JPH1130278A - Base isolation construction - Google Patents

Base isolation construction

Info

Publication number
JPH1130278A
JPH1130278A JP9188447A JP18844797A JPH1130278A JP H1130278 A JPH1130278 A JP H1130278A JP 9188447 A JP9188447 A JP 9188447A JP 18844797 A JP18844797 A JP 18844797A JP H1130278 A JPH1130278 A JP H1130278A
Authority
JP
Japan
Prior art keywords
spring
floor
belleville spring
vibration
disc spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9188447A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
嶽 中村
Manabu Inaba
学 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP9188447A priority Critical patent/JPH1130278A/en
Publication of JPH1130278A publication Critical patent/JPH1130278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To aim at an improvement in base isolation effectiveness by elastically supporting a superstructure in the vertical direction in relation to its downward substructure via a belleville spring in a state of being added with preload pressure, in use of a nonlinear spring domain where a variation in resiliency becomes lessened to a spring deformed variable. SOLUTION: A belleville spring 16 is installed in space between a floor face 12 and a support structure 14 by way of having a vertical pair of spring layered products, where plural pieces of belleville spring simples 16a are superposed in the same sense, butted in the reverse direction. Then, floor load acts on this belleville spring 16 as preload pressure, and in the state intact, the belleville spring 16 is set up in the range of a spring characteristic nonlinear spring domain. This nonlinear spring domain means that its variation in resiliency is small to a prospective variation in vertical clearance size S between the floor face 12 and the support structure 14, and within this domain, the belleville spring 16 basically absorbs a vertical vibration while if it is flexurally deformed, frictional force to be produced among belleville spring simples 16a works as its damping force. Accordingly, any vibration in the support structure 14 is absorbed as the belleville spring 16 is turned to a cushioning material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上部構造をその下
方の下部構造に弾性支持させて、外方からの振動が該上
部構造に入力されるのを抑制するようにした免振構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration isolation structure in which an upper structure is elastically supported by a lower structure below the upper structure to suppress external vibrations from being input to the upper structure.

【0002】[0002]

【従来の技術】電算機器や計測制御機器等の精密機器類
を設置する場合、それらの設置床を免振床とし、外部か
らの振動が入力されるのを遮断(免振)する必要があ
る。この免振床としては、例えば特公昭55−413
84号公報(Int.Cl.F16F 15/02)とか特公昭63−
6710号公報(Int.Cl.E04F 15/18 )に開示されたも
のが従来存在する。の特公昭55−41384号公報
に開示される免振床は、コイルスプリング状の懸架ばね
で床面を弾性支持させたものであり、また、の特公昭
63−6710号公報に開示される免振床は、空気ばね
で床面を弾性支持させるようになっている。
2. Description of the Related Art When installing precision equipment such as computer equipment and measurement control equipment, it is necessary to make the installation floor a vibration-isolating floor and to cut off (vibration-isolate) the input of external vibration. . As the vibration-isolating floor, for example, Japanese Patent Publication No. 55-413
No. 84 (Int. Cl. F16F 15/02) or JP-B-63-
Conventionally, there is one disclosed in Japanese Patent No. 6710 (Int. Cl. E04F 15/18). The vibration-isolating floor disclosed in Japanese Patent Publication No. 55-41384 is one in which the floor surface is elastically supported by a coil spring-shaped suspension spring, and the vibration isolation floor disclosed in Japanese Patent Publication No. 63-6710 is disclosed. The oscillating floor elastically supports the floor surface with an air spring.

【0003】ところで、このように床面を弾性支持させ
た場合、床面重量(床上に設置する機器の重量を含む)
と、弾性支持部材の剛性(ばね定数)とで決まる固有周
期を長周期化することにより、床面を外部の振動から効
果的に免振できる。
When the floor surface is elastically supported as described above, the floor surface weight (including the weight of equipment installed on the floor)
By increasing the natural period determined by the rigidity (spring constant) of the elastic support member and the rigidity of the elastic support member, the floor surface can be effectively isolated from external vibration.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の免振構造では、コイルばねとか空気ばね等のよう
に荷重に対する変形量の特性が線形となる性質を持った
ばねで弾性支持するようになっているため、大きな床面
重量と、これを支持するばね剛性との兼ね合いから、床
面の固有周期を長周期化することが著しく困難になる。
However, in such a conventional vibration-isolating structure, a spring having a characteristic in which the amount of deformation with respect to a load becomes linear, such as a coil spring or an air spring, is elastically supported. Therefore, it is extremely difficult to increase the natural period of the floor surface because of the balance between the large floor surface weight and the spring rigidity for supporting the floor surface.

