JP3793813B2 - 高強度チタン合金及びその製造方法 - Google Patents

高強度チタン合金及びその製造方法 Download PDF

Info

Publication number
JP3793813B2
JP3793813B2 JP2002268155A JP2002268155A JP3793813B2 JP 3793813 B2 JP3793813 B2 JP 3793813B2 JP 2002268155 A JP2002268155 A JP 2002268155A JP 2002268155 A JP2002268155 A JP 2002268155A JP 3793813 B2 JP3793813 B2 JP 3793813B2
Authority
JP
Japan
Prior art keywords
titanium alloy
powder
equilibrium
strength
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002268155A
Other languages
English (en)
Other versions
JP2004107691A (ja
Inventor
慶三 小林
章宏 松本
敏幸 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002268155A priority Critical patent/JP3793813B2/ja
Publication of JP2004107691A publication Critical patent/JP2004107691A/ja
Application granted granted Critical
Publication of JP3793813B2 publication Critical patent/JP3793813B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高強度チタン合金及びその作製方法に関するものであり、更に詳しくは、0.5〜10原子%以下の鉄と0.5〜15原子%のシリコンを両方含有するチタン合金を、機械的合金化法によって非平衡化することにより、1000℃以下の低温で加圧成形することを実現することによって作製した微細結晶粒の組織を有する高強度チタン合金及びその作製方法に関するものである。
本発明に係る高強度チタン合金は、非平衡処理化することによって低温で成形することを可能にし、微細組織を有するチタン合金を合成することができ、微小部材で微細加工が要求されるマイクロマシン部材や生体部材へ応用することができる。
【0002】
【従来の技術】
一般に、高強度のチタン合金は、合金元素を多くすることや、相変態を利用した熱処理によって組織を微細化する方法、あるいはメカニカルアロイング法により組織を微細化することによって作製することができる。高強度チタン合金に関するこれらの方法は、先行文献で紹介されている(非特許文献1〜3参照)。また、素粉末混合法を利用した粉末冶金的なアプローチなども、先行文献で紹介されている(非特許文献4参照)。
【0003】
【非特許文献1】
河部義邦、日本金属学会報、まてりあ、Vol37、No.1(1998)、17−21
【非特許文献2】
杉本ら、日本金属学会報、まてりあ、Vol37、No.1(1998)、27−30
【非特許文献3】
牧正志、日本金属学会報、まてりあ、Vol37、No.1(1998)、31−34
【非特許文献4】
斎藤ら、豊田中央研究所R&Dレビュー、21−1(1991)、44
【0004】
しかし、合金元素を多くすると、チタンの本来有する軽量性や耐食性の良さが低下し、また、リサイクルにも適さないという問題がある。また、相変態を利用した熱処理では、特定のチタン合金にしか適用できず、必ずしも高強度材料として利用できない場合がある。一方、合金元素が少なく、毒性のない元素で構成された高強度チタン合金は、未だ開発されていない。また、機械的合金化による組織微細化に関する試みもあるが、チタン含有量が多い場合には、容器などへの付着が多く、粉末が作製できないという問題がある。
【0005】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、それらの問題点を解決するために鋭意研究した結果、チタンにシリコンと鉄を少量添加して、非平衡処理することにより、チタン合金の結晶粒が微細になり高強度化できることを見いだし、本発明を完成した。
【0006】
すなわち、本発明は、チタンに毒性の少ない元素を少量添加することにより、高強度のチタン合金を作製することを課題としてなされたものであって、チタンに毒性の少ない元素を添加して非平衡処理することにより、低温での成形を可能とし、それによってチタン合金の組織を微細化して高強度チタン合金を製造すること及びそれによって得られた高強度チタン合金を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)チタン合金の組織を微細化して高強度チタン合金を製造する方法であって、1)0.5〜10原子%の鉄と0.5〜15原子%のシリコンを両方含有したチタン合金を用いる2)これを、機械的合金化法によって非平衡状態のチタン合金粉末とする3)任意に上記非平衡処理したチタン合金粉末を加圧しながら加熱することによりバルク状に固化成形して、チタン合金粉末又はその成形体を得ことを特徴とする高強度チタン合金の製造方法。
