JP3794830B2 - Isolation device - Google Patents

Isolation device Download PDF

Info

Publication number
JP3794830B2
JP3794830B2 JP22175798A JP22175798A JP3794830B2 JP 3794830 B2 JP3794830 B2 JP 3794830B2 JP 22175798 A JP22175798 A JP 22175798A JP 22175798 A JP22175798 A JP 22175798A JP 3794830 B2 JP3794830 B2 JP 3794830B2
Authority
JP
Japan
Prior art keywords
support member
sliding plate
vibration
force
rolling support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22175798A
Other languages
Japanese (ja)
Other versions
JP2000055117A (en
Inventor
嶽 中村
哲夫 鈴木
学 稲葉
好久 及部
薫 玉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Daido Precision Industries Ltd
Original Assignee
Obayashi Corp
Daido Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Daido Precision Industries Ltd filed Critical Obayashi Corp
Priority to JP22175798A priority Critical patent/JP3794830B2/en
Publication of JP2000055117A publication Critical patent/JP2000055117A/en
Application granted granted Critical
Publication of JP3794830B2 publication Critical patent/JP3794830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免振対象物とその下方の下部構造物との間に介在される免振装置に係わり、特に、免振対象物を転がり支承部材で支持して水平方向振動の長周期化を図るとともに、水平方向の移動に対して摩擦ダンパーで減衰抵抗力を付与するようにした免振装置に関する。
【0002】
【従来の技術】
従来より、地震や強風などに起因する建物の振動を免振する装置として、免振対象の上部構造物とその下方の下部構造物との間に積層ゴムアイソレータを介在させて、それらの相対的な水平変位を許容吸収するようにしたものが知られている。ここで、上記積層ゴムアイソレータは薄いゴムシートと鋼板とを交互に積み重ねて形成したもので、負担荷重に対する鉛直方向変形が極小さくて耐荷重性能に優れる一方、水平方向への弾性変形性能に富み、しかも十分な弾性復元力を有する。
【0003】
ところで、地震等による家具などの倒壊や構造物へのダメージは、その震動周期が短い方が大きくなるため、被害を小さくするには、建物の固有振動を長周期化することが望ましい。
【0004】
ここで周知の如く、免振対象物の固有振動周期は基本的には次式で表される。
T(振動周期)=2π・(m/k)1/2
【0005】
即ち、免振対象物の固有振動周期はその質量mとばね定数kとによって定まり、よって免振対象の上部構造物の重量を重くし、積層ゴムアイソレータの水平方向のバネ定数を小さく設定する程、当該上部構造物の固有振動は長周期化する。
【0006】
しかしながら、積層ゴムアイソレータは上部構造物の荷重を支承するものであるから、そのゴムシートの材質をむやみに柔らかくしてしまうと耐荷重性能が確保できなくなってしまう。これ故、積層ゴムアイソレータの水平方向のバネ定数を小さく設定するには、その負担荷重との関係において制約がある。
【0007】
また、上部構造物の重量を重くして長周期化するにしても、その重量は建物の構造形式によってほぼ定まり、かつ構築コストを考えればむやみに重くすることもできない。そればかりか、重量を増やせば上記バネ定数も高く設定する必要が生じてしまう。
【0008】
つまり、従来の積層ゴムアイソレータでは、上部構造物の固有振動を長周期化させるのに限界があり、所望する値まで長周期化させるのが困難であった。特に、一般住宅ではその上部構造物の重量はビル構造物の場合に比して非常に軽量なものとなるので、当該積層ゴムアイソレータは一般住宅用の免振装置としては不向きなものであった。
【0009】
そこで、長周期化が図れる免振装置として、上部構造物と下部構造物との間に多数の小球からなる転がり支承部材を介在させることが考えられている。即ち、上部構造物の荷重を転がり支承部材を介して下部構造物に伝えるようにすれば、上部構造物と下部構造物との相対移動に対し、水平面内のあらゆる方向への変位を許容して高い自由度を付与でき、しかもその相対移動に伴う摩擦力を極めて小さくすることができるので、上部構造物の振動周期の可及的な長周期化が図れる。
【0010】
なお、この種の転がり支承体としては、例えば実公平3−29674号公報に開示されたものが公知になっている。
【0011】
ここで、このような転がり支承構造にあっては、免振方向の自由度が大きく固有振動周期を極長周期化できるという点で極めて有効である反面、制動機能を殆ど有していないので、免振装置として採用するにあたっては、上部構造物と下部構造物との相対移動に抵抗を加えて減衰させるダンパー機構を別途に設ける必要があり、そのダンパ機構としては、摩擦ダンパの採用が検討されている。
【0012】
即ち、この摩擦ダンパは下部構造物の上面に敷設された滑り板と、バネ材の弾発力によって所定の押圧力で上記滑り板に圧接されるとともに上部構造物と一体となって水平方向に摺動する摩擦材とを有するもので、地震等によって上部構造物と下部構造物との間に摩擦材と滑り板との静摩擦力以上の水平力が作用して、それらに相対移動が生じた場合にのみダンパとして機能し、その際の摩擦力は摩擦材と滑り板との間の摩擦係数及び摩擦材を滑り板に圧接させている押圧力とによって定まり、ダンパとしての減衰力は上記摩擦係数と押圧力とを任意に設定することで適切な値に調整し得る。
【0013】
【発明が解決しようとする課題】
しかしながら、上記の如く転がり支承部材と摩擦ダンパーとを個別に並設して免振装置を構成するようにすると、それら転がり支承部材と摩擦ダンパーとを個々に設置するのに手間がかかり、またそれらの設置スペースを広く確保しなければならず、当該設置スペースの面で制約も生じ、特に一般住宅には適用が困難になるといった問題がある。
【0014】
本発明はかかる従来の課題に鑑みて成されたものであり、その目的は、免振対象物の固有振動の長周期化が図れる転がり支承部材と、水平方向の相対変位に対して減衰力を与える摩擦ダンパーとを備える免振装置の可及的な小型化、及び設置作業の軽減化が図れるとともに、設置スペースを縮小でき、一般住宅にも適用可能な免振装置を提供することにある。
【0015】
【課題を解決するための手段】
かかる目的を達成するためにこの出願の請求項1に係る発明では、免振対象物とその下方の下部構造物との対向面間に介在される免振装置を、該対向面の一方に設けられる滑り板と、該対向面の他方に基端部が取り付けられて先端部が該滑り板に向けて突出する支持部材と、該支持部材の先端部と該滑り板との間に介在されて該免振対象物の荷重を該下部構造物に伝える多数の小球からなる転がり支承部材と、該転がり支承部材の外周囲に設けられ、前記転がり支承部材の周囲を囲繞して小球が外部に転がり出すのを防止する規制部材としての機能を保持して該滑り板に摺接するリング状の摩擦材と、該支持部材に反力を得て前記摩擦材を前記滑り板に向けて押圧付勢する付勢手段と、前記免振対象物の偏荷重に起因した撓み変形を吸収して前記支持部材先端に設けられる転がり支承部材を前記滑り板に鉛直に当接させるためのゴム板と、を備える構成とした。
【0016】