【0005】即ち、のコイルばねを用いた場合は、床
面の固有周期を長周期化するためには該コイルばねの剛
性を低くする必要があるが、このように剛性を低くする
と上記床面重量によるばねの沈み込み量が多くなってし
まう。このため、上記コイルばねは床面重量による大き
な沈み込みと、振動入力時の床面の上下変位量とを吸収
しなければならず、この結果該コイルばねの自然長を長
くする必要があり、ばねを配置する床面と支持基盤との
間の隙間を大きく設定する必要があるため、該免振構造
を設けた階高が高くなり、ひいては建物の高さが必要以
上に高くなってしまう。
That is, when the coil spring is used, it is necessary to reduce the rigidity of the coil spring in order to lengthen the natural period of the floor. The amount of sinking of the spring due to weight increases. For this reason, the coil spring has to absorb large sinking due to the floor weight and the vertical displacement of the floor surface at the time of vibration input. As a result, it is necessary to increase the natural length of the coil spring. Since it is necessary to set a large gap between the floor on which the springs are arranged and the support base, the floor height at which the vibration isolation structure is provided becomes high, and the height of the building becomes unnecessarily high.

【0006】一方、の空気ばねを用いた場合は、ばね
の剛性が低いため床面の固有周期を簡単に長周期化する
ことができるが、地震による高レベルの振動や比較的周
期の長い振動に対してはほとんど効果が無く、また、床
面の支持基盤に対する相対変位が過大になると、空気ば
ね自体が座屈して免振機能が得られなくなってしまうと
いう各種課題があった。
On the other hand, when the air spring is used, the natural period of the floor surface can be easily increased because of the low rigidity of the spring. Has little effect, and when the relative displacement of the floor surface with respect to the support base is excessive, the air spring itself buckles and the vibration isolation function cannot be obtained.

【0007】そこで、本発明はかかる従来の課題に鑑み
て、皿ばねが非線形のばね特性を呈することに着目し、
該皿ばねの変形量に対して弾発力の変動が小さくなるば
ね領域を利用して上部構造を下部構造に対し弾性支持す
ることにより、固有周期の長周期化を確保して免振効果
を向上しつつ、上部構造と下部構造との間の隙間を少な
くして階高が不必要に高くなってしまうのを防止するこ
とができる免振構造を提供することを目的とする。
In view of the above-mentioned problems, the present invention focuses on the fact that disc springs exhibit non-linear spring characteristics.
By elastically supporting the upper structure with respect to the lower structure using a spring region in which the fluctuation of the resilient force is reduced with respect to the amount of deformation of the disc spring, a longer natural period is ensured and the vibration isolation effect is ensured. It is an object of the present invention to provide a vibration-isolating structure that can improve and reduce a gap between an upper structure and a lower structure to prevent an unnecessary increase in floor height.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の免振構造は、上部構造をその下方の下部構
造に対し皿ばねを介して上下方向に弾性支持すると共
に、該皿ばねは、ばね変形量に対して弾発力の変動が小
さくなる非線形ばね領域を用いるように予圧力を付加し
た状態で用いる構成とする。
SUMMARY OF THE INVENTION In order to achieve the above object, a vibration isolating structure according to the present invention elastically supports an upper structure vertically with respect to a lower structure thereunder via a disc spring, and further comprises a disc spring. Is configured to be used in a state where a preload is applied so as to use a non-linear spring region where the fluctuation of the resilient force with respect to the amount of spring deformation is reduced.