(2)非平衡処理したチタン合金粉末を1000℃以下にて加圧成形する、前記(1)記載の高強度チタン合金の製造方法。
(3)非平衡処理したチタン合金粉末を通電加熱しながら加圧成形する、前記(2)記載の高強度チタン合金の製造方法。
(4)残部にニオブ、クロム、バナジウム、モリブデンの少なくとも1種を含むチタン合金を、機械的合金化法によって非平衡処理する、前記(1)記載の高強度チタン合金の製造方法。
(5)非平衡処理したチタン合金粉末を1000℃以下にて加圧成形する、前記(4)記載の高強度チタン合金の製造方法。
(6)非平衡処理したチタン合金粉末を通電加熱しながら加圧成形する、前記(5)記載の高強度チタン合金の製造方法。
(7)前記(1)又は(4)に記載の方法により非平衡処理したチタン合金粉に、セラミックスあるいは金属の粉末又は繊維を添加して、1000℃以下にて加圧成形することを特徴とする高強度チタン合金の製造方法。
(8)通電加熱しながら加圧成形する、前記(7)記載の高強度チタン合金の製造方法。
(9)前記(1)から(8)のいずれかに記載の方法により作製された、10μm以下の微細な結晶粒を有する高強度チタン合金。
(10)前記(9)に記載の高強度チタン合金を、圧延、鍛造、深絞りなどの2次加工によって成形したことを特徴とする高強度チタン合金部材。
【0008】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明において使用するチタン合金は、粉末であっても、あらかじめ溶解された合金であってもよい。チタン合金の非平衡処理は、一般に、急冷凝固法やスパッタリング法などが利用されているが、これらの方法は、溶解時の溶解雰囲気からの酸素や窒素の汚染が懸念されるため、余り好ましい方法ではない。チタン合金を非平衡処理するには、合金を構成する金属粉末を出発原料として、メカニカルアロイングなどによって非平衡化する方法や、あらかじめ合金化したチタン合金を旋盤などの機械加工で粉末化し、メカニカルグライディングで非平衡化する方法などの機械的合金化処理が好ましい方法として用いられる。これらの非平衡化技術については、“メカニカルアロイング法で合成したアモルファスチタン粉末のパルス通電焼結”、小林ほか:日本金属学会誌、Vol.66(2002)155−158や、“メカニカルグライディング法で作製したTi−35at%Fe−5at%Si−5at%B合金粉末の固化成形”、小林ほか:日本金属学会誌、Vol.64(2000)723−726、で公表されている。
【0009】
ただ、非平衡処理は、チタン合金の合金組成の影響を受けやすく、本発明では、0.5原子%〜10原子%の鉄と0.5原子%〜15原子%のシリコンを両方含有していることが必要、かつ重要である。鉄のみが含有されるチタン合金では、非平衡処理が難しく、長時間の処理が必要であり、処理時の汚染が問題になる。また、シリコンのみが含有される合金では、非平衡処理はできるが、高強度を発現することができない。また、これらの元素を0.5原子%より少なく添加すると、均質な分散が難しく、また、鉄を10原子%より多くあるいはシリコンを15原子%より多く添加すると、硬くて脆い金属間化合物(TiFeやTi5 Si3 など)の生成が生じ、ともに高強度を発現することができない。
【0010】
非平衡処理したチタン合金は、一般に、粉末の形態であり、粉末の状態でも高い硬度を有しているが、工業材料としての利用は難しい。本発明では、非平衡処理したチタン合金を加圧しながら加熱することによりバルク状に成形することができる。この場合、特に、非平衡処理した粉末が平衡状態に遷移する温度以上で成形すると優れた成形性が得られる。加熱機構としては、電気炉や高周波炉などを利用することができるが、チタンの酸化や窒化を抑制するには真空中で加熱することが好ましい。この加熱機構は、市販されている通電加熱装置を使用することにより、容易に実現することができる。平衡状態に遷移する温度よりわずかに高温で成形した成形体は、10μm以下の微細な結晶粒を有しており、高強度のチタン合金バルク材料となる。また、平衡状態に達したあとも加熱を行うと、結晶粒の粗大化が生じ、強度の低下が顕著に見られる。そのため、成形時の加熱温度は、1000℃以下にする必要があり、従来のチタン合金粉末の焼結温度以下で成形する必要がある。
【0011】
粉末の成形には、通電焼結に一般的に用いられている黒鉛製の型や超硬合金製の型などを利用することができる。本発明の方法では、焼結した合金には黒鉛との反応や超硬合金との反応は観察されない。これは、焼結温度が一般のチタン合金の焼結温度より低い1000℃以下であるため実現されたものである。成形時の加圧力は特に指定しないが、例えば、黒鉛型を用いた場合には、40MPa程度、超硬合金の型を用いた場合には、400MPa程度の加圧を行うことができる。なお、加圧力の発生機構については特に限定しないが、一般には、油圧や空圧、機械的な加圧などが利用できる。また、加熱の雰囲気は特に限定しないが、成形体に含まれる酸素や窒素の量を減じて、機械的特性を向上させるためには真空雰囲気が好ましい。