上記構成によれば、免振対象物の荷重を支持して下部構造体に伝える転がり支承部材と支持部材とからなる転がり支承機構の外周側に、これらを取り囲むようにして、リング状の摩擦材とその付勢手段とからなる摩擦ダンパ機構を配し、これら転がり支承機構と摩擦ダンパー機構とを一体化させたので、装置全体を可及的にコンパクトに形成でき、設置スペースの縮小化が図れ、狭いスペースにも付設することが可能になると共に、転がり支承機構と摩擦ダンパ機構とを同時に設置でき、付設作業が簡易に行えるようになる。
【0017】
また、免振対象物の荷重は、転がり支承部材と支持部材とからなる転がり支承機構を介して下部構造物に剛に支持するため、摩擦ダンパ機構の摩擦材の付勢力に免振対象物の重量が悪影響を及ぼすことがなく、もって当該付勢力を常に所望の値に維持し得、このため、当該付勢力及び摩擦材と滑り板との間の摩擦係数を適宜任意に設定することで、摩擦ダンパーによる減衰力を適切な値に容易に調節して維持することができる。
【0018】
さらに、摩擦ダンパの付勢手段は、上部構造体の重量を直接的に支える必要がなく、摩擦材に所望の摩擦力を生じさせる程度の剛性を有していれば良いから、小型かつ廉価に形成できる。
【0019】
そしてさらに、免振対象物の重量はその固有振動周期に関与しないから、軽量な一般住宅にも充分に適用し得るものとなる。
【0020】
請求項2にかかる発明では、前記付勢手段には皿ばねを用い、該皿ばねによる押圧付勢力は、撓み量変動に対する弾発力の変動が小さい該皿ばねの非線形ばね領域内に設定するようにしたので、種々の原因によって皿ばねの変形量が上記非線形ばね領域内で変化した場合にあっても、摩擦部材の押圧付勢力の変動はきわめて小さく、摩擦減衰力生成部で発生される摩擦抵抗力を略一定に維持することができ、振動減衰力の変動が防止されてエネルギー吸収能力の安定性が大幅に改善され、もって免振性能の向上が図れる。
【0021】
請求項3にかかる発明では、前記免振対象物と下部構造物との間に、それらの水平方向の相対位置を基準位置に復帰させる復元手段を設けたので、免振対象物と下部構造物との相対位置を、初期の基準位置に自動的に復帰させて保持することができる。
【0022】
ここで、請求項4にかかる発明に示すように、前記復元手段には弾性体を用いることができ、この弾性体には免振対象物の荷重を負担させない、あるいはその負担荷重を小さくすることにより、該弾性体の水平方向の弾性係数を可及的に小さく設定できる。このため、このような弾性体を介在させることにより免振対象物が振動系を構成するようになっても、その免振対象物の固有振動の周期を十分に長周期化させることができる。
【0023】
【発明の実施の形態】
以下に、本発明にかかる免振装置の好適な実施形態について、添付図面を参照しつつ詳細に説明する。
【0024】
図1は第1実施形態に係る免振装置の概略構成を示す側断面図である。図示するように免振装置10は、免振対象物である建物の上部構造物12と、下部構造物である基礎構造物14との対向面間に介在されて設けられる。この免振装置10は、上部構造物12の下面に対向する基礎構造物14の上面に敷設された滑り板26と、上部構造物12の下面に基端部が固設されて先端部が上記滑り板26に向けて下方向に突出する支持部材30と、この支持部材30の先端部下面と滑り板26との間に介在されて上部構造物12の荷重を基礎構造物14に伝える多数の小鋼球28からなる転がり支承部材32と、転がり支承部材32の外周囲に設けられて滑り板26に摺接するリング状の摩擦材24と、支持部材30に反力を得て摩擦材24を滑り板26に向けて押圧付勢する付勢手段としての皿ばね体16とから主になる。
【0025】
上記支持部材30は上端の基端部側が拡径されて円盤状の取付フランジ部30aに形成され、この取付フランジ部30aがボルト等によって上部構造体12にゴム板31を介して一体的に固設されている。ここで、このゴム板31は、支持部材30を取り付ける部位の上部構造物12側部分に偏荷重等に起因した撓み変形が生じた場合にも、この撓み変形を吸収して支持部材30先端に設けられる転がり支承部材32が鉛直に滑り板26に当接するように自動的に調節させるためのものである
【0026】
上記支持部材30の取付フランジ部30aの中央部には滑り板26に向けて下方に延びる円柱状のロッド部30bが一体形成されており、このロッド部30bの先端部は平坦に形成されていて、その下面と滑り板26との間に多数の小鋼球28からなる転がり支承部材32が介設されている。即ち、これら支持部材30と転がり支承部材32とにより転がり支承機構が構成され、この転がり支承機構により上部構造物12の荷重を支持して基礎構造物14に伝えるようになっている。
【0027】
転がり支承機構を構成する支持部材30のロッド部30bには、中央に貫通穴を有する多数の皿ばね16aが挿通されるとともに、鉛直方向に積層されて支持部材30を囲む筒状の皿ばね体16が形成されている。この筒状の皿ばね体16の下端には、前記支持部材30の下端に設けられた転がり支承部材32の鋼球28の外側を囲むようにリング状の平板に形成された摩擦材24が設けられている。この摩擦材24は、基礎構造体14上面の滑り板26に、皿ばね体16の弾発力によって押圧付勢されて圧接し、滑り板26との摩擦力によって減衰力を生じさせるようになっており、皿ばね体16はその上端部が支持部材30の取付フランジ部30aに当接してこれより反力を得るようになっていて、支持部材30と皿ばね体16と摩擦材24とによって摩擦ダンパ34が構成されている。ここで、上記皿ばね体16による押圧付勢力は、当該皿ばね体16の撓み量変動に対する弾発力の変動が小さい非線形ばね領域内で設定されている。つまり、この転がり支承部材32を囲むように設けられた摩擦材24は、上部構造物12の重量に関係なく皿ばね体16の弾発力のみで基礎構造物14上の滑り板26に押圧されるようになっている。また、摩擦材24は転がり支承部材32の周囲を囲繞して、小鋼球28が外部に転がり出すのを防止する規制部材としての機能の他に、滑り板26上のごみとかほこりを排除して、転がり支承部材32の安定した性能を保持する機能も有している。
【0028】
即ち、上記転がり支承機構と摩擦ダンパー機構とからなる基本構成の免振装置では、上部構造物12は基礎構造物14との間がその水平方向に関して直接的に弾性体で繋がれておらず基本的に振動系を構成しない。よって上部構造物12の水平方向の固有振動の周期は無限大となって極限まで長周期化されることになり、その相対移動は摩擦ダンパーにより制動されて減衰されることになる。
【0029】
ここで、この図示例の第1実施形態にあっては、上部構造物12と基礎構造物14との間にはさらに積層ゴム18が介設されており、この積層ゴム18は地震により生じる水平方向の相対変位を初期状態の基準位置に復帰させる復元手段としての機能を発揮するようになっている。そして、この積層ゴム18には上部構造物12の荷重は負担させないか、あるいはその負担荷重は小さくするようにしている。このため、積層ゴム18の水平方向の弾性係数は可及的に小さく設定でき、これ故、このような弾性体の積層ゴム18を介在させることにより上部構造物12が振動系を構成するようになっても、その上部構造物12の固有振動の周期を十分に長周期化させることができる。
【0030】
以上の構成により本実施形態の免振装置10にあっては、上部構造物12の荷重を支持して基礎構造物14に伝える転がり支承部材32並びに支持部材30とからなる転がり支承機構の外周側に、これらを取り囲むようにして、リング状の摩擦材24とその付勢手段の皿ばね体16とからなる摩擦ダンパ機構を配し、これら転がり支承機構と摩擦ダンパ機構とを一体化させたので、免振装置10全体を可及的にコンパクトに形成でき、設置スペースの縮小化が図れ、狭いスペースにも付設することが可能になると共に、転がり支承機構と摩擦ダンパ機構とを同時に設置でき、付設作業が簡易に行えるようになる。
【0031】
また、上部構造物12の支持部材30と基礎構造物14との間に多数の小鋼球28からなる転がり支承部材32を介在させて、上部構造物12を基礎構造物14に転がり支承機構を介して支持するようになっているので、上部構造物12の重量はそのほとんどがこの転がり支承機構で受けられて、摩擦ダンパ34の押圧付勢力には上部構造物12の重量が悪影響を及ぼすことがない。よって、当該押圧付勢力を常に所望の値に維持し得、このため、当該付勢力及び摩擦材24と滑り板26との間の摩擦係数を適宜任意に設定することで、摩擦ダンパ34による減衰力を適切な値に容易に調節して維持することができる。
【0032】