【0009】以上の構成により本発明の免振構造の作用
は、上部構造を下部構造に上下方向に弾性支持する皿ば
ねは、ばね変形量に対して弾発力の変動が小さくなる非
線形ばね領域を用いるようにしたので、上部構造を弾性
支持するのに用いる皿ばねの非線形ばね領域では、ばね
変形量に対して弾発力の変動が小さいことにより、その
ばね剛性が小さく設定される。従って、当該非線形ばね
領域を用いる限りにおいて、固有周期を長周期化するこ
とが可能となり、該上部構造を外部の振動から効果的に
免振することができる。また、上記皿ばねは文字通り皿
状を成して薄形に形成されるため、該皿ばねを配置する
上部構造と下部構造との間の隙間を小さく設定でき、免
振構造を備えた建物の階高を低くすることができる。更
に、上記皿ばねに過大荷重が作用した場合には、該皿ば
ねが全たわみ量分変形し剛体化して上部構造を支持する
ことができるため、フェールセーフ機能を兼備させるこ
とができる。
With the above structure, the vibration isolating structure according to the present invention operates in a non-linear spring region in which the elasticity of the upper structure is elastically supported on the lower structure in the vertical direction. In the non-linear spring region of the disc spring used to elastically support the upper structure, the spring stiffness is set to be small because the fluctuation of the resilient force with respect to the amount of spring deformation is small. Therefore, as long as the non-linear spring region is used, the natural period can be lengthened, and the upper structure can be effectively isolated from external vibration. In addition, since the above-mentioned disc spring is literally formed into a dish-shaped and thin shape, a gap between the upper structure and the lower structure in which the disc spring is arranged can be set small, and a building having a vibration isolation structure can be provided. Floor height can be reduced. Further, when an excessive load is applied to the disc spring, the disc spring is deformed by the entire amount of deflection and becomes rigid to support the upper structure, so that it can also have a fail-safe function.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態について
添付図面を参照しつつ詳細に説明する。図1から図3は
本発明の免振構造の一実施形態を示し、図1は免振構造
を構成する皿ばねの取り付け状態を示す要部拡大正面断
面図、図2は皿ばねの1枚を取り出して示す拡大断面
図、図3は皿ばねの変形量と荷重との関係を示すばね特
性図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 3 show an embodiment of a vibration isolating structure according to the present invention. FIG. 1 is an enlarged front sectional view showing an attached state of a disc spring constituting the vibration isolating structure. FIG. FIG. 3 is a spring characteristic diagram showing the relationship between the amount of deformation of the disc spring and the load.

【0011】即ち、本実施形態の免振構造10は、図1
に示すように床面12をその下方の支持構造14に対し
皿ばね16を介して上下方向に弾性支持すると共に、該
皿ばね16は、図3に示すようにばね変形量σに対して
弾発力(荷重w)の変動が小さくなる非線形ばね領域R
を用いるように予圧力を付加した状態で用いる構成とな
っている。
That is, the vibration isolating structure 10 of the present embodiment is similar to that of FIG.
As shown in FIG. 3, the floor surface 12 is vertically elastically supported on the support structure 14 therebelow via a disc spring 16, and the disc spring 16 elastically reacts to the spring deformation σ as shown in FIG. Non-linear spring region R in which the fluctuation of the force (load w) is small
Is used in a state in which a preload is applied.

【0012】上記免振構造10は、床面12と支持構造
14とによって二重床が構成され、支持構造14は床ス
ラブまたは基礎として構成されると共に、該支持構造1
4の上方に適宜隙間Sを設けて上記床面12が上下方向
の相対変位自在に配置される。上記皿ばね16は、上記
床面12の下面に取り付けた上方受け板18と、該上方
受け板18に対向して上記支持構造14の上面に取り付
けた下方受け板20との間に介装される。また、上記皿
ばね16は上方受け板18および下方受け板20とセッ
トとなって、床面12と支持構造14との間に複数個が
配置され、該皿ばね16によって床面12の床面重量
(床上に設置する機器の重量を含む)を支持するように
なっている。
In the vibration isolation structure 10, a double floor is formed by the floor surface 12 and the support structure 14, and the support structure 14 is formed as a floor slab or a foundation.
The floor surface 12 is disposed so as to be vertically displaceable relative to each other with an appropriate gap S provided above the floor 4. The disc spring 16 is interposed between an upper receiving plate 18 attached to the lower surface of the floor surface 12 and a lower receiving plate 20 attached to the upper surface of the support structure 14 so as to face the upper receiving plate 18. You. The disc spring 16 is set with the upper receiving plate 18 and the lower receiving plate 20, and a plurality of the disc springs 16 are arranged between the floor surface 12 and the support structure 14. It supports the weight (including the weight of equipment installed on the floor).