【0012】
チタン合金を非平衡処理する際に、ニオブ、クロム、バナジウム、モリブデンの1種以上を含ませると、バルク状に成形したチタン合金にはβ型のチタンが含まれる。β型のチタンは延性に優れるため、成形体の強度を更に高くすることができる。これらの添加元素の添加方法は特に限定しないが、合金作製時に添加する方法や機械的合金化処理時に金属粉末の形で添加する方法が利用できる。また、これらの添加元素の量は特に指定しないが、多く添加すると成形体にはβ型チタンが増加し、少ないとα型チタンが多くなる。成形体の硬度を高くしたい場合にはα型チタンを多くする方が好ましい。なお、これらの添加元素が存在しても、焼結プロセスなどにほとんど変化は認められない。
【0013】
非平衡処理したチタン粉末にセラミックスや金属の繊維あるいは粉末を添加することができる。それにより、成形体の強度を更に改善することができる。また、これらの添加により、チタン合金が本来有する熱伝導性の悪さを改善することができる。これらの添加方法は特に指定しないが、一般に用いられている混合方法が利用できる。ただ、繊維を添加する際には混合時に粉砕される可能性があるため、機械的合金化処理よりエネルギーの低い混合方法が好ましい。例えば、湿式での混合方法や自動らいかい機による混合方法などが利用できる。
【0014】
非平衡処理したチタン粉末にセラミックスや金属を添加した混合体は、非平衡処理したチタン粉末と同じプロセスでバルク状に成形することができる。添加したセラミックスや金属の量は特に限定しないが、一般的には、30体積%以下の添加が好ましい。30体積%以上添加すると、均質な分散が難しく、成形体の強度が低下する場合がある。混合体の焼結には、加圧しながら加熱する方法が利用でき、焼結温度も1000℃以下にすることができる。このため、複合材料になってもマトリックスとなるチタン合金と添加した金属あるいはセラミックスとの反応はほとんどなく、複合材料としての高強度を発現することができる。なお、チタン合金に分散させる金属材料としては、例えば、タングステン、モリブデン、シリサイド金属間化合物などが好適であり、セラミックスとしては、例えば、炭化物セラミックス、酸化物セラミックス、カーボン、硫化物セラミックスなどが好適である。
【0015】
非平衡処理したチタン粉末を加圧しながら加熱してバルク状に固化成形すると、平衡化する温度よりわずかに高い温度で急激に緻密化する。この成形体は、微細な結晶粒を有しており、高強度を発現することができる。この緻密さと高強度を利用して、圧延、鍛造、深絞りなどの2次加工を容易に行うことができる。チタン合金の圧延や鍛造等においては、高温まで加熱して雰囲気を制御(酸素を減じる)したり、合金元素を制御してα型とβ型のチタンを混在させて2次加工を行う技術が利用されている。本発明では、適宜の2次加工技術を使用することができる。本発明の合金では、チタン合金の結晶粒が微細であるため、大きな加熱は必要なく、容易に2次加工を行うことができる。また、本発明の合金は、粉末冶金的な手法で作製されているが、成形体が緻密であるために、2次加工による割れなどは発生しない。本発明の方法により作製された高強度チタン合金は、例えば、マイクロマシン部材、生体適合性部材などの材料及びその部材として有用である。
【0016】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
チタン粉末(99.5質量%チタン)、鉄粉末(アトマイズ鉄粉末、99.8質量%鉄)及びシリコン粉末(99.9質量%シリコン)を出発原料として、遊星型ボールミルによる400時間のメカニカルアロイング処理により、Ti−2at%Fe−10at%Si合金粉末20gを合成した。得られた粉末0.5gを、外径20mm、内径6mm、高さ20mmの超硬合金製の型に充填し、200MPaにて加圧しながらパルス状の電流を流して固化成形した。固化成形は、10Pa程度の真空中にて、600℃まで加熱して行った。
【0017】
メカニカルアロイングで得られた粉末は、アモルファス状態であり、図1に、DSCによる熱分析結果を示すように、約560℃(863K)で結晶化する粉末であった。この粉末を結晶化(平衡化)温度よりわずかに高い600℃まで加熱すると、図2に示すような収縮曲線となった。結晶化温度付近で大きな収縮が認められ、緻密化が急速に進行した。
【0018】
得られた成形体のX線回折結果を図3に示すが、α型のチタンとわずかにTi5 Si3 金属間化合物が混在する複合材料になっている。この成形体の結晶粒径は、100nm程度の微細なものであり、その圧縮強度は、1.5GPaを越える高い値を示した。
【0019】
実施例2
チタン粉末(99.5質量%チタン)、鉄粉末(アトマイズ鉄粉、99.85質量%鉄)、シリコン粉末(99.9質量%シリコン)及びニオブ粉末(98質量%ニオブ)を出発原料として、遊星型ボールミルによるメカニカルアロイング処理によってTi−2at%Fe−10at%Si−2at%Nb合金粉末20gを作製した。得られた粉末0.5gを、外径20mm、内径6mm、高さ20mmの超硬合金製の型に充填し、200MPaにて加圧しながらパルス状の電流を流して固化成形した。固化成形は、10Pa程度の真空中にて、550℃まで加熱して行った。
【0020】