また、皿ばね体16の初期撓み変形量を、当該皿ばね体16の弾発力の変動が小さい非線形ばね領域内に設定して押圧付勢力を発生させるようにしたので、種々の原因によって皿ばね体16の変形量が上記非線形ばね領域内で変化した場合にあっても、摩擦減衰力生成部の摩擦材に与える押圧付勢力の変動はきわめて小さくすることができる。これ故、摩擦減衰力生成部で発生させる摩擦抵抗力を略一定に維持することができ、もって振動減衰能力が変動することを防止して、これまで難しいとされていたエネルギー吸収能力の安定性を大幅に改善させて、建物の免振性能の向上が図れる。
【0033】
また、支持部材30と転がり支承部材32とから転がり支承機構は剛性が高く、支持部材30の取付けフランジ部30aと基礎構造物14上の滑り板26との間の上下方向の距離は常に一定に保たれるから、摩擦材24と滑り板26との押圧付勢力は安定し、摩擦ダンパ34の摩擦力も安定して、良好な免振性能が得られる。
【0034】
また、前記摩擦材24はリング状をなすと共に、転がり支承部材32の周囲を囲繞して配設したため、転がり支承機構部の周りにほぼ均等の摩擦減衰力がかかり、上部構造物12と基礎構造物14との間に水平面内のいかなる方向の相対変位力が作用しても、転がり支承機構部に対して摩擦減衰力の偏りが生じず、安定した免振効果が得られると共に上部構造物12にモーメント等の余分な力がかからず、建物の劣化や損傷等の発生も可及的に防ぐことができる。
【0035】
また、上部構造物12と基礎構造物14との間に積層ゴム18を介在させ、水平方向の相対位置を基準位置に復帰させる復元手段としたので、上部構造物12には、基礎構造体14との相対位置を常に初期状態に保とうとする復元力が働く。即ち、振動周期を長周期化するために、上部構造物12を転がり支承部材32で支え、いかなる方向にも移動し易くしたが、その結果として上部構造物12と基礎構造物14との相対位置が一時的に大きくずれることがあっても、基準位置に戻る復元力を有しているため常に上下の構造物12,14の相対位置を初期状態に保つことができる。
【0036】
図2は本発明にかかる免振装置の第2実施形態の概略構成を示す側断面図である。この第2実施形態の免振装置40にあってもその基本構成は前述した第1実施形態と同様であり、同一部材には同一の符号を付して、その詳しい説明は省略し、相違する点について詳述する。
【0037】
即ち、この第2実施形態の免振装置40では、支持部材30のロッド部30bの外周面にネジ部30cを形成し、このネジ部30cに螺合させて皿ばね体16の反力受け部材38を設けている。従って、反力受け部材38を回転させることによって容易に皿ばね体16の押圧付勢力を調整できる。なお、反力受け部材38の固定位置を確実に保持させるためにはこれをダブルナット構成にするのが望ましい。
【0038】
また、ネジ部30cに皿ばね16aの内周部が引っかかるのを防止するために、その内周部には円筒状のスリーブ42を嵌装させている。そして、このスリーブ42の下端には径方向外方に延出されたフランジ部42aを一体形成しており、このフランジ部42aに摩擦材24を一体的に固定し、皿ばね体16の下端部はそのフランジ部42aに当接させている。
【0039】
さらに、復元手段として、コイルばね20を設けている。このコイルばね20は少なくとも3本以上を放射状に配し、一端を支持部材30の取付フランジ部30aに係止させ、他端部を基礎構造物14に立設した支持ポール44に係止させている。
【0040】
なお、図1と図2の実施形態では本発明の免振装置10,40を建物に適用した例を示したが、本発明はこれに限らず精密機器類を載置する免振台など、免振対象物全般に適用可能である。
【0041】
また、転がり支承部材32には多数の鋼球をケージで保持させてスラスト軸受け様に構成したものを採用し、ケージを支持部材30の下端に一体的に固定するようにしても良い。
【0042】
【発明の効果】
以上、詳細に説明したように本発明にかかる免振装置によれば次のような優れた効果を奏する。
【0043】
(1)請求項1に示す免振装置にあっては、免振対象物の荷重を支持して下部構造体に伝える、転がり支承部材と支持部材とからなる転がり支承機構の外周側に、これらを取り囲むようにして、リング状の摩擦材とその付勢手段とからなる摩擦ダンパ機構を配し、これら転がり支承機構と摩擦ダンパー機構とを一体化させたので、装置全体を可及的にコンパクトに形成でき、設置スペースの縮小化が図れ、狭いスペースにも付設することが可能になると共に、転がり支承機構と摩擦ダンパ機構とを同時に設置でき、付設作業が簡易に行えるようになる。
【0044】
また、免振対象物の荷重は、転がり支承部材と支持部材とからなる転がり支承機構を介して下部構造物に支持するとともに、摩擦ダンパ機構の摩擦材の付勢力は支持部材に反力を得るようにしたので、摩擦材の付勢力に免振対象物の重量が悪影響を及ぼすことがなく、もって当該付勢力を常に所望の値に維持し得、このため、当該付勢力及び摩擦材と滑り板との間の摩擦係数を適宜任意に設定することで、摩擦ダンパーによる減衰力を適切な値に容易に調節して維持することができる。
【0045】
さらに、摩擦ダンパの付勢手段は、上部構造体の重量を支える必要がなく、摩擦材に所望の摩擦力を生じさせる程度の剛性を有していれば良いから、小型かつ廉価に形成できる。
【0046】
そしてさらに、免振対象物の重量はその固有振動周期に関与しないから、軽量な一般住宅にも充分に適用し得るものとなる。
【0047】
(2)請求項2に示す免振装置にあっては、前記付勢手段には皿ばねを用い、該皿ばねによる押圧付勢力は、撓み量変動に対する弾発力の変動が小さい該皿ばねの非線形ばね領域内に設定するようにしたので、種々の原因によって皿ばねの変形量が上記非線形ばね領域内で変化した場合にあっても、摩擦部材の押圧付勢力の変動はきわめて小さく、摩擦減衰力生成部で発生される摩擦抵抗力を略一定に維持することができ、振動減衰力の変動が防止されてエネルギー吸収能力の安定性が大幅に改善され、もって免振性能の向上が図れる。
【0048】
(3)請求項3に示す免振装置にあっては、前記免振対象物と下部構造物との間に、それらの水平方向の相対位置を基準位置に復帰させる復元手段を設けたので、免振対象物と下部構造物との相対位置を、初期の基準位置に自動的に復帰させて保持することができる。
【0049】
(4)請求項4に示す免振装置にあっては、前記復元手段には弾性体を用い、かつ該弾性体には免振対象物の鉛直方向の荷重を負担させないか、あるいはその鉛直方向の負担荷重を小さくすることで、該弾性体の水平方向の弾性係数を可及的に小さく設定でき、これ故、このような弾性体を介在させることにより免振対象物が振動系を構成するようになっても、その免振対象物の固有振動周期を十分に長周期化させることができる。
【図面の簡単な説明】
【図1】本発明にかかる免振装置の第1実施形態の概略構成を示す側断面図である。
【図2】本発明にかかる免振装置の第2実施形態の概略構成を示す側断面図である。
【符号の説明】
12 上部構造物(免振対象物)
14 基礎構造物(下部構造物)
16 皿ばね体
16a 皿ばね
18 積層ゴム
20 コイルばね
24 摩擦材
26 滑り板
28 小鋼球
30 支持部材
31 ゴム板
32 転がり支承部材
34 摩擦ダンパ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration isolation device interposed between a vibration isolation object and a lower structure below the object, and in particular, supports a vibration isolation object with a rolling support member to increase the horizontal vibration period. The present invention also relates to a vibration isolator that applies a damping resistance force to a horizontal movement by a friction damper.
[0002]
[Prior art]