【0013】上記皿ばね16は図2に示す皿ばね単体1
6aを複数枚積層して構成され、該皿ばね単体16aは
一般に知られるように中央部に開口部16bが形成され
た皿状を成している。上記皿ばね単体16a自体の荷重
特性はその形状に依存することが知られており、本実施
形態では同図に示すように板厚をS、全たわみ量をhと
した場合に、h/Sが1.3〜1.4の皿ばねを使用す
ることが好ましい。h/Sが1.3よりも小さいと反り
の発生が小さく十分な変形量を確保できず、また1.4
よりも大きいと逆向きに反る変形が生じてしまうおそれ
がある。なお、Doは皿ばねの外径寸法、Diは皿ばね
の内径寸法である。また、皿ばね単体16aの組み合わ
せ方に関しては、皿ばね16aを同じ向きに重ね合わせ
る並列では、重ね枚数を2枚にすると2倍の弾発力、3
枚にすると3倍の弾発力というように、弾発力はこの並
列の重ね枚数で調整することができる。また皿ばねの向
きを互い違いに重ね合わせる直列では、重ね枚数を2枚
にすると2倍のたわみ量、3枚にすると3倍のたわみ量
というように、たわみ量はこの直列の重ね枚数で調整す
ることができる。従って、これら並列および直列の並べ
方を種々組み合わせることによって、様々な弾発力を確
保しつつ所望のたわみ量に設定することができる。
The disc spring 16 is a disc spring 1 shown in FIG.
6a are laminated, and the disc spring unit 16a has a dish shape with an opening 16b formed in the center as generally known. It is known that the load characteristic of the disc spring 16a itself depends on its shape. In this embodiment, when the plate thickness is S and the total deflection is h, as shown in FIG. It is preferable to use a disc spring having a diameter of 1.3 to 1.4. If h / S is less than 1.3, warpage is small and a sufficient amount of deformation cannot be secured, and 1.4 is also obtained.
If it is larger than the above, there is a possibility that the warp may be deformed in the opposite direction. Note that Do is the outer diameter of the disc spring, and Di is the inner diameter of the disc spring. In addition, regarding the combination of the disc springs 16a, in the parallel arrangement in which the disc springs 16a are overlapped in the same direction, if the number of overlaps is two, the resilience is twice as large.
The resilience can be adjusted by the number of the stacked layers, such as three times the resilience. Also, in the series in which the directions of the disc springs are alternately overlapped, the amount of deflection is adjusted by the number of overlaps in the series, such that if the number of overlaps is two, the amount of deflection is double, and if the number is three, the amount of deflection is three times. be able to. Therefore, by variously combining these parallel and serial arrangements, it is possible to set a desired amount of deflection while securing various elasticity.

【0014】図3には、本実施形態に採用し得るばね特
性を有する上記皿ばね16の荷重−変位による鉛直方向
復元力のばね特性Aが示されている。該特性の縦軸には
皿ばねに入力される床面荷重、横軸には皿ばね16の変
形量(たわみ量)が示されている。ここで、上記床面荷
重が皿ばね16に作用した状態で、該床面荷重と、これ
の反力として現れる該皿ばね16の弾発力とは等しくな
る。
FIG. 3 shows a spring characteristic A of a vertical restoring force due to a load-displacement of the disc spring 16 having a spring characteristic that can be employed in the present embodiment. The vertical axis of the characteristic shows the floor load input to the disc spring, and the horizontal axis shows the deformation (flexure) of the disc spring 16. Here, in a state where the floor load acts on the disc spring 16, the floor load becomes equal to the elastic force of the disc spring 16 that appears as a reaction force thereof.