メカニカルアロイングで得られた粉末は、アモルファス状態であり、図4に、DSCによる熱分析結果を示すように、約460℃(738K)で結晶化する粉末であった。この粉末を結晶化(平衡化)温度より高い550℃まで加熱すると、大きな収縮が認められて緻密化が急速に進行した。
【0021】
得られた成形体のX線回折結果を図5に示すが、α型のチタンとβ型のチタン及びわずかにTi5 Si3 金属間化合物が混在する複合材料になっている。この成形体の結晶粒径は、200nm程度の微細なものであり、その圧縮強度は、1.2GPaを越える高い値を示した。
【0022】
実施例3
コールドクルーシブルレビテーション溶解法により合成したTi−10at%Fe−5at%Si−5at%B合金100gを、メカニカルグライディング法によって粉砕し、3gの粉末を、外径30mm、内径10mm、高さ30mmの黒鉛製の型に充填し、30MPaにて加圧しながらパルス状の電流を流して固化成形した。固化成形は、10Pa程度の真空中にて、700℃まで加熱して行った。
【0023】
メカニカルグライディングで得られた粉末は、アモルファス相を含む非平衡状態であり、約400℃(673K)で結晶化する粉末であった。この粉末を結晶化(平衡化)温度より高い700℃まで加熱すると、大きな収縮を伴って緻密化が進行した。
【0024】
得られた成形体は,α型のチタンとTi−Si金属間化合物、TiB2 などで構成されており、その圧縮強度は、1GPa程度であった。また、成形体の結晶粒径はサブミクロンであった。
【0025】
実施例4
チタン粉末(99.5質量%チタン)、鉄粉末(アトマイズ鉄粉末、99.8質量%鉄)及びシリコン粉末(99.9質量%シリコン)を出発原料として、遊星型ボールミルによる400時間のメカニカルアロイング処理により、Ti−2at%Fe−10at%Si合金粉末20gを合成した。得られた粉末0.5gに、酸化イットリウム粉末(1μm程度の粒径)0.07gを乳鉢にて混合し、外径20mm、内径6mm、高さ20mmの超硬合金製の型に充填し、200MPaにて加圧しながらパルス状の電流を流して固化成形した。固化成形は、10Pa程度の真空中にて、600℃まで加熱して行った。
【0026】
メカニカルアロイングで得られた粉末は、アモルファス状態であり、約560℃(863K)で結晶化する粉末であった。この粉末を結晶化(平衡化)温度よりわずかに高い600℃まで加熱すると、結晶化温度付近で大きな収縮が認められ、緻密化が急速に進行した。
【0027】
得られた成形体は、α型のチタンとわずかにTi5 Si3 金属間化合物が含まれる母相の中に、添加した酸化イットリウム粒子が均一に分散する複合材料になっている。この成形体の結晶粒径は、100nm程度の微細なものであり、その圧縮強度は、1.0GPaを越える高い値を示した。
【0028】
実施例5
チタン粉末(99.5質量%チタン)、鉄粉末(アトマイズ鉄粉末、99.8質量%鉄)及びシリコン粉末(99.9質量%シリコン)を出発原料として、遊星型ボールミルによる400時間のメカニカルアロイング処理により、Ti−2at%Fe−10at%Si合金粉末20gを合成した。得られた粉末0.5gを、外径20mm、内径6mm、高さ20mmの超硬合金製の型に充填し、200MPaにて加圧しながらパルス状の電流を流して固化成形した。固化成形は、10Pa程度の真空中にて、600℃まで加熱して行った。
【0029】
メカニカルアロイングで得られた粉末は、アモルファス状態であり、約560℃(863K)で結晶化する粉末であった。この粉末を結晶化(平衡化)温度よりわずかに高い600℃まで加熱すると、結晶化温度付近で大きな収縮が認められて緻密化が進行した。得られた成形体は、α型のチタンとわずかにTi5 Si3 金属間化合物が混在する複合材料になっていた。
【0030】
この6mm径で3mm厚みの成形体を、室温にて圧延機による80%の圧延を行った。圧延した材料には、大きなクラックが認められず、成形を行うことができた。得られた成形体は、1.2GPaを越える圧縮強度を有していた。
【0031】
【発明の効果】
以上詳述したように、本発明は、微細結晶粒組織を有する高強度チタン合金及びその製造方法に係るものであり、本発明により、本発明の高強度のチタン合金を用いて、微細加工が要求される軽量で微小な部材を作製し、提供することが可能となる。本発明は、チタン合金を一度非平衡処理することによって、低温での固化成形を実現しており、従来の粉末冶金によるチタン合金の固化成形よりはるかに少ないエネルギーでチタン合金部材を作製し、供給することができる。また、チタン合金の強度を改善するために、一般に、添加される元素の多くは、人体に有害なものが多くなっているが、本発明では、チタン合金の結晶粒径を微細にすることで高強度を実現しており、また、非平衡処理のために添加する合金成分は、人体に有毒なものは含まれていない。そのため、本発明の高強度チタン合金は、生体適合性部材として使用可能であり、インプラント材料などへの適用も可能である。
【図面の簡単な説明】
【図1】実施例1のDSCによる熱分析結果を示す。
【図2】実施例1の通電焼結における収縮曲線を示す。
【図3】実施例1で得られた成形体のX線回折結果を示す。
【図4】実施例2のDSCによる熱分析結果を示す。
【図5】実施例2で得られた成形体のX線回折結果を示す。

Claims (10)

  1. チタン合金の組織を微細化して高強度チタン合金を製造する方法であって、(1)0.5〜10原子%の鉄と0.5〜15原子%のシリコンを両方含有したチタン合金を用いる(2)これを、機械的合金化法によって非平衡状態のチタン合金粉末とする(3)任意に上記非平衡処理したチタン合金粉末を加圧しながら加熱することによりバルク状に固化成形して、チタン合金粉末又はその成形体を得ことを特徴とする高強度チタン合金の製造方法。
  2. 非平衡処理したチタン合金粉末を1000℃以下にて加圧成形する、請求項1記載の高強度チタン合金の製造方法。
  3. 非平衡処理したチタン合金粉末を通電加熱しながら加圧成形する、請求項2記載の高強度チタン合金の製造方法。
  4. 残部にニオブ、クロム、バナジウム、モリブデンの少なくとも1種を含むチタン合金を、機械的合金化法によって非平衡処理する、請求項1記載の高強度チタン合金の製造方法。
  5. 非平衡処理したチタン合金粉末を1000℃以下にて加圧成形する、請求項4記載の高強度チタン合金の製造方法。
  6. 非平衡処理したチタン合金粉末を通電加熱しながら加圧成形する、請求項5記載の高強度チタン合金の製造方法。
  7. 請求項1又は4に記載の方法により非平衡処理したチタン合金粉に、セラミックスあるいは金属の粉末又は繊維を添加して、1000℃以下にて加圧成形することを特徴とする高強度チタン合金の製造方法。
  8. 通電加熱しながら加圧成形する、請求項7記載の高強度チタン合金の製造方法。
  9. 請求項1から8のいずれかに記載の方法により作製された、10μm以下の微細な結晶粒を有する高強度チタン合金。
  10. 請求項9に記載の高強度チタン合金を、圧延、鍛造、深絞りなどの2次加工によって成形したことを特徴とする高強度チタン合金部材。
JP2002268155A 2002-09-13 2002-09-13 高強度チタン合金及びその製造方法 Expired - Lifetime JP3793813B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268155A JP3793813B2 (ja) 2002-09-13 2002-09-13 高強度チタン合金及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268155A JP3793813B2 (ja) 2002-09-13 2002-09-13 高強度チタン合金及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004107691A JP2004107691A (ja) 2004-04-08
JP3793813B2 true JP3793813B2 (ja) 2006-07-05

Family

ID=32266453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268155A Expired - Lifetime JP3793813B2 (ja) 2002-09-13 2002-09-13 高強度チタン合金及びその製造方法

Country Status (1)

Country Link
JP (1) JP3793813B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO322348B1 (no) * 2004-07-13 2006-09-18 Elkem As Titan-silisiumlegeringer med hoy styrke, oksidasjon- og slitasjemotstandsdyktighet
JP4766408B2 (ja) * 2009-09-25 2011-09-07 日本発條株式会社 ナノ結晶チタン合金およびその製造方法
JP5419098B2 (ja) 2010-11-22 2014-02-19 日本発條株式会社 ナノ結晶含有チタン合金およびその製造方法
CN109763027A (zh) * 2019-02-01 2019-05-17 中国兵器科学研究院宁波分院 一种低成本高硬度钛合金及其制备方法

Also Published As

Publication number Publication date
JP2004107691A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4989636B2 (ja) 高強度極微細ナノ構造のアルミニウム及び窒化アルミニウム又はアルミニウム合金及び窒化アルミニウム複合材料の製造方法
US5271749A (en) Synthesis of polycrystalline cubic boron nitride
JP2907315B2 (ja) 多結晶立方晶窒化ホウ素の製造方法
JP2691221B2 (ja) 金属−第2相複合物の形成方法
Feng et al. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites
Konstantinov et al. Ti-B-based composite materials: Properties, basic fabrication methods, and fields of application
WO2011152359A1 (ja) セラミックスを含有したチタン合金複合粉およびその製造方法、これを用いた緻密化されたチタン合金材およびその製造方法
US5640666A (en) Composite silicide/silicon carbide mechanical alloy
JP2863675B2 (ja) 粒子強化複合材の製造方法
JPS6289803A (ja) 硬質合金物品製造用チタン基硬質合金粒子の調製方法
US5454999A (en) Composite silicide/silicon carbide mechanical alloy
JP3793813B2 (ja) 高強度チタン合金及びその製造方法
JPH055142A (ja) チタン基複合材料およびその製造方法
US20030145685A1 (en) Process for producing titanium carbide, titanium nitride, or tungsten carbide hardened materials
US5340531A (en) Refractory metal reinforced MoSi2 /SiC composite with matched thermal coefficients of expansion
JP3032818B2 (ja) チタン硼化物分散硬質材料
JP2002501983A (ja) 鉄アルミナイド複合材及びその製造方法
JP3626378B2 (ja) TiB2−Ti(CN)系複合体及びその製造方法
JP3413921B2 (ja) Ti−Al系金属間化合物焼結体の製造方法
JPS63199843A (ja) モリブデンまたはその合金とジルコニアの複合成形体およびその製造法
JP2005281769A (ja) 高硬度の高炭素ナノ結晶鉄合金粉末及びバルク材並びにその製造方法
JP2000144301A (ja) 炭化タングステン焼結体及びその製造方法
JPH06100969A (ja) Ti−Al系金属間化合物焼結体の製造方法
JPH06271901A (ja) 焼結性に優れたTi−Al系金属間化合物粉末およびその焼結体
JP2877999B2 (ja) TiAl基複合金属間化合物の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Ref document number: 3793813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term