Conventionally, as a device for isolating building vibration caused by earthquakes and strong winds, a laminated rubber isolator is interposed between the upper structure to be isolated and the lower structure below it, and their relative A device that absorbs a large horizontal displacement is known. Here, the laminated rubber isolators are formed by alternately stacking thin rubber sheets and steel plates, and the vertical deformation with respect to the burden load is extremely small and excellent in load bearing performance, while being rich in elastic deformation performance in the horizontal direction. And sufficient elastic restoring force.
[0003]
By the way, the collapse of furniture or the like due to an earthquake or the like and the damage to the structure are increased when the vibration period is short. Therefore, in order to reduce the damage, it is desirable to lengthen the natural vibration of the building.
[0004]
As is well known here, the natural vibration period of the object to be isolated is basically expressed by the following equation.
T (vibration period) = 2π · (m / k) 1/2
[0005]
In other words, the natural vibration period of the object to be isolated is determined by its mass m and the spring constant k. Therefore, the weight of the superstructure to be isolated is increased, and the horizontal spring constant of the laminated rubber isolator is set smaller. The natural vibration of the superstructure becomes longer.
[0006]
However, since the laminated rubber isolator supports the load of the superstructure, the load bearing performance cannot be secured if the material of the rubber sheet is softened excessively. Therefore, in order to set the spring constant in the horizontal direction of the laminated rubber isolator small, there is a restriction in relation to the burden load.
[0007]
Moreover, even if the weight of the upper structure is increased and the period is increased, the weight is almost determined by the structure type of the building, and cannot be increased excessively considering the construction cost. In addition, if the weight is increased, the spring constant needs to be set high.
[0008]
In other words, in the conventional laminated rubber isolator, there is a limit to lengthening the natural vibration of the superstructure, and it is difficult to lengthen it to a desired value. In particular, the weight of the superstructure in ordinary houses is much lighter than that of building structures, so the laminated rubber isolator is unsuitable as a vibration isolator for ordinary houses. .
[0009]
Therefore, as a vibration isolator capable of extending the period, it is considered that a rolling support member composed of a large number of small balls is interposed between the upper structure and the lower structure. That is, if the load of the upper structure is transmitted to the lower structure via the rolling support member, the displacement in the horizontal plane is allowed for relative movement between the upper structure and the lower structure. Since a high degree of freedom can be given and the frictional force accompanying the relative movement can be made extremely small, the vibration period of the superstructure can be made as long as possible.
[0010]
As this type of rolling bearing, for example, one disclosed in Japanese Utility Model Publication No. 3-29674 is known.
[0011]
Here, in such a rolling support structure, although it is extremely effective in that the degree of freedom in the vibration isolation direction is large and the natural vibration period can be made extremely long, it has almost no braking function. When adopting it as a vibration isolator, it is necessary to provide a separate damper mechanism that adds resistance and damps the relative movement between the upper structure and the lower structure, and the use of a friction damper is considered as the damper mechanism. ing.