【0015】ところで、本実施形態では上記皿ばね16
は、複数枚の皿ばね単体16aを同じ向きに重ね合わせ
た上下一対のばね積層体を、逆向きに突き合わせて構成
されている。そして、上記皿ばね16を床面12と支持
構造14との間に介装した時点で、上記床面荷重が予圧
力として該皿ばね16に作用するようになっており、該
予圧力が作用した状態で上記皿ばね16は、図3に示し
たばね特性Aの非線形ばね領域Rの範囲に設定される。
ここで非線形ばね領域Rとは、床面12と支持構造14
との間の上下方向の隙間寸法Sの見込み変化量(σ)に
対して弾発力(w)の変動が小さい領域をいい、上記皿
ばね16は基本的にはこの非線形ばね領域R内で上下方
向振動を吸収するように使用される。
In this embodiment, the disc spring 16 is
Is formed by abutting a pair of upper and lower spring laminates in which a plurality of disc springs 16a are stacked in the same direction in opposite directions. When the disc spring 16 is interposed between the floor surface 12 and the support structure 14, the floor load acts on the disc spring 16 as a preload. In this state, the disc spring 16 is set in the range of the non-linear spring region R of the spring characteristic A shown in FIG.
Here, the non-linear spring region R is the floor surface 12 and the support structure 14.
Is a region in which the resilience (w) has a small variation with respect to the expected change amount (σ) of the gap size S in the vertical direction between the disc spring 16 and the disc spring 16. Used to absorb vertical vibration.

【0016】上記皿ばね16は、それぞれの皿ばね単体
16aが互いに結合されること無く自由に積層され、図
1に示したように床面12と支持構造14との間に取り
付けた際に開口部16bがガイド22によって案内さ
れ、該ガイド22によって皿ばね16の積層状態および
取り付け位置が保持される。そして、床面12と支持構
造14との間の隙間Sの変化に伴って皿ばね16がたわ
み変形されると、隣接される皿ばね単体16a間が擦れ
て摩擦が発生し、この摩擦力が減衰力として作用するよ
うになっている。
The above-mentioned disc springs 16 are freely laminated without being connected to each other, and open when the disc springs 16 are mounted between the floor surface 12 and the support structure 14 as shown in FIG. The portion 16 b is guided by the guide 22, and the guide 22 holds the stacked state and the mounting position of the disc spring 16. When the disc spring 16 is bent and deformed in accordance with the change in the gap S between the floor surface 12 and the support structure 14, the adjacent disc springs 16a rub against each other to generate friction, and this frictional force is generated. It acts as a damping force.

【0017】以上の構成により本実施形態の免振構造1
0にあっては、支持構造14に対して上下方向相対変位
自在に設けられた床面12は、皿ばね単体16aの積層
体として構成される皿ばね16(勿論、皿ばね単体16
aで皿ばね16を構成することもできる。)を介して弾
性支持されるので、支持構造14側に入力された地震等
の振動は上記皿ばね16を緩衝材として振動吸収が行わ
れ、上記床面12への振動伝達を大幅に低減し、該床面
12上に設置される図外の精密機器とか電子機器を効果
的に保護することができる。
With the above configuration, the vibration isolation structure 1 of the present embodiment is used.
0, the floor surface 12 provided so as to be vertically displaceable relative to the support structure 14 is a disc spring 16 (of course, a disc spring 16
The disc spring 16 can be constituted by a. ), The vibration such as an earthquake input to the support structure 14 is absorbed by the disc spring 16 as a cushioning material, and the transmission of vibration to the floor 12 is greatly reduced. Thus, precision equipment and electronic equipment (not shown) installed on the floor 12 can be effectively protected.

