さが半導体素子を載置する金属パターンの厚さの1/10以下に形成されているものである。
【0017】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1を図1〜図3に基づき説明する。図1(A)は半導体装置の一部を構成する絶縁基板の平面図、図1(B)は前記絶縁基板に形成された開ループ銅箔パターン端部の拡大図、図2は半導体装置の全体構成を示す平面図である。図3(A)は図1に示した絶縁基板における微細クラックの検出方法の説明図、図3(B)、(C)は図3(A)の要部拡大図である。尚、図中、従来例と同じ符号で示されたものは従来例のそれと同一若しくは同等なものを示す。
【0018】
図1(A)、(B)において、2dは開ループ金属パターンとしての開ループ銅箔パターンであり、セラミック板2aの表側における電力半導体を載置する金属パターンとしての厚銅箔パターン2bから独立して、セラミック板2aの外周部を少なくとも一周以上する様に形成された極めて細い開パターンである。2eは開ループ銅箔パターン2dの両端部にそれぞれ形成され、アルミワイヤ7をワイヤボンドする通電用のパッドである。
【0019】
即ち、開ループ銅箔パターン2dは、両端部にそれぞれ形成されたパッド2e間に比較的低電圧を印加することによりセラミック板2aに発生した微細クラックを検出できるものである。そして、絶縁基板2Aは、図5に示した従来の絶縁基板2に開ループ銅箔パターン2dを追加、形成したものである。
【0020】
図2において、5Aはケース、8はケース5Aにインサートにより設けられたモニタ用外部端子であり、一対のモニタ用外部端子8と一対のパッド2eとの間がそれぞれアルミワイヤ7で接続されている。
【0021】
次に、実施の形態1の半導体装置の製造方法について説明する。最初に、ベース板1と、複数の外部電極端子6、6A及び一対のモニタ用外部端子8を設けたケース5Aと、両面に厚銅箔(図示せず)が接合された構成のセラミック板2aとを準備する。次に、セラミック板2aの表面に接合された前記厚銅箔をパターンニングすることにより、厚銅箔パターン2bと、セラミック板2aの外周部近傍に、厚銅箔パターン2bから独立した、両端部にパッド2eを有する、少なくとも一巻以上の開ループ銅箔パターン2dとを形成する。次に、厚銅箔パターン2bに半導体素子4、5を半田付けする。
【0022】
次に、絶縁基板2Aにおけるセラミック板2aの裏面に接合された厚銅箔(図示せず)をベース板1に半田付けすることにより、ベース板1上に絶縁基板2Aを載置、固定する。次に、絶縁基板2Aを載置、固定されたベース板1とケース5Aとを接着する。最後に、外部電極端子6、6Aと厚銅箔パターン2b及び厚銅箔パターン2bに半田付けされた半導体素子4、5との間をアルミワイヤ7で結線すると共に、一対のモニタ用外部端子8と一対のパッド2eとの間をそれぞれアルミワイヤ7にて接続する工程とを順番に実行することにより半導体装置が完成する。
【0023】
図3(A)において、9はパッド2e間の導通を検査するテスタであり、電池、抵抗器、電流計等が直列に接続されたものである。次に、図により、半導体装置の絶縁劣化検出方法、即ち、セラミック板2aに発生した微細クラックを低電圧印加にて検出する方法について説明する。
【0024】
絶縁基板2Aは、図3(A)におけるA部又はB部に、図3(B)、(C)に示すごとき微細クラックCA、CBが発生したとき、セラミック板2aの外周部に一巻以上に形成された開ループ銅箔パターン2dが同時に破断する。このとき、パターン両端部間の導通検査、即ち、テスタ9を用いたパッド2e間の導通検査を実施すると、正常時においてほぼ零に近い抵抗値が無限大を示すことになる。
【0025】
特に、図3(A)におけるB部のようなセラミック表面だけに生じた微細クラックCBは、従来の高電圧印加による方法ではでは検出できず、繰り返し応力が加わると進行してA部のような微細クラックCAに成長し、最終的に絶縁破壊に至る恐れがある。しかし、実施の形態1においては、モニタ用外部端子8間の導通をモニタすることで、初期的な微細クラックの段階でこれを検出でき、絶縁破壊を未然に防止する対策を可能とする。
【0026】
以上のように、実施の形態1においては、厚銅箔パターン2bが形成された絶縁基板2Aにおけるセラミック板2aの外周部近傍に、少なくとも一巻以上の極めて細い独立した開ループ銅箔パターン2dを形成すると共にその両端部にパッド2eを設けたので、又、ケース5Aにモニタ用外部端子8を設け、モニタ用外部端子8とパッド2eとの間をアルミワイヤ7にて接続したので、半導体装置として完成時において、モニタ用外部端子8間の導通検査により絶縁基板2Aの微細クラックが検出でき、又、実使用段階においても定期的にモニタすることにより、微細クラックの成長に起因する絶縁破壊を未然に防ぐことができる。
【0027】
更に、電力半導体素子3,4を半田付けする前段階若しくは後段階における絶縁基板2A単独の微細クラックの有無の検出も可能であり、微細クラックが生じている不良品を早期に発見できる。
【0028】
又、図1(B)に詳細を示すように、絶縁基板2Aにおける開ループ銅箔パターン2dの両端部におけるループ部を二重に形成し、その両端部に設けたパッド2eを二重に形成された略平行するループ部の内側に対向配置し、重なり部tを設けて、開口部における直線部をなくし、必ず迂回するようにしたので、略直線状に発生する微細クラックの検出漏れを確実に防ぐことができる。
【0029】
又、厚銅箔パターン2bの厚さは通常150〜400μm程度であり、開ループ銅箔パターン2dを厚銅箔パターン2bと同時にパターン形成した場合には、開ループ銅箔パターン2dの厚さも厚銅箔パターン2bと同じ厚さに形成される。しかし、開ループ銅箔パターン2dは、その幅が100μm程度の細幅に形成されているので、通常の微細クラックの発生に追従して切断され、実用上問題ない。しかし、開ループ銅箔パターン2dの厚さを厚銅箔パターン2bの厚さの1/10以下とすることにより、即ち、10〜30μm程度に形成することにより、より微細なクラックの発生に追従して開ループ銅箔パターン2dが切断され、より早期の段階にて微細クラックの発生を検出できる。
【0030】
尚、開ループ銅箔パターン2dにおけるループ部の厚さを厚銅箔パターン2bの厚さの1/10以下に形成するには、上記セラミック板2aの表面に厚銅箔パターン2bと開ループ銅箔パターン2dとを形成する工程の後に、開ループ銅箔パターン2dのループ部を選択的にエッチングする工程を追加する。
【0031】
【発明の効果】
第1の発明によれば、絶縁基板における外周部近傍に、両端部にパッドを有する、少なくとも一巻以上の独立した開ループ金属パターンを形成したので、前記パッド間における通電による導通検査により前記絶縁基板の周辺から中央へ向かって成長する亀裂の有無を確実に検査でき、絶縁破壊を未然に防げるものが得られる効果が得られる。
又、開ループ金属パターンの両端部の近傍を同一平面上にて二重に形成すると共に該両端部のそれぞれにパッドを形成し、該両方のパッドを二重に形成された略平行するループ部の内側に対向配置し、重なり部を設けたので、開口部におけるループ外から内に向かう直線部がなくなり、前記開口部近傍に略直線状に発生する如何なる方向の亀裂も確実に検査できる効果も得られる。
【0034】
又、第の発明によれば、絶縁基板における開ループ金属パターン厚さを、半導体素子を載置すべくパターンニングされた金属板の厚さの1/10以下に、比較的薄く形成したので、前記絶縁基板の微細亀裂をより確実に検査できる効果が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1としての半導体装置の一部を構成する絶縁基板の平面図(図1(A))及び前記絶縁基板に形成された開ループ銅箔パターン端部の拡大図(図1(B))である。
【図2】 図1に示した絶縁基板を載置した半導体装置の平面図である。
【図3】 図1に示した絶縁基板における微細クラックの検出方法の説明図である。
【図4】 従来の半導体装置を示す平面図(図4(A))及びその断面図(図4(B))である。
【図5】 図4に示した半導体装置の一部を構成する絶縁基板の平面図(図5(A))及びその断面図(図5(B))である。
【符号の説明】
1 ベース板、2A 絶縁基板、2a セラミック板、2b 厚銅箔パターン、2d 開ループ銅箔パターン、2e パッド、3、4 電力半導体素子、5A ケース、6、6A 外部電極端子、7 アルミワイヤ、8 モニタ用外部端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device capable of non-destructively detecting insulation deterioration, and more particularly to a semiconductor device including an insulating substrate on which a metal pattern is formed and capable of detecting microcracks in the insulating substrate.
[0002]
[Prior art]
4A is a plan view showing a conventional semiconductor device, FIG. 4B is a cross-sectional view of the semiconductor device, and FIG. 5A is an insulating substrate constituting a part of the semiconductor device shown in FIG. FIG. 5B is a plan view of the insulating substrate.
[0003]
4A and 4B, 1 is a base plate made of a metal material such as a copper plate, 2 is an insulating substrate soldered to the base plate 1 with a thick copper foil 2c described later, and 3, 4 are insulated. A power semiconductor element soldered to the substrate 2 via a thick copper foil pattern 2b described later, 5 is a case made of insulating resin, 6 is an external electrode terminal for main current conduction, 6A is an external electrode terminal for control, 7 is an aluminum wire, external electrode terminals 6 and 6A are inserted into the case 5, and the base plate 1 is bonded to the bottom of the case 5, and the external electrode terminals 6 and 6A and the power semiconductor elements 3 and 4 Are connected by an aluminum wire 7.
[0004]
5A and 5B, 2a is a ceramic plate that is an insulator, and 2b is a thick copper foil pattern as a metal pattern formed on the front side of the ceramic plate 2a. The power semiconductor elements 3 and 4 as the semiconductor elements are soldered onto the patterned thick copper foil pattern 2b. 2c is a thick copper foil as a metal plate, which is joined to the back side of the ceramic plate 2a in the same manner as the thick copper foil pattern 2b, and is composed of a single plate joined to almost the entire back side of the ceramic plate 2a. . The insulating substrate 2 is composed of a ceramic plate 2a, a thick copper foil pattern 2b, and a thick copper foil 2c, and the thick copper foil 2c serves as a soldering surface to a base (not shown).
[0005]
Therefore, most of the heat generation in the power semiconductor elements 3 and 4 placed and soldered on the patterned thick copper foil pattern 2b on the insulating substrate 2 is the thick copper foil pattern 2b, the ceramic plate 2a, and the thick copper foil. Although heat is radiated from the base plate 1 through 2c, the power semiconductor elements 3, 4 and the base plate 1 are electrically insulated by the ceramic plate 2a.
[0006]
In the conventional semiconductor device, the insulating substrate 2 is configured as described above, and the ceramic plate 2a is less likely to cause large cracks even when thermal or mechanical stress is applied, and has a relatively large dielectric strength. It has become. However, a fine crack may be generated by applying mechanical stress in a processing process such as cutting from a wafer, and this fine crack has a predetermined dielectric strength. It may progress gradually and grow into a large crack, resulting in a decrease in dielectric strength and a failure.
[0007]
Therefore, it is necessary to detect at the stage of fine cracks. For detection of the fine cracks, a considerably high height is required between the thick copper foil pattern 2b on the front side and the thick copper foil 2c on the back side of the insulating substrate 2. It is necessary to apply a voltage.
[0008]
That is, in the semiconductor device, all the external terminals 6 and 6A electrically connected to the front-side thick copper foil pattern 2b in the insulating substrate 2 and the base plate 1 electrically connected to the back-side thick copper foil 2c. And a high voltage is applied between them. At this time, if any contact failure occurs, a voltage higher than the maximum rated voltage is applied to the power semiconductor elements 3 and 4 themselves, and the elements themselves are destroyed. In addition, when a voltage exceeding the creeping dielectric strength transmitted through the surface of the ceramic plate 2a is applied, the dielectric strength is reduced by creeping discharge.
[0009]
Thus, it is necessary to inspect the ceramic plate 2a by applying a high voltage to the allowable limit level of the dielectric strength between the thick copper foil pattern 2b and the thick copper foil 2c. For example, a high voltage is applied to the power semiconductor elements 3 and 4, which may break down or cause a creeping discharge exceeding the creeping strength of the insulating substrate 2 instead of cracking. Further, there is no means for detecting insulation deterioration during actual use, and it has not been possible to prevent insulation breakdown due to crack growth.
[0010]
[Problems to be solved by the invention]
Since the insulating substrate 2 constituting a part of the conventional semiconductor device is configured as described above, in order to detect the presence or absence of fine cracks in the insulating substrate 2, a high voltage is applied up to the allowable limit level of the dielectric strength. It is necessary to apply and inspect, but due to contact variations at the time of inspection, high voltage is applied to the power semiconductor elements 3 and 4, which breaks or exceeds the creeping strength of the insulating substrate 2 rather than cracks. There was a problem that electric discharge was generated and it was difficult to inspect the insulation deterioration of the insulating substrate 2. There is also a problem that there is no means for detecting insulation deterioration due to crack growth during actual use, and insulation breakdown cannot be prevented beforehand.
[0011]
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a semiconductor device capable of detecting fine cracks in an insulating substrate composed of a ceramic plate or the like by applying a relatively low voltage. To do.
[0012]
[Means for Solving the Problems]
A semiconductor device according to a first aspect of the present invention includes an insulating substrate on which a metal pattern is formed to place a semiconductor element, and an open loop metal pattern independent of the metal pattern is formed in the vicinity of the outer peripheral portion of the insulating substrate. In the open loop metal pattern, loop portions in the vicinity of both end portions thereof are arranged in parallel and double on the same plane at a predetermined interval, and both end portions are respectively extended from one end portion to the other end portion. The pad has a current-carrying pad extending toward the top, and the pad overlaps each other when viewed from the longitudinal direction of the parallel and double portions of the loop portion .
[0015]
The semiconductor device according to the second invention is the semiconductor device according to the first invention , wherein the thickness of the open loop metal pattern is less than or equal to 1/10 of the thickness of the metal pattern on which the semiconductor element is placed. It is what.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a plan view of an insulating substrate constituting a part of the semiconductor device, FIG. 1B is an enlarged view of an end portion of an open loop copper foil pattern formed on the insulating substrate, and FIG. It is a top view which shows the whole structure. 3A is an explanatory diagram of a method for detecting fine cracks in the insulating substrate shown in FIG. 1, and FIGS. 3B and 3C are enlarged views of main parts of FIG. 3A. In the figure, the same reference numerals as those in the conventional example are the same as or equivalent to those in the conventional example.
[0018]
1 (A) and 1 (B), 2d is an open loop copper foil pattern as an open loop metal pattern, independent of a thick copper foil pattern 2b as a metal pattern on which a power semiconductor is placed on the front side of the ceramic plate 2a. And it is the very thin open pattern formed so that the outer peripheral part of the ceramic board 2a might be at least 1 round. Reference numerals 2e denote energization pads that are formed at both ends of the open loop copper foil pattern 2d and wire-bond the aluminum wires 7, respectively.
[0019]
In other words, the open loop copper foil pattern 2d can detect fine cracks generated in the ceramic plate 2a by applying a relatively low voltage between the pads 2e formed at both ends. The insulating substrate 2A is obtained by adding an open loop copper foil pattern 2d to the conventional insulating substrate 2 shown in FIG.
[0020]
In FIG. 2, 5A is a case, and 8 is an external monitor terminal provided in the case 5A by an insert. A pair of external monitor terminals 8 and a pair of pads 2e are connected by aluminum wires 7, respectively. .
[0021]
Next, a method for manufacturing the semiconductor device of the first embodiment will be described. First, a base plate 1, a case 5A provided with a plurality of external electrode terminals 6 and 6A and a pair of monitor external terminals 8, and a ceramic plate 2a having a structure in which a thick copper foil (not shown) is bonded to both surfaces. And prepare. Next, by patterning the thick copper foil bonded to the surface of the ceramic plate 2a, both ends of the thick copper foil pattern 2b and the outer periphery of the ceramic plate 2a are separated from the thick copper foil pattern 2b. At least one or more turns of the open loop copper foil pattern 2d having the pad 2e is formed. Next, the semiconductor elements 4 and 5 are soldered to the thick copper foil pattern 2b.
[0022]
Next, the insulating substrate 2A is placed and fixed on the base plate 1 by soldering a thick copper foil (not shown) bonded to the back surface of the ceramic plate 2a in the insulating substrate 2A to the base plate 1. Next, the base plate 1 on which the insulating substrate 2A is mounted and fixed is bonded to the case 5A. Finally, the external electrode terminals 6 and 6A and the thick copper foil pattern 2b and the semiconductor elements 4 and 5 soldered to the thick copper foil pattern 2b are connected by an aluminum wire 7 and a pair of monitor external terminals 8 are connected. The semiconductor device is completed by sequentially executing the step of connecting the pair of pads 2e with the aluminum wires 7 in order.
[0023]
In FIG. 3A, 9 is a tester for inspecting the continuity between the pads 2e, and a battery, a resistor, an ammeter and the like are connected in series. Next, a method for detecting insulation deterioration of a semiconductor device, that is, a method for detecting fine cracks generated in the ceramic plate 2a by applying a low voltage will be described with reference to the drawings.
[0024]
The insulating substrate 2A has one or more turns on the outer peripheral portion of the ceramic plate 2a when the fine cracks CA and CB as shown in FIGS. 3B and 3C occur in the A portion or the B portion in FIG. 3A. The open-loop copper foil pattern 2d formed in 1 is broken at the same time. At this time, if a continuity test between both ends of the pattern, that is, a continuity test between the pads 2e using the tester 9, is performed, the resistance value near zero is infinite in the normal state.
[0025]
In particular, the fine crack CB generated only on the ceramic surface such as part B in FIG. 3A cannot be detected by the conventional high voltage application method, and proceeds repeatedly when stress is applied, as in part A. There is a risk of growing into a fine crack CA and eventually leading to dielectric breakdown. However, in the first embodiment, by monitoring the continuity between the monitoring external terminals 8, this can be detected at the initial stage of fine cracks, and measures to prevent dielectric breakdown can be made possible.
[0026]
As described above, in the first embodiment, an extremely thin independent open-loop copper foil pattern 2d of at least one turn is formed in the vicinity of the outer peripheral portion of the ceramic plate 2a in the insulating substrate 2A on which the thick copper foil pattern 2b is formed. Since the pads 2e are provided at both ends thereof, the monitor external terminal 8 is provided on the case 5A, and the monitor external terminal 8 and the pad 2e are connected by the aluminum wire 7, so that the semiconductor device At the time of completion, fine cracks in the insulating substrate 2A can be detected by conducting a continuity test between the external terminals 8 for monitoring, and by periodically monitoring even at the actual use stage, dielectric breakdown caused by the growth of the fine cracks can be detected. It can be prevented in advance.
[0027]
Furthermore, it is possible to detect the presence or absence of fine cracks in the insulating substrate 2A alone before or after the power semiconductor elements 3 and 4 are soldered, so that a defective product in which the fine cracks are generated can be detected early.
[0028]
Further, as shown in detail in FIG. 1B, double loop portions are formed at both ends of the open loop copper foil pattern 2d in the insulating substrate 2A, and double pads 2e are formed at both ends. It is arranged opposite to the inside of the substantially parallel loop part, and the overlap part t is provided to eliminate the straight line part in the opening part, so that it always bypasses, so it is possible to reliably detect the detection of fine cracks that occur in a substantially straight line shape. Can be prevented.
[0029]
Further, the thickness of the thick copper foil pattern 2b is usually about 150 to 400 μm. When the open loop copper foil pattern 2d is formed simultaneously with the thick copper foil pattern 2b, the thickness of the open loop copper foil pattern 2d is also thick. It is formed to the same thickness as the copper foil pattern 2b. However, since the open loop copper foil pattern 2d is formed to have a narrow width of about 100 μm, it is cut following the occurrence of normal fine cracks, and there is no practical problem. However, by making the thickness of the open loop copper foil pattern 2d 1/10 or less of the thickness of the thick copper foil pattern 2b, that is, by forming it to about 10 to 30 μm, it follows the generation of finer cracks. Then, the open loop copper foil pattern 2d is cut, and the occurrence of fine cracks can be detected at an earlier stage.
[0030]
In addition, in order to form the thickness of the loop part in the open loop copper foil pattern 2d to 1/10 or less of the thickness of the thick copper foil pattern 2b, the thick copper foil pattern 2b and the open loop copper are formed on the surface of the ceramic plate 2a. After the step of forming the foil pattern 2d, a step of selectively etching the loop portion of the open loop copper foil pattern 2d is added.
[0031]
【The invention's effect】
According to the first aspect of the present invention, an independent open loop metal pattern having at least one turn and having pads at both ends is formed in the vicinity of the outer peripheral portion of the insulating substrate. The presence or absence of a crack that grows from the periphery of the substrate toward the center can be reliably inspected, and an effect that a dielectric breakdown can be prevented can be obtained.
Moreover, the vicinity of both ends of the open loop metal pattern is formed in a double on the same plane, and pads are formed on each of the both ends, and both the pads are formed in a substantially parallel loop. Since the overlapping portion is provided opposite to the inside of the opening, there is no straight portion inward from the outside of the loop in the opening, and there is also an effect that it is possible to reliably inspect cracks in any direction generated in a substantially straight line near the opening. can get.
[0034]
Further, according to the second invention, the open loop metal pattern thickness in the insulating substrate is formed relatively thin to 1/10 or less of the thickness of the metal plate patterned to mount the semiconductor element. The effect of being able to inspect fine cracks of the insulating substrate more reliably is obtained.
[Brief description of the drawings]
FIG. 1 is a plan view of an insulating substrate constituting a part of a semiconductor device as Embodiment 1 of the present invention (FIG. 1A) and an enlarged view of an end portion of an open loop copper foil pattern formed on the insulating substrate; It is a figure (FIG. 1 (B)).
FIG. 2 is a plan view of a semiconductor device on which the insulating substrate shown in FIG. 1 is mounted.
3 is an explanatory diagram of a method for detecting fine cracks in the insulating substrate shown in FIG. 1. FIG.
FIG. 4 is a plan view (FIG. 4A) and a cross-sectional view (FIG. 4B) showing a conventional semiconductor device.
5 is a plan view (FIG. 5A) and a cross-sectional view (FIG. 5B) of an insulating substrate which forms part of the semiconductor device shown in FIG. 4;
[Explanation of symbols]
1 base plate, 2A insulating substrate, 2a ceramic plate, 2b thick copper foil pattern, 2d open loop copper foil pattern, 2e pad, 3, 4 power semiconductor element, 5A case, 6, 6A external electrode terminal, 7 aluminum wire, 8 External terminal for monitor

Claims (2)

半導体素子を戴置すべく金属パターンが形成された絶縁基板を備え、
前記絶縁基板は、その外周部近傍に前記金属パターンから独立した開ループ金属パターンが形成され、
前記開ループ金属パターンは、その両端部の近傍におけるループ部が所定の間隔で同一平面上にて平行にかつ二重に配置され、前記両端部にはそれぞれ一方の端部から他方の端部に向かって延設された通電用のパッドを有し、前記パッドは前記ループ部の前記平行にかつ二重に配置された部分の長手方向から見て互いに重なり部分を有していることを特徴とする半導体装置。
An insulating substrate on which a metal pattern is formed to place a semiconductor element,
The insulating substrate is formed with an open loop metal pattern independent of the metal pattern in the vicinity of the outer periphery thereof,
In the open loop metal pattern, loop portions in the vicinity of both end portions thereof are arranged in parallel and double on the same plane at a predetermined interval, and both end portions are respectively extended from one end portion to the other end portion. And a pad for energization extending toward the surface, wherein the pads overlap each other when viewed from the longitudinal direction of the parallel and double portions of the loop portion. Semiconductor device.
前記開ループ金属パターンは、その厚さが半導体素子を戴置する金属パターンの厚さの1/10以下に形成されていることを特徴とする請求項1記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the open loop metal pattern is formed to have a thickness of 1/10 or less of a thickness of a metal pattern on which a semiconductor element is placed.
JP01411898A 1998-01-27 1998-01-27 Semiconductor device Expired - Lifetime JP3799792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01411898A JP3799792B2 (en) 1998-01-27 1998-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01411898A JP3799792B2 (en) 1998-01-27 1998-01-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11214568A JPH11214568A (en) 1999-08-06
JP3799792B2 true JP3799792B2 (en) 2006-07-19

Family

ID=11852216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01411898A Expired - Lifetime JP3799792B2 (en) 1998-01-27 1998-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3799792B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872468B2 (en) * 2006-06-06 2012-02-08 株式会社デンソー Semiconductor device
JP4736997B2 (en) * 2006-07-31 2011-07-27 三菱電機株式会社 Semiconductor device
US7622737B2 (en) 2007-07-11 2009-11-24 International Business Machines Corporation Test structures for electrically detecting back end of the line failures and methods of making and using the same

Also Published As

Publication number Publication date
JPH11214568A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP4387125B2 (en) Inspection method and inspection apparatus
WO1999038229A1 (en) Robust, small scale electrical contactor
JPH0749356A (en) Wafer inspecting device
US6617617B2 (en) Light-emitting diode
JP3799792B2 (en) Semiconductor device
US5897193A (en) Semiconductor wafer
JPH0580104A (en) Manufacture of printed circuit board for motor
JP2010281625A (en) Inspection method of semiconductor chip
JPH05267393A (en) Semiconductor device and manufacture thereof
JPH10189671A (en) Probing pad structure of semiconductor wafer
JP3527015B2 (en) Semiconductor device and manufacturing method thereof
JPH07211756A (en) Method for conducting burn-in on semiconductor chip
JP3971627B2 (en) Method for evaluating characteristics of intermediate layer circuits
JP2010092924A (en) Semiconductor device, and semiconductor device inspection method
KR100529453B1 (en) Needle for probe card and method for fabricating the same
JP2001007645A (en) Structure of sheet board for piezoelectric oscillator
JP3838593B2 (en) Semiconductor device inspection method and semiconductor device inspection device
JPH08139057A (en) Semiconductor integrated circuit device
JP3324770B2 (en) Semiconductor wafer for burn-in and test of semiconductor devices
JP2003092463A (en) Printed wiring board and method for inspecting mounting state thereof
JPH05166894A (en) Semic0nductor integrated circuit and inspecting, probe card
JPH0545398A (en) Testing method of circuit board
JPH1038969A (en) Electronic circuit element inspecting apparatus using conductive sheet
JPH09321112A (en) Testing semiconductor chip
JPH1012764A (en) Package main body for electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term