[0012]
That is, the friction damper is in contact with the sliding plate with a predetermined pressing force by a spring plate laid on the upper surface of the lower structure and with a predetermined pressing force, and is integrated with the upper structure in the horizontal direction. It has a sliding friction material, and a horizontal force greater than the static frictional force between the friction material and the sliding plate acts between the upper structure and the lower structure due to an earthquake, etc., causing relative movement to them. The frictional force at that time is determined by the coefficient of friction between the friction material and the sliding plate and the pressing force that presses the friction material against the sliding plate, and the damping force as the damper is determined by the above friction. An appropriate value can be adjusted by arbitrarily setting the coefficient and the pressing force.
[0013]
[Problems to be solved by the invention]
However, if the rolling bearing member and the friction damper are individually arranged in parallel as described above to constitute the vibration isolator, it takes time to install the rolling bearing member and the friction damper individually. Therefore, there is a problem in that it is difficult to apply to a general house.
[0014]
The present invention has been made in view of such conventional problems, and the purpose of the present invention is to provide a rolling bearing member capable of lengthening the natural vibration of a vibration-isolating object and a damping force with respect to a horizontal relative displacement. An object of the present invention is to provide a vibration isolator that can be applied to ordinary houses and can be reduced in size as much as possible and reduced in installation work, and can be reduced in installation work.
[0015]
[Means for Solving the Problems]
In order to achieve such an object, in the invention according to claim 1 of this application, a vibration isolator interposed between the opposing surfaces of the object to be isolated and the lower structure below the object is provided on one of the opposing surfaces. A sliding plate, a support member having a base end attached to the other of the opposing surfaces and having a tip projecting toward the sliding plate, and being interposed between the tip of the support member and the sliding plate A rolling support member composed of a large number of small balls that transmits the load of the vibration isolation object to the substructure, and the outer surface of the rolling support member is surrounded by a small ball that surrounds the periphery of the rolling support member. A ring-shaped friction material that keeps the function as a restricting member that prevents rolling out, and that comes into sliding contact with the sliding plate, and a reaction force is obtained from the support member to press the friction material toward the sliding plate. absorbs biasing means, the flexural deformation due to offset load of the vibration-isolating object to be energized The rolling bearing member provided in serial support member distal end has a configuration comprising, a rubber plate for causing vertically abuts the sliding plate.
[0016]
According to the above configuration, the ring-shaped friction material is provided so as to surround the rolling support mechanism composed of the rolling support member and the support member that supports the load of the vibration isolation object and transmits the load to the lower structure. And the friction damper mechanism consisting of the urging means and the rolling support mechanism and the friction damper mechanism are integrated, so that the entire device can be made as compact as possible and the installation space can be reduced. In addition to being able to be installed in a narrow space, the rolling support mechanism and the friction damper mechanism can be installed simultaneously, so that the installation work can be performed easily.
[0017]
In addition, since the load of the object to be isolated is rigidly supported by the lower structure through the rolling support mechanism composed of the rolling support member and the support member, the load of the vibration isolation object is influenced by the biasing force of the friction material of the friction damper mechanism. The weight does not adversely affect the urging force, so that the urging force can always be maintained at a desired value.For this reason, by appropriately setting the urging force and the friction coefficient between the friction material and the sliding plate, The damping force by the friction damper can be easily adjusted and maintained at an appropriate value.
[0018]
Further, the biasing means of the friction damper does not need to directly support the weight of the upper structure, and is only required to have rigidity enough to generate a desired friction force on the friction material. Can be formed.
[0019]
Furthermore, since the weight of the object to be isolated does not relate to its natural vibration period, it can be sufficiently applied to a lightweight ordinary house.
[0020]
According to a second aspect of the present invention, a disc spring is used as the biasing means, and the pressing biasing force by the disc spring is set within a non-linear spring region of the disc spring in which the fluctuation of the elastic force with respect to the deflection amount fluctuation is small. As a result, even when the amount of deformation of the disc spring changes within the non-linear spring region due to various causes, the fluctuation of the pressing biasing force of the friction member is extremely small and is generated by the friction damping force generation unit. The frictional resistance can be maintained substantially constant, the fluctuation of the vibration damping force can be prevented, the stability of the energy absorption capacity can be greatly improved, and the vibration isolation performance can be improved.
[0021]
In the invention according to claim 3, since the restoration means for returning the horizontal relative position to the reference position is provided between the vibration isolation object and the lower structure, the vibration isolation object and the lower structure are provided. Can be automatically returned to the initial reference position and held.
[0022]
Here, as shown in the invention according to claim 4, an elastic body can be used as the restoring means, and the elastic body does not bear the load of the object to be isolated, or the burden load is reduced. Thus, the elastic modulus in the horizontal direction of the elastic body can be set as small as possible. For this reason, even if such a vibration isolation object becomes a vibration system by interposing such an elastic body, the period of the natural vibration of the vibration isolation object can be sufficiently lengthened.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a vibration isolator according to the present invention will be described in detail with reference to the accompanying drawings.
[0024]
FIG. 1 is a side sectional view showing a schematic configuration of the vibration isolator according to the first embodiment. As shown in the figure, the vibration isolator 10 is provided between opposed surfaces of an upper structure 12 of a building that is an object of vibration isolation and a foundation structure 14 that is a lower structure. The vibration isolator 10 includes a sliding plate 26 laid on the upper surface of the foundation structure 14 facing the lower surface of the upper structure 12, and a base end portion fixed to the lower surface of the upper structure 12, and a distal end portion of the vibration isolation device 10. A large number of supporting members 30 projecting downward toward the sliding plate 26, and a large number of intermediate members 14 interposed between the lower surface of the front end of the supporting member 30 and the sliding plate 26 to transmit the load of the upper structure 12 to the foundation structure 14. A rolling support member 32 composed of small steel balls 28, a ring-shaped friction material 24 provided on the outer periphery of the rolling support member 32 and slidably in contact with the sliding plate 26, and a reaction force from the support member 30 to obtain the friction material 24. It consists mainly of a disc spring body 16 as urging means for urging and pressing toward the sliding plate 26.
[0025]
The support member 30 is formed in a disk-like mounting flange portion 30a with the diameter of the base end portion of the upper end being increased, and this mounting flange portion 30a is integrally formed with the upper structure 12 via a rubber plate 31 with bolts or the like. It is fixed. Here, the rubber plate 31 absorbs the bending deformation at the tip of the supporting member 30 even when the bending deformation caused by the uneven load or the like occurs in the upper structure 12 side portion where the supporting member 30 is attached. bearing member 32 rolling provided is for automatically be adjusted so as to abut against the vertically sliding plate 26.