【0018】ところで、上記皿ばね16は床面12の床
面荷重が作用した状態で、ばね変形量σに対して弾発力
(荷重w)の変動が小さくなる非線形ばね領域Rを用い
るようになっている。このため、上記非線形ばね領域R
では、ばね変形量σに対して弾発力wの変動が小さいこ
とによりばね剛性が小さい範囲での使用となる。従っ
て、上記非線形ばね領域Rを用いる限りにおいて、支持
荷重wを大きくしつつ、床面12の固有周期を長周期化
することが可能となる。このため、床面荷重を十分に支
持しつつ、床面12を外部の振動から効果的に免振する
ことができる。このとき、上記皿ばね16は、積層され
た皿ばね単体16a間に発生する摩擦力が減衰力として
働き、この減衰力によって振動伝達係の応答性を低減さ
せる。より大きな減衰力を必要とする場合は、オイルダ
ンパー等の減衰装置を付設することが望ましい。
By the way, the disc spring 16 uses a non-linear spring region R in which the variation of the resilient force (load w) with respect to the amount of spring deformation σ is small when the floor surface load of the floor surface 12 is applied. Has become. Therefore, the nonlinear spring region R
In this case, since the fluctuation of the resilient force w with respect to the spring deformation amount σ is small, the spring stiffness is used in a small range. Therefore, as long as the non-linear spring region R is used, the natural period of the floor 12 can be increased while the supporting load w is increased. Therefore, the floor surface 12 can be effectively isolated from external vibration while sufficiently supporting the floor surface load. At this time, in the disc spring 16, the frictional force generated between the laminated disc springs 16a acts as a damping force, and the damping force reduces the responsiveness of a vibration transmitting member. When a larger damping force is required, it is desirable to provide a damping device such as an oil damper.

【0019】また、上記皿ばね16はそれぞれの皿ばね
単体16aが文字通り皿状を成して薄形に形成されるた
め、該皿ばね単体16aを積層した場合にも、該皿ばね
16を配置する床面12と支持構造14との間の隙間S
を小さく設定することができる。このため、免振構造1
0を設けた場合の建物の階高を低くすることができ、特
に複数階に免振構造10を設けた場合にも、建物の高さ
が高くなりすぎるのを避けることができる。
Further, since the disc springs 16 are formed in a thin shape by literally forming the disc springs 16a, the disc springs 16 are arranged even when the disc springs 16a are stacked. Gap S between floor surface 12 and support structure 14
Can be set small. Therefore, the vibration isolation structure 1
The floor height of the building when 0 is provided can be reduced, and in particular, even when the vibration isolation structure 10 is provided on a plurality of floors, the height of the building can be prevented from becoming too high.

【0020】ところで、大地震等により過大振動が入力
された場合とか、過大な荷重が床面12に載った場合等
にあって、床面12と支持構造14との間の隙間Sが大
きく減少された場合、皿ばね16が全たわみ量分だけ変
形すると、それ以上の変形が阻止されて床面12を剛体
状に支持することができるため、上記皿ばね16はフェ
ールセーフ機能をも備えるものである。
When an excessive vibration is input due to a large earthquake or the like, or when an excessive load is placed on the floor 12, the gap S between the floor 12 and the support structure 14 is greatly reduced. In this case, if the disc spring 16 is deformed by the entire amount of deflection, further deformation is prevented and the floor surface 12 can be rigidly supported. Therefore, the disc spring 16 also has a fail-safe function. It is.

【0021】このように本実施形態では床面12を上下
免振する免振構造10を構成するので、アイソレータ等
によって水平免振された建物に本実施形態の免振構造1
0を適用することにより、上記床面12は水平方向と垂
直方向に免振される3次元免振が可能となる。また本実
施形態の免振装置は、地震に対してのみならず、風によ
る建物の揺れに対しても有効に作用することはいうまで
もない。更に、皿ばね16を構成する皿ばね単体16a
の組み合わせ配置構成に関しても、上記実施形態の開示
形態に限らず、本発明の皿ばね16に求められる設定が
可能である限り、種々に変更して組み合わせ構成するこ
とができることは勿論である。
As described above, in the present embodiment, the vibration isolating structure 10 for vertically isolating the floor surface 12 is configured. Therefore, in a building horizontally isolated by an isolator or the like, the vibration isolating structure 1 of the present embodiment is used.
By applying 0, three-dimensional vibration isolation in which the floor surface 12 is isolated in the horizontal direction and the vertical direction becomes possible. Needless to say, the vibration isolation device of the present embodiment is effective not only for earthquakes but also for shaking of buildings due to wind. Further, a single disc spring 16a constituting the disc spring 16
It is needless to say that the combination arrangement is not limited to the disclosed form of the above embodiment, but may be variously changed and combined as long as the setting required for the disc spring 16 of the present invention is possible.