[0026]
A cylindrical rod portion 30b extending downward toward the sliding plate 26 is integrally formed at the central portion of the mounting flange portion 30a of the support member 30, and the tip end portion of the rod portion 30b is formed flat. A rolling support member 32 composed of a large number of small steel balls 28 is interposed between the lower surface and the sliding plate 26. That is, a rolling support mechanism is configured by the support member 30 and the rolling support member 32, and the load of the upper structure 12 is supported and transmitted to the foundation structure 14 by the rolling support mechanism.
[0027]
A large number of disc springs 16a having a through hole at the center are inserted into the rod portion 30b of the support member 30 constituting the rolling support mechanism, and the cylindrical disc spring body is stacked in the vertical direction and surrounds the support member 30. 16 is formed. A friction material 24 formed in a ring-shaped flat plate is provided at the lower end of the cylindrical disc spring body 16 so as to surround the outer side of the steel ball 28 of the rolling support member 32 provided at the lower end of the support member 30. It has been. The friction material 24 is pressed and urged against the sliding plate 26 on the upper surface of the foundation structure 14 by the elastic force of the disc spring body 16 to generate a damping force by the frictional force with the sliding plate 26. The disc spring body 16 has an upper end abutting against the mounting flange portion 30a of the support member 30 to obtain a reaction force. The support member 30, the disc spring body 16 and the friction material 24 A friction damper 34 is configured. Here, the pressing urging force by the disc spring body 16 is set in a non-linear spring region in which the fluctuation of the elastic force with respect to the deflection amount fluctuation of the disc spring body 16 is small. That is, the friction material 24 provided so as to surround the rolling support member 32 is pressed against the sliding plate 26 on the foundation structure 14 only by the elastic force of the disc spring body 16 regardless of the weight of the upper structure 12. It has become so. Further, the friction material 24 surrounds the periphery of the rolling support member 32 to eliminate dust and dirt on the sliding plate 26 in addition to a function as a regulating member for preventing the small steel ball 28 from rolling out. Thus, the rolling bearing member 32 also has a function of maintaining stable performance.
[0028]
That is, in the vibration isolator having the basic configuration including the rolling support mechanism and the friction damper mechanism, the upper structure 12 is not directly connected to the foundation structure 14 in the horizontal direction by the elastic body. The vibration system is not configured. Therefore, the period of the natural vibration in the horizontal direction of the upper structure 12 is infinite and is prolonged to the limit, and the relative movement is braked and damped by the friction damper.
[0029]
Here, in the first embodiment of the illustrated example, a laminated rubber 18 is further interposed between the upper structure 12 and the foundation structure 14, and the laminated rubber 18 is horizontally generated by an earthquake. A function as restoring means for returning the relative displacement in the direction to the reference position in the initial state is exhibited. The laminated rubber 18 is not subjected to the load of the upper structure 12, or the burden load is reduced. Therefore, the elastic modulus in the horizontal direction of the laminated rubber 18 can be set as small as possible. Therefore, the upper structure 12 forms a vibration system by interposing the laminated rubber 18 of such an elastic body. Even so, the period of the natural vibration of the superstructure 12 can be made sufficiently long.
[0030]
With the above-described configuration, in the vibration isolator 10 according to the present embodiment, the outer peripheral side of the rolling support mechanism including the rolling support member 32 that supports the load of the upper structure 12 and transmits the load to the foundation structure 14 and the support member 30. In addition, a friction damper mechanism composed of a ring-shaped friction material 24 and a disc spring body 16 as an urging means is disposed so as to surround them, and the rolling support mechanism and the friction damper mechanism are integrated. The vibration isolator 10 as a whole can be formed as compact as possible, the installation space can be reduced, it can be installed in a narrow space, and the rolling support mechanism and the friction damper mechanism can be installed at the same time. Attaching work can be performed easily.
[0031]
Further, a rolling support member 32 made up of a large number of small steel balls 28 is interposed between the support member 30 of the upper structure 12 and the foundation structure 14, so that the upper structure 12 is rolled onto the foundation structure 14. The weight of the upper structure 12 is mostly received by this rolling support mechanism, and the weight of the upper structure 12 adversely affects the pressing biasing force of the friction damper 34. There is no. Therefore, the pressing urging force can always be maintained at a desired value. For this reason, by appropriately setting the urging force and the friction coefficient between the friction material 24 and the sliding plate 26 as appropriate, the damping by the friction damper 34 can be performed. The force can be easily adjusted and maintained at an appropriate value.
[0032]
Further, since the initial deflection deformation amount of the disc spring body 16 is set in the non-linear spring region where the fluctuation of the elastic force of the disc spring body 16 is small, the pressing biasing force is generated. Even when the amount of deformation of the spring body 16 changes within the non-linear spring region, the variation of the pressing biasing force applied to the friction material of the friction damping force generation unit can be extremely small. Therefore, the frictional resistance generated by the frictional damping force generation unit can be maintained substantially constant, thus preventing fluctuations in the vibration damping capability and stability of energy absorption capability, which has been considered difficult until now. Can improve the vibration isolation performance of the building.
[0033]
Further, the rolling support mechanism from the support member 30 and the rolling support member 32 has high rigidity, and the vertical distance between the mounting flange portion 30a of the support member 30 and the sliding plate 26 on the foundation structure 14 is always constant. Therefore, the pressing biasing force between the friction material 24 and the sliding plate 26 is stabilized, the frictional force of the friction damper 34 is also stabilized, and good vibration isolation performance is obtained.
[0034]
In addition, since the friction material 24 has a ring shape and is disposed so as to surround the periphery of the rolling support member 32, a substantially equal friction damping force is applied to the periphery of the rolling support mechanism portion, so that the upper structure 12 and the basic structure are provided. Even if a relative displacement force in any direction in the horizontal plane acts between the object 14 and the rolling bearing mechanism part, the frictional damping force is not biased, and a stable vibration isolation effect is obtained and the upper structure 12 is obtained. Therefore, it is possible to prevent as much as possible the occurrence of deterioration or damage of the building.
[0035]
In addition, since the laminated rubber 18 is interposed between the upper structure 12 and the foundation structure 14 and used as restoring means for returning the horizontal relative position to the reference position, the upper structure 12 includes the foundation structure 14. A restoring force that always tries to keep the relative position to the initial state works. That is, in order to make the vibration period longer, the upper structure 12 is supported by the rolling support member 32 and easily moved in any direction. As a result, the relative position between the upper structure 12 and the foundation structure 14 is increased. Even if there is a large deviation, the relative position of the upper and lower structures 12 and 14 can always be maintained in the initial state because of the restoring force to return to the reference position.
[0036]
FIG. 2 is a side sectional view showing a schematic configuration of the second embodiment of the vibration isolator according to the present invention. Even in the vibration isolator 40 of the second embodiment, the basic configuration is the same as that of the first embodiment described above, the same members are denoted by the same reference numerals, detailed description thereof is omitted, and is different. The point will be described in detail.
[0037]
That is, in the vibration isolator 40 of the second embodiment, the screw portion 30c is formed on the outer peripheral surface of the rod portion 30b of the support member 30, and is screwed to the screw portion 30c to be the reaction force receiving member of the disc spring body 16. 38 is provided. Accordingly, the pressing biasing force of the disc spring body 16 can be easily adjusted by rotating the reaction force receiving member 38. In order to securely hold the fixed position of the reaction force receiving member 38, it is desirable to adopt a double nut structure.
[0038]
Further, in order to prevent the inner peripheral portion of the disc spring 16a from being caught by the screw portion 30c, a cylindrical sleeve 42 is fitted to the inner peripheral portion. A flange portion 42 a extending radially outward is integrally formed at the lower end of the sleeve 42, and the friction material 24 is integrally fixed to the flange portion 42 a, so that the lower end portion of the disc spring body 16 is fixed. Is in contact with the flange portion 42a.
[0039]
Further, a coil spring 20 is provided as a restoring means. At least three or more of the coil springs 20 are arranged radially, one end is locked to the mounting flange portion 30a of the support member 30, and the other end is locked to the support pole 44 standing on the foundation structure 14. Yes.
[0040]
In addition, although the example which applied the vibration isolator 10 and 40 of this invention to the building was shown in embodiment of FIG. 1 and FIG. 2, this invention is not restricted to this, The vibration isolator which mounts precision instruments, etc. Applicable to all objects to be isolated.
[0041]
Further, the rolling support member 32 may be a thrust bearing-like structure in which a large number of steel balls are held by a cage, and the cage may be integrally fixed to the lower end of the support member 30.
[0042]
【The invention's effect】
As described above in detail, the vibration isolator according to the present invention has the following excellent effects.
[0043]
(1) In the vibration isolator shown in claim 1, these are provided on the outer peripheral side of the rolling support mechanism composed of the rolling support member and the support member that supports the load of the object to be isolated and transmits it to the lower structure. A friction damper mechanism consisting of a ring-shaped friction material and its biasing means is arranged so as to surround the bearing, and the rolling support mechanism and the friction damper mechanism are integrated so that the entire device is as compact as possible. Thus, the installation space can be reduced, and it is possible to install in a narrow space. At the same time, the rolling support mechanism and the friction damper mechanism can be installed at the same time, and the installation work can be performed easily.
[0044]
In addition, the load of the object to be isolated is supported by the lower structure via a rolling support mechanism including a rolling support member and a support member, and the biasing force of the friction material of the friction damper mechanism obtains a reaction force on the support member. As a result, the weight of the object to be isolated does not adversely affect the biasing force of the friction material, and the biasing force can always be maintained at a desired value. By appropriately setting the coefficient of friction between the plates, the damping force by the friction damper can be easily adjusted to an appropriate value and maintained.
[0045]
Furthermore, the biasing means of the friction damper does not need to support the weight of the upper structure and only needs to have rigidity sufficient to generate a desired frictional force on the friction material, so that it can be formed small and inexpensive.
[0046]
Furthermore, since the weight of the object to be isolated does not relate to its natural vibration period, it can be sufficiently applied to a lightweight ordinary house.
[0047]
(2) In the vibration isolator according to claim 2, a disc spring is used as the biasing means, and the pressing biasing force by the disc spring has a small variation in the elastic force with respect to the deflection amount variation. Therefore, even when the amount of deformation of the disc spring changes within the non-linear spring region due to various causes, the fluctuation of the pressing biasing force of the friction member is extremely small. The frictional resistance generated by the damping force generator can be maintained almost constant, fluctuation of the vibration damping force is prevented, the stability of energy absorption capacity is greatly improved, and the vibration isolation performance can be improved. .
[0048]
(3) In the vibration isolator shown in claim 3, a restoring means for returning the relative position in the horizontal direction to the reference position is provided between the vibration isolation object and the lower structure. The relative position between the object to be isolated and the lower structure can be automatically returned to the initial reference position and held.
[0049]
(4) In the vibration isolator according to claim 4, an elastic body is used as the restoring means, and the elastic body does not bear the load in the vertical direction of the vibration isolation object, or the vertical direction thereof. The horizontal elastic modulus of the elastic body can be set as small as possible by reducing the burden load on the elastic body. Therefore, the object to be isolated constitutes a vibration system by interposing such an elastic body. Even in this case, the natural vibration period of the vibration-isolating object can be sufficiently increased.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a schematic configuration of a first embodiment of a vibration isolator according to the present invention.
FIG. 2 is a side sectional view showing a schematic configuration of a second embodiment of the vibration isolator according to the present invention.
[Explanation of symbols]
12 Superstructure (object to be isolated)
14 Foundation structure (substructure)
16 disc spring body 16a disc spring 18 laminated rubber 20 coil spring 24 friction material 26 sliding plate 28 small steel ball 30 support member
31 Rubber plate 32 Rolling support member 34 Friction damper

Claims (4)

免振対象物とその下方の下部構造物との対向面間に介在される免振装置であって、該対向面の一方に設けられる滑り板と、該対向面の他方に基端部が取り付けられて先端部が該滑り板に向けて突出する支持部材と、該支持部材の先端部と該滑り板との間に介在されて該免振対象物の荷重を該下部構造物に伝える多数の小球からなる転がり支承部材と、該転がり支承部材の外周囲に設けられ、前記転がり支承部材の周囲を囲繞して小球が外部に転がり出すのを防止する規制部材としての機能を保持して該滑り板に摺接するリング状の摩擦材と、該支持部材に反力を得て前記摩擦材を前記滑り板に向けて押圧付勢する付勢手段と、前記免振対象物の偏荷重に起因した撓み変形を吸収して前記支持部材先端に設けられる転がり支承部材を前記滑り板に鉛直に当接させるためのゴム板と、を備えたことを特徴とする免振装置。A vibration isolator interposed between opposing surfaces of an object to be isolated and a lower structure therebelow, a sliding plate provided on one of the opposing surfaces, and a base end attached to the other of the opposing surfaces A support member having a tip projecting toward the sliding plate, and being interposed between the tip of the support member and the sliding plate, and transmitting a load of the vibration isolation object to the lower structure. A rolling support member made of small balls, and provided on the outer periphery of the rolling support member, has a function as a regulating member that surrounds the periphery of the rolling support member and prevents the small balls from rolling out to the outside. A ring-shaped friction material that is in sliding contact with the sliding plate, an urging means that presses and urges the friction material toward the sliding plate by obtaining a reaction force on the support member, and an uneven load on the vibration isolation object The sliding plate is provided with a rolling support member provided at the tip of the support member by absorbing the bending deformation caused by the sliding plate. Vibration isolation apparatus being characterized in that and a rubber plate for causing vertically abut. 前記付勢手段には皿ばねを用い、該皿ばねによる押圧付勢力は、撓み量変動に対する弾発力の変動が小さい該皿ばねの非線形ばね領域内に設定することを特徴とする請求項1記載の免振装置。2. A disc spring is used as the biasing means, and the pressing biasing force by the disc spring is set in a non-linear spring region of the disc spring in which the fluctuation of the elastic force with respect to the deflection amount fluctuation is small. The vibration isolator described. 前記免振対象物と下部構造物との間に、それらの水平方向の相対位置を基準位置に復帰させる復元手段を設けたことを特徴とする請求項1または2のいずれかに記載の免振装置。3. The vibration isolation device according to claim 1, further comprising a restoring unit configured to return a relative position in a horizontal direction to a reference position between the vibration isolation object and the lower structure. apparatus. 前記復元手段が弾性体でなることを特徴とする請求項3記載の免振装置。4. The vibration isolator according to claim 3, wherein the restoring means is made of an elastic body.