【0022】[0022]

【発明の効果】以上説明したように本発明の免振構造に
あっては、皿ばねを介して上部構造を下部構造に上下方
向に弾性支持するようになっており、該皿ばねは、ばね
変形量に対して弾発力の変動が小さくなる非線形ばね領
域を用いるようにしたので、該非線形ばね領域での使用
により皿ばねのばね剛性を小さく設定することができ
る。従って、当該非線形ばね領域を用いたことにより、
免振構造の固有周期を長周期化することが可能となり、
該上部構造を外部の振動から効果的に免振することがで
きる。また、上記皿ばねは薄形に形成されるため、該皿
ばねを配置する上部構造と下部構造との間の隙間を小さ
く設定でき、免振構造を備えた建物の階高を低くするこ
とができ、ひいては建物の高さが高くなるのを防止する
ことができる。更に、上記皿ばねに過大荷重が作用した
場合には、該皿ばねが全たわみ量分変形し剛体化して上
部構造を支持することができるため、フェールセーフ機
能を兼備することができるという各種優れた効果を奏す
る。
As described above, in the vibration isolating structure of the present invention, the upper structure is elastically supported on the lower structure in the up-down direction via the disc spring. Since the non-linear spring region in which the fluctuation of the resilient force is small with respect to the deformation amount is used, the spring rigidity of the disc spring can be set small by using the non-linear spring region. Therefore, by using the nonlinear spring region,
It is possible to lengthen the natural period of the vibration isolation structure,
The upper structure can be effectively isolated from external vibration. Further, since the disc spring is formed in a thin shape, a gap between an upper structure and a lower structure in which the disc spring is arranged can be set small, and the floor height of a building having a vibration isolation structure can be reduced. It is possible to prevent the height of the building from being increased. Further, when an excessive load is applied to the disc spring, the disc spring is deformed by the entire amount of deflection and becomes rigid to support the upper structure. It has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の免振構造を構成する皿ばねの取り付け
状態を示す要部拡大正面断面図である。
FIG. 1 is an enlarged front sectional view of a main part showing a mounted state of a disc spring constituting a vibration isolation structure of the present invention.

【図2】図1の皿ばねの1枚を取り出して示す拡大断面
図である。
FIG. 2 is an enlarged sectional view showing one of the disc springs shown in FIG.

【図3】本発明の免振構造を構成する皿ばねの変形量と
荷重との関係を示す復元力特性図である。
FIG. 3 is a restoring force characteristic diagram showing a relationship between a deformation amount and a load of a disc spring constituting the vibration isolation structure of the present invention.

【符号の説明】[Explanation of symbols]

10 免振構造 12 床面 14 支持構造 16 皿ばね 16a 皿ばね単体 R 非線形ばね領域 DESCRIPTION OF SYMBOLS 10 Vibration isolation structure 12 Floor surface 14 Support structure 16 Disc spring 16a Disc spring only R Non-linear spring area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上部構造をその下方の下部構造に対し皿
ばねを介して上下方向に弾性支持すると共に、該皿ばね
は、ばね変形量に対して弾発力の変動が小さくなる非線
形ばね領域を用いるように予圧力を付加した状態で用い
ることを特徴とする免振構造。
An upper structure is elastically supported vertically with respect to a lower structure below the lower structure via a disc spring, and the disc spring has a non-linear spring region in which a change in elastic force with respect to a spring deformation is reduced. A vibration isolation structure characterized in that it is used in a state where a preload is applied as in the case of using a vibration isolator.
JP9188447A 1997-07-14 1997-07-14 Base isolation construction Pending JPH1130278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9188447A JPH1130278A (en) 1997-07-14 1997-07-14 Base isolation construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9188447A JPH1130278A (en) 1997-07-14 1997-07-14 Base isolation construction

Publications (1)

Publication Number Publication Date
JPH1130278A true JPH1130278A (en) 1999-02-02

Family

ID=16223859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9188447A Pending JPH1130278A (en) 1997-07-14 1997-07-14 Base isolation construction

Country Status (1)

Country Link
JP (1) JPH1130278A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160991A (en) * 2001-11-26 2003-06-06 Ohbayashi Corp Uniaxial vibration absorbing unit
JP2003184316A (en) * 2001-12-25 2003-07-03 Excellence:Kk Earthquake-resisting reinforcing metallic material for post-attachment for existing wooden house
WO2008140284A3 (en) * 2007-05-16 2009-01-29 Ho Young Lee Elastic spring
CN102619284A (en) * 2012-04-28 2012-08-01 北京市建筑工程研究院有限责任公司 Telescopic steel structure connecting joint
CN105839806A (en) * 2016-04-01 2016-08-10 东南大学 Viscoelastic vibration reduction and isolation device provided with belleville springs
JP2018511526A (en) * 2015-04-14 2018-04-26 ピアッジオ エ チ.ソシエタ ペル アチオニ Steering device group for motor vehicle and vehicle with motor
JP2018096513A (en) * 2016-12-16 2018-06-21 清水建設株式会社 Vibration-isolating mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096893U (en) * 1973-12-29 1975-08-13
JPS5690143A (en) * 1979-12-21 1981-07-22 Nhk Spring Co Ltd Protective apparatus for vibration
JPS61206827A (en) * 1985-03-08 1986-09-13 Ogura Clutch Co Ltd Electromagnetic coupling device
JPH0475693U (en) * 1990-11-14 1992-07-02
JPH08210438A (en) * 1995-02-01 1996-08-20 Nippon Steel Corp Vibration suppressing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096893U (en) * 1973-12-29 1975-08-13
JPS5690143A (en) * 1979-12-21 1981-07-22 Nhk Spring Co Ltd Protective apparatus for vibration
JPS61206827A (en) * 1985-03-08 1986-09-13 Ogura Clutch Co Ltd Electromagnetic coupling device
JPH0475693U (en) * 1990-11-14 1992-07-02
JPH08210438A (en) * 1995-02-01 1996-08-20 Nippon Steel Corp Vibration suppressing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160991A (en) * 2001-11-26 2003-06-06 Ohbayashi Corp Uniaxial vibration absorbing unit
JP2003184316A (en) * 2001-12-25 2003-07-03 Excellence:Kk Earthquake-resisting reinforcing metallic material for post-attachment for existing wooden house
WO2008140284A3 (en) * 2007-05-16 2009-01-29 Ho Young Lee Elastic spring
CN102619284A (en) * 2012-04-28 2012-08-01 北京市建筑工程研究院有限责任公司 Telescopic steel structure connecting joint
JP2018511526A (en) * 2015-04-14 2018-04-26 ピアッジオ エ チ.ソシエタ ペル アチオニ Steering device group for motor vehicle and vehicle with motor
CN105839806A (en) * 2016-04-01 2016-08-10 东南大学 Viscoelastic vibration reduction and isolation device provided with belleville springs
CN105839806B (en) * 2016-04-01 2019-04-30 东南大学 A kind of disk spring viscoplasticity subtracts isolation mounting
JP2018096513A (en) * 2016-12-16 2018-06-21 清水建設株式会社 Vibration-isolating mechanism

Similar Documents

Publication Publication Date Title
JPH05141463A (en) Laminated rubber and vibration control device for structure using laminated rubber
JP2005061211A (en) Seismic isolator
JPH1130279A (en) Base isolator
JPH1130278A (en) Base isolation construction
JP2001241502A (en) Sliding brace for isolating seismic vibrations
JPH09144810A (en) Three-dimensional base isolation device for structure
JP4761347B2 (en) Building vibration control system.
JPH11200661A (en) Vibration control method for connected structure
JP5462059B2 (en) Foundation structure
JPH10252253A (en) Floor vibration control system
JP2018145627A (en) Floor structure
JPS6221946B2 (en)
JPH0259262B2 (en)
JP5609000B2 (en) Damping method, damping structure, and seismic reinforcement method
JP2016151278A (en) Vibration control device
JP2016056875A (en) Seismic base isolation structure with vibration control function
JP4891195B2 (en) Floor frame structure
JP2002161650A (en) Damper for building
JP2024090144A (en) Vibration damping structure
JP4304825B2 (en) Vibration control system
JPH0645975B2 (en) Seismic isolation device for buildings
JP2990532B2 (en) Seismic isolation device for lightweight buildings
JP4953713B2 (en) Seismic isolation system
JP4444038B2 (en) Vibration isolation method for structural floor
JPH0571239A (en) Vibration control apparatus built in frame

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426