JP22175798A 1998-08-05 1998-08-05 Isolation device Expired - Fee Related JP3794830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22175798A JP3794830B2 (en) 1998-08-05 1998-08-05 Isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22175798A JP3794830B2 (en) 1998-08-05 1998-08-05 Isolation device

Publications (2)

Publication Number Publication Date
JP2000055117A JP2000055117A (en) 2000-02-22
JP3794830B2 true JP3794830B2 (en) 2006-07-12

Family

ID=16771739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22175798A Expired - Fee Related JP3794830B2 (en) 1998-08-05 1998-08-05 Isolation device

Country Status (1)

Country Link
JP (1) JP3794830B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287079A (en) * 2002-03-28 2003-10-10 Takenaka Komuten Co Ltd Negative rigid device and building structure using the same
GR1004897B (en) * 2003-06-02 2005-05-18 Νικολαος Γεωργιου Δρουγος Antiseismic seating base
ITGE20060099A1 (en) * 2006-10-25 2008-04-26 Giorgio Agostena DAMPING DEVICE FOR ANTI-SEISMIC STRUCTURES.
JP2008208969A (en) * 2007-02-28 2008-09-11 Tera:Kk Three-dimensional vibration removing device
JP5012346B2 (en) * 2007-09-11 2012-08-29 株式会社大林組 Isolation device
JP5326779B2 (en) * 2009-04-27 2013-10-30 株式会社大林組 Seismic isolation device
JP5401260B2 (en) * 2009-10-29 2014-01-29 株式会社大林組 Attenuator
JP5678533B2 (en) * 2010-09-14 2015-03-04 株式会社大林組 Seismic isolation device and its installation method
JP5625661B2 (en) * 2010-09-14 2014-11-19 株式会社大林組 Seismic isolation device and its installation method
JP5678534B2 (en) * 2010-09-14 2015-03-04 株式会社大林組 Seismic isolation device and its installation method
JP5240339B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
JP5240338B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
JP5240341B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
JP5240340B2 (en) * 2011-10-03 2013-07-17 株式会社大林組 Isolation device
US8857110B2 (en) 2011-11-11 2014-10-14 The Research Foundation For The State University Of New York Negative stiffness device and method
US9206616B2 (en) 2013-06-28 2015-12-08 The Research Foundation For The State University Of New York Negative stiffness device and method
JP5925344B1 (en) * 2015-01-13 2016-05-25 新日鉄住金エンジニアリング株式会社 Energy absorption type bearing
JP6531479B2 (en) * 2015-04-15 2019-06-19 株式会社大林組 Seismic isolation structure
CN107246074A (en) * 2017-04-20 2017-10-13 中南大学 Parallel-moving type spring friction isolation bearing
CN113830985A (en) * 2021-10-26 2021-12-24 邵阳千两新型环保建材有限公司 Prevent glass tempering manure pit of fracture
CN113932093B (en) * 2021-11-04 2023-11-10 上海宝冶集团有限公司 Equipment installation adjusting device
CN114961010B (en) * 2022-05-25 2023-03-10 西安工程大学 Inertial capacity self-resetting shock insulation and absorption system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847583B2 (en) * 1979-12-21 1983-10-24 日本発条株式会社 Vibration isolator
JPS5848785B2 (en) * 1979-12-27 1983-10-31 日本発条株式会社 Vibration isolator
JPS6092571A (en) * 1983-10-27 1985-05-24 藤田 隆史 Earthquake dampening apparatus of structure
JPH02107843A (en) * 1988-10-14 1990-04-19 Hitachi Ltd Three dimentional oscillation isolating device
JP3425586B2 (en) * 1993-01-22 2003-07-14 株式会社石間流体研究所 Object seismic isolation device
JPH08193635A (en) * 1995-01-17 1996-07-30 Nippon Steel Corp Friction damper device
JPH09196117A (en) * 1996-01-23 1997-07-29 Sekisui Chem Co Ltd Base isolator
JPH10169241A (en) * 1996-12-10 1998-06-23 Taisei Corp Base-isolated building
JP2000193029A (en) * 1998-12-24 2000-07-14 Ohbayashi Corp Slide base isolation device

Also Published As

Publication number Publication date
JP2000055117A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP3794830B2 (en) Isolation device
JPH0358009B2 (en)
US5370352A (en) Damped vibration isolation system
US5201155A (en) Seismic isolating bearing
US5261200A (en) Vibration-proofing device
JP3882325B2 (en) Friction damper
EP0439272A2 (en) Vibration-proofing device
JP2005061211A (en) Seismic isolator
JP3736285B2 (en) Isolation device
JPH09144810A (en) Three-dimensional base isolation device for structure
JP3465714B2 (en) Vibration energy absorbing device and manufacturing method thereof
JPH1130278A (en) Base isolation construction
JP2000266116A (en) Swinging bearing type base isolation device
JP2001082542A (en) Three-dimensional base isolation device
JPH11107504A (en) Base-isolation floor device
JP4284743B2 (en) Seismic isolation display
JP2001074093A (en) Base isolation device
JP4803620B2 (en) Seismic isolation structure with damping function
WO2000037823A1 (en) Vibration isolating apparatus
JPH09242818A (en) Base isolation structure for structure
JPH0113864Y2 (en)
JPH02248551A (en) Device for exempting building from vibration
JP3610004B2 (en) Building damping device
JP3326227B2 (en) Double floor vibration suppressor
JPH0439968Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees