JP3786313B2 - Metal mask manufacturing method - Google Patents

Metal mask manufacturing method Download PDF

Info

Publication number
JP3786313B2
JP3786313B2 JP13587997A JP13587997A JP3786313B2 JP 3786313 B2 JP3786313 B2 JP 3786313B2 JP 13587997 A JP13587997 A JP 13587997A JP 13587997 A JP13587997 A JP 13587997A JP 3786313 B2 JP3786313 B2 JP 3786313B2
Authority
JP
Japan
Prior art keywords
metal mask
electroforming
photoresist
pattern
electroformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13587997A
Other languages
Japanese (ja)
Other versions
JPH10305670A (en
Inventor
賢行 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP13587997A priority Critical patent/JP3786313B2/en
Publication of JPH10305670A publication Critical patent/JPH10305670A/en
Application granted granted Critical
Publication of JP3786313B2 publication Critical patent/JP3786313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing

Description

【0001】
【発明の属する技術分野】
本発明は、例えば各種電子部品等を実装する配線パターンプリント基板等の被印刷物上に、半田ペースト等の印刷物を塗布形成するためなどに使用される、印刷用のメタルマスクの製造方法に関する。
【0002】
【従来の技術】
この種のメタルマスクは、C、Au、AgやCuなどの導電性インキや蒸着物あるいは導電性ペースト(以下、インキ・ぺーストという。)を通すための所望パターンの透孔を有するが、その製造法として電鋳によるものがある。
【0003】
その電鋳工程の一例を図13に示す。まず、図13(A)に示すように電鋳母型10の表面にドライフィルムによるフォトレジスト11を数層、ラミネートし、次いで図13(B)のようにフォトレジスト11の上に、パターンフィルム12を密着させて、露光、現像処理して、図13(C)に示すごとく所望パターンのパターンレジスト膜13を形成する。次いで、図13(D)に示すように電鋳母型10のパターンレジスト膜13で覆われていない表面に電着金属24を電着させ、しかるのち、図13(E)のように電着金属24の表面を機械的研磨や電解研磨によって研磨する。最後に、図13(F)に示すように電着金属24を電鋳母型10から剥離し、パターンレジスト膜13を除去することにより、所望パターンの透孔2を有するメタルマスク1(24)の電鋳製品を得る。
【0004】
このようにして得るメタルマスク1の透孔2の断面形状は、電鋳母型面側1aの孔径が小さく、電鋳面側1bの孔径が大きいテーパー状に形成される。これは、フォトレジスト11が表面層から下層へ行くほど指数関数的に光線(紫外線)の吸収が行われ、この結果電鋳母型10に面する側にまで光線が充分に達しにくいことが原因であると考えられる。このような透孔2のテーパー状化の傾向は紫外線透過率の小さいフォトレジストを使用するほど顕著に現れる。
【0005】
かかるメタルマスク1を用いて印刷するには、一般に、図14に示すごとくメタルマスク1を上下反転させてその電鋳面側1bを被印刷体3の上に密着させ、メタルマスク1の電鋳母型面側1aをスキージかけ面にしてこの上にインキ・ペーストPをのせ、スキージSをかけてインキ・ペーストPを透孔2内に充填する。メタルマスク1を上下反転させて使用するのは、前述したように透孔2の電鋳面側1bの孔径の方が大きくて、被印刷体3へのインキ・ペーストPの版抜け性が良好になるからである。
【0006】
【発明が解決しようとする課題】
しかし、上記のようにインキ・ペーストPの版抜け性のみを主眼としてメタルマスク1を上下反転させて印刷すると、メタルマスク1の電鋳面側1bは表面研磨しても電鋳母型面側1aほどの平滑面を得ることができないため、被印刷体3の表面との密着性が悪く、またメタルマスク1の透孔パターンの粗密の差などにより電鋳時におけるマスク厚の差が生じている場合、印刷時にかすれやにじみが生じるため、きれいに印刷できない。
【0007】
この後者について更に言及すると、透孔パターンによっては、図15(a)に示すように、一枚のメタルマスク1において、透孔2自体の面積が大きかったり、あるいは多数の透孔2が小ピッチで密集するなどして透孔密度の大きい領域Aと、透孔2が疎らに並ぶなどして透孔密度の小さい領域Bとが併存することがある。こうした場合は、電着法において単位面積当たりに電着される金属量(電着量)はほぼ一定であるため、電鋳時に電流密度の差が生じ、マスク厚が透孔密度の大きい領域Aで厚く、透孔密度の小さい領域Bで薄くなる、というマスク厚の差が生じる。このようなメタルマスク1では、これを前述したように上下反転させて印刷すると、図15(b)に示すように、透孔密度の小さい領域Bの電鋳面側(印刷面側)1bが被印刷体3の表面から浮く状態になって、インキ・ペーストP′がメタルマスク1の印刷面側1bにまわり込み、これが原因してにじみやかすれが生じてきれいに印刷できないことになる。
【0008】
また、フォトレジスト11の露光に際し、光線の平行直進性を向上させた平行露光機を使用した場合、図13(B)に示すごとく光線が電鋳母型10に対し全面にわたって垂直に進行するため、パターンフィルム12の微細部分までを忠実にパターンレジスト膜13に写し出すよう露光してしまう。従って、パターンフィルム12に描かれた透孔内周縁に相当する部分はミクロンオーダーで見れば微細なギザギザがあるが、このギザが性能の良い平行露光機によりパターンレジスト膜13に忠実に写し出される。この結果、このパターンレジスト膜13を用いてメタルマスク1を電鋳した場合、このメタルマスク1の透孔2の内面に、図13(F)中の拡大図で示すごとき微細な条溝2aが形成される。このため、印刷時にインキ・ペーストPが透孔2から完全に抜けることなく、その内面に付着残留し、印刷性低下の原因となる。
【0009】
本発明の目的は、このようなインキ・ペーストの版抜け性、印刷精度に優れるメタルマスクを容易に得ることができ、さらにメタルマスクの透孔断面のテーパーを任意角度に制御することができるメタルマスクの製造方法を提供することにある。
【0010】
【0011】
【0012】
【0013】
【0014】
【0015】
【課題を解決するための手段】
請求項記載の発明のメタルマスクの製造方法は、平板からなるベース26の表面上にフォトレジスト11を剥離可能にラミネート又は塗布する工程と、フォトレジスト11の上にパターンフィルム12を重ね、ベース26に対し垂直に直進する光でフォトレジスト11を露光する工程と、パターンフィルム12を剥がして、フォトレジスト11を電鋳母型10側に転写する工程と、現像、乾燥処理してパターンレジスト膜13を電鋳母型10の上に形成する工程と、電鋳母型10のパターンレジスト膜13で覆われていない表面に電着金属24を形成する工程と、電着金属24を電鋳母型10から剥離する工程とからなる。
【0016】
【作用】
タルマスク1の断面テーパー形状の透孔2の電鋳母型面側1aの孔径を、電鋳面側1bの孔径よりも大きく形成してあると、電鋳面側1bをスキージ面として、平滑で密着性に優れる電鋳母型面側1aを被印刷体3に高い密着度で密着させて印刷することができ、またインキ・ペーストの版抜け性が良好であるばかりか、マスク厚の差があるような場合もかすれやにじみ等がなく、きれいに印刷することができる。
【0017】
【0018】
【0019】
【0020】
請求項記載の発明においては、ベース26の表面上に剥離可能にラミネート又は塗布したフォトレジスト11を露光し、この露光したフォトレジスト11を電鋳母型10側に転写させて電鋳するので、電鋳母型面側1aの孔径を、電鋳面側1bの孔径よりも大きくする断面テーパー形状の透孔2をもつメタルマスク1を容易に得ることができる。
【0021】
【発明の実施の形態】
本発明に係る電鋳製メタルマスクの実施例を図1ないし図3に基づき説明する。図1において、このメタルマスク1はインキ・ぺースト通し用の透孔2を所望の印刷パターンに対応させてパターンニング形成している。その透孔2の断面形状は、電鋳母型面側1aの孔径が大きく、電鋳面側1bの孔径が小さくなるようテーパー状に形成したものである。
【0022】
このような断面形状の透孔2をもつメタルマスク1は、例えば、図2に示すように、被印刷体3の表面上に電鋳母型面側1aを下側にして置き、電鋳面側1bをスキージかけ面4としてこの上にインキ・ぺーストPをのせ、スキージSをかけてインキ・ぺーストPを透孔2内に充填するのである。
その際、透孔2は電鋳母型面側1aの孔径が電鋳面側1bの孔径よりも大きく形成されているので、インキ・ぺーストPは被印刷体3への版抜け性が良好である。またメタルマスク1の電鋳母型面側1aは平滑面に形成されているので、被印刷体3の表面との密着性を良好にする。また、メタルマスク1が図3に示すごとく透孔パターンの粗密差などによりマスク厚の差があるような場合も、その平滑な電鋳母型面側1aを被印刷体3の表面上に密着させて印刷することができ、かすれやにじみ等がなく、精度の高い印刷ができるに至った。
【0023】
以下、上記メタルマスクの電鋳による製造方法について参考例ないし実施例を挙げる。
【0024】
(第1参考例)
図4は本発明の製造方法の第1参考例を示す。まず、図4(A)に示すようにステンレス鋼製の電鋳母型10の表面にドライフィルムによるフォトレジスト11を数枚ラミネートして、例えば200μmの均一な膜を形成する。フォトレジスト11はドライフィルムに代えて、液状フォトレジストを塗布することもできる。
【0025】
次いで、図4(B)に示すようにフォトレジスト11の上に、所望のマスクパターンに相当するパターンをもつパターンフィルム(ネガタイプ)12を密着させ、紫外線ランプを照射して露光、現像、乾燥の各処理を行って、図4の(C)に示すようにパターンレジスト膜13を形成する。
【0026】
その露光に際しては、平行露光機を用いるが、この際、フォトレジスト11の上にパターンフィルム12を密着させた電鋳母型10は、図5に示すように、露光機内の水平面上に任意角度だけ傾斜する状態に設置した回転台14の上に載置する。回転台14は傾斜状の載置台板16の下側に減速機付きのモータ15を備えており、この載置台板16の上に前記電鋳母型10が載置される。平行露光機内には、光源17を設置するとともに、この光源17の下方に平面反射板19を上向き傾斜状に設置し、かつ、回転台14の真上に曲面反射板20を平面反射板19に相対して設置する。曲面反射板20及び回転台14と、光源17との間には、遮光板21を設置することで、光源17からの直接光が回転台14に作用しないようにする。
【0027】
かくして、光源17からの光はレンズ22を通って平面反射板19で反射し、この反射光を曲面反射板20に投光し、曲面反射板20で反射した平行光を電鋳母型10上のパターンフィルム12を介してフォトレジスト11に照射する。これと同時に回転台14を電鋳母型10の表面と垂直な軸心Qまわりに回転させて露光する。図5中の拡大図にフォトレジスト11への平行光線の透過状態を示すように、平行光線m・nは電鋳母型10の傾斜角度に対応してフォトレジスト11内にレジスト厚方向に対し斜交する方向に透過する。平行光線mは電鋳母型10の回転方向の或る位置で透過する光線を、平行光線nは電鋳母型10が前記位置から更に180°回転した後における光線を示す。このように平行光をパターンフィルム12を介してフォトレジスト11に斜めに透過させ、同時に回転させながら露光するため、フォトレジスト11の電鋳母型10面側ではパターンフィルム12面側よりも広くなるよう露光して断面台形状の露光部11aを硬化させる。その露光部11aにはパターンフィルム12の透孔内周縁に相当する部分に微細なギザギザがある場合も、電鋳母型10を回転させながら露光するため、そのギザギザが電鋳母型10上のパターンレジスト膜13に写し出されるようなことがない。
【0028】
平面反射板19及び曲面反射板20を用いて平行光線を放つに代えて、図6に示すように放物面反射板23を用いて平行光線を放つこともできる。
【0029】
しかるのち、現像により未露光部11bを溶解除去する。これにより図4(C)に示すごとくパターンレジスト膜13が形成される。
【0030】
次いで、常套手段通り、電鋳母型10をスルファミン酸ニッケル浴などの電鋳槽に移し、ニッケル、あるいはニッケル−コバルト合金で電鋳を行って、図4(D)に示すように電鋳母型10のパターンレジスト膜13で覆われていない表面に電着金属24を形成する。電鋳後、図4(E)に示すごとく電着金属24の表面を機械的研磨や電解研磨により研磨する。
【0031】
最後に、パターンレジスト膜13を除去した後、電着金属24を電鋳母型10から剥離することにより、図4(F)に示すように透孔2の断面形状が電鋳母型面側1aの孔径を電鋳面側1bの孔径よりも大きくするテーパー状に形成し、また透孔2の内周面を図13(F)に示すごとき条溝2aの無い平滑面にするメタルマスク1の電鋳製品を得る。
【0032】
(第2参考例)
図7及び図8は本発明の製造方法の第2参考例を示す。この第2参考例では、表面にフォトレジスト11及びパターンフィルム12をのせた電鋳母型10を、露光機内に水平に設置した回転台14の上に載置し、回転台14を電鋳母型10の表面と垂直な軸心Qまわりに回転させながら、電鋳母型10の表面上のパターンフィルム12を介してフォトレジスト11に対し平行光線を斜め方向から照射させて露光する以外は、第1参考例の場合と同様である。
【0033】
この方法においても、透孔2の断面形状が電鋳母型面側1aの孔径を電鋳面側1bの孔径よりも大きくするテーパー状に形成し、また透孔2の内周面を平滑面にするメタルマスク1の電鋳製品を得ることができる。
【0034】
(第3参考例)
図9は本発明の製造方法の第3参考例を示す。この第3参考例では、表面にフォトレジスト11及びパターンフィルム12をのせた電鋳母型10の表面上のパターンフィルム12の上に、入射光を一方向にのみ屈折させてパターンフィルム12を通してフォトレジスト11に対し一定の斜め方向に出射する偏光フィルター25を平行に配置させて、該偏光フィルター25を電鋳母型10の表面と垂直な軸心Qまわりに回転させながら露光する以外は、第1参考例の場合と同様である。
【0035】
この方法においても、透孔2の断面形状が電鋳母型面側1aの孔径を電鋳面側1bの孔径よりも大きくするテーパー状に形成し、また透孔2の内周面を平滑面にするメタルマスク1の電鋳製品を得ることができる。
【0036】
(実施例)
図10及び図11は本発明の製造方法の実施例を示す。この実施例では、まず、図10(A)に示すように、ガラス板やプラスチック板などの平板からなるベース26の表面上に、捨てフォトレジスト27をラミネートする。この捨てフォトレジスト27は、両面に塩化ビニル樹脂などの保護シート29が剥離自在に付いているドライフィルムレジスト(20〜50μm厚)を用いるが、ラミネートに際し、その上面側に保護シート29を付けたままラミネートする。次いで、保護シート29の上に、同じくドライフィルムによるフォトレジスト11を所定厚になるよう数層重ねてラミネートする。しかるのち、図10(B)に示すように、フォトレジスト11の上にパターンフィルム12を重ね、ベース26に対し垂直に直進する光でパターンフィルム12を介してフォトレジスト11を露光する。次いで、パターンフィルム12を剥がし、図10(C)のようにフォトレジスト11の上方から電鋳母型10を熱を加えながら押圧し、フォトレジスト11を電鋳母型10側に転写する。その際、フォトレジスト11は、ベース26側に捨てフォトレジスト27と共に残される保護シート29から容易に剥がされるため、電鋳母型10側に変形したりすることなく、完全な形でそのまま転写し易い。
【0037】
次いで、現像、乾燥処理することにより、図10(D)に示すごとくパターンレジスト膜13を電鋳母型10の上に形成する。次いで、電鋳を行って、図11(E)に示すように電鋳母型10のパターンレジスト膜13で覆われていない表面に電着金属24を形成する。
【0038】
次いで、電着金属24を電鋳母型10から剥離することにより、図4(F)に示すメタルマスク1と同様な透孔2の断面形状が電鋳母型面側1aの孔径を電鋳面側1bの孔径よりも大きくするテーパー状に形成するメタルマスク1の電鋳製品を得る。
【0039】
記の実施例において、電鋳後に引続いて、例えば図11(F)〜(H)に示すようなハーフエッチング作業を行うことにより、図11(H)に示すごとくメタルマスク1のパターン部の或る一部を、他の箇所よりも薄肉にする形の凹部31を有するメタルマスク1をも容易に得ることができる。
すなわち、例えば、プリント基板等に半田付けする部品として超小型部品から大型部品の混合されたものを高密度に実装する必要があったり、また実装部品の電極及びパターンの極小化に伴い、前記部品の形状に合わせてクリーム半田の印刷量を調整する必要がある。こうした場合、同一メタルマスク1のパターン部の或る一部を、他の箇所よりも薄肉にする形の凹部31を形成することが要求される。かかる要求に応えるべく、このメタルマスク1の電鋳後に、図11(F)に示すごとくメタルマスク1の表面にエッチングパターンフィルム30を重ね、図11(G)に示すごとくエッチングすることで、図11(H)に示すごときメタルマスク1のパターン部の或る一部を、他の箇所よりも薄肉にする形の凹部31を有するメタルマスク1を得ることができる。
【0040】
これと同じ断面形状のメタルマスクを製造する方法が特開平6−210817号公報に提案されているが、この方法ではメタルマスクを一旦電鋳母型から剥がし、上下反転させてその電鋳母型面側にエッチングする方法であるため、工程数が増大し、またメタルマスクを電鋳母型から剥がすときに変形を加えるおそれがあるが、本実施例によればメタルマスク1を電鋳母型10の上に付けたままエッチングすることができるので、工程数の減少、メタルマスク1を剥がすときの変形などがなくて有利である。
【0041】
【発明の効果】
本発明の請求項1記載の発明によれば、メタルマスク1の断面テーパー形状の透孔2の電鋳母型面側1aの孔径を、電鋳面側1bの孔径よりも大きく形成してあるので、平滑で密着性に優れる電鋳母型面側1aを被印刷体3に高い密着度で密着させて印刷することができ、またインキ・ペーストの版抜け性が良好であるばかりか、マスク厚の差があるような場合もかすれやにじみ等がなく、精度の高いスクリーン印刷を可能にする。
【0042】
鋳母型面側1aの孔径を、電鋳面側1bの孔径よりも大きくする断面テーパー形状の透孔2をもつメタルマスクを容易に得ることができる。また、透孔2のテーパー角度を任意に調節することができ、従って、例えば、蒸着用メタルマスク等では透孔2の蒸着面側の孔径が極端に大きくなるようにテーパー角度を大きくすることが要求されるが、かかる要求に充分に対応できるものとなる。さらに、透孔2の内面全周を平滑面に形成することができ、印刷時に透孔2の内面にインキ・ペーストが付着残留することなく、この点でも吐出が良好になり、印刷性を向上でき、また印刷後の洗浄効果も高められる。
【0043】
【図面の簡単な説明】
【図1】 メタルマスクの一部拡大断面図である。
【図2】 メタルマスクの使用例を示す断面図である。
【図3】 他の実施例のメタルマスクの使用例を示す断面図である。
【図4】 第1参考例のメタルマスクの製造過程の工程説明図である。
【図5】 第1参考例のメタルマスクの製造過程における露光装置の概略図である。
【図6】 第1参考例のメタルマスクの製造過程における他の露光装置の概略図である。
【図7】 第2参考例のメタルマスクの製造過程の工程説明図である。
【図8】 第2参考例のメタルマスクの製造過程における露光装置の概略図である。
【図9】 第3参考例のメタルマスクの製造過程の工程説明図である。
【図10】 施例のメタルマスクの製造過程のパターンレジスト膜形成工程までの工程説明図である。
【図11】 施例のメタルマスクの製造過程の電鋳工程からエッチング工程までの工程説明図である。
【図12】 メタルマスクを蒸着用マスクに使用して蒸着している状態を示す断面図である。
【図13】 従来例のメタルマスクの製造過程の工程説明図である。
【図14】 従来例のメタルマスクの使用例を示す断面図である。
【図15】 (a)は他の従来例のメタルマスクの一部拡大断面図、(b)はそのメタルマスクの使用例を示す断面図である。
【符号の説明】
1 メタルマスク
2 透孔
3 被印刷体
10 電鋳母型
11 フォトレジスト
12 パターンフィルム
13 パターンレジスト膜
14 回転台
24 電着金属
25 偏光フィルター
26 ベース
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, on the substrate such as a wiring pattern printed board for mounting various electronic parts and the like, such as those used to coat forming a printed material such as solder paste, a method for producing a metal mask for printing.
[0002]
[Prior art]
This type of metal mask has through holes having a desired pattern for passing conductive ink, vapor-deposited material or conductive paste (hereinafter referred to as ink / paste) such as C, Au, Ag and Cu. One manufacturing method is electroforming.
[0003]
An example of the electroforming process is shown in FIG. First, as shown in FIG. 13 (A), several layers of a photoresist 11 made of dry film are laminated on the surface of the electroforming mold 10, and then a pattern film is formed on the photoresist 11 as shown in FIG. 13 (B). Then, a pattern resist film 13 having a desired pattern is formed as shown in FIG. 13C. Next, as shown in FIG. 13 (D), an electrodeposited metal 24 is electrodeposited on the surface of the electroformed mother die 10 that is not covered with the pattern resist film 13, and then electrodeposited as shown in FIG. 13 (E). The surface of the metal 24 is polished by mechanical polishing or electrolytic polishing. Finally, as shown in FIG. 13 (F), the electrodeposited metal 24 is peeled off from the electroforming mother mold 10 and the pattern resist film 13 is removed, whereby the metal mask 1 (24) having the through holes 2 of a desired pattern. Get an electroformed product.
[0004]
The cross-sectional shape of the through-hole 2 of the metal mask 1 obtained in this way is formed in a taper shape in which the hole diameter on the electroforming mother die surface side 1a is small and the hole diameter on the electroforming surface side 1b is large. This is because light rays (ultraviolet rays) are absorbed exponentially as the photoresist 11 moves from the surface layer to the lower layer, and as a result, it is difficult for the light rays to reach the side facing the electroforming mold 10 sufficiently. It is thought that. Such a tendency to taper the through holes 2 becomes more prominent as a photoresist having a lower ultraviolet transmittance is used.
[0005]
In order to perform printing using such a metal mask 1, generally, as shown in FIG. 14, the metal mask 1 is turned upside down and its electroformed surface side 1 b is brought into close contact with the substrate 3 to be electroformed. The base surface 1a is used as a squeegee application surface, and the ink paste P is placed thereon. The squeegee S is applied to fill the ink paste P into the through holes 2. The metal mask 1 is used by turning it upside down because the hole diameter on the electroformed surface side 1b of the through hole 2 is larger as described above, and the printing performance of the ink / paste P on the substrate 3 is good. Because it becomes.
[0006]
[Problems to be solved by the invention]
However, as described above, when printing is performed with the metal mask 1 turned upside down mainly with respect to the platenability of the ink / paste P, the electroformed surface side 1b of the metal mask 1 is electroformed mother surface side even if the surface is polished. Since a smooth surface as large as 1a cannot be obtained, the adhesion with the surface of the substrate 3 is poor, and a difference in the mask thickness during electroforming occurs due to the difference in the density of the through-hole pattern of the metal mask 1. If this is the case, blurring and blurring may occur during printing, and printing cannot be performed cleanly.
[0007]
Further referring to this latter, depending on the through hole pattern, as shown in FIG. 15 (a), in one metal mask 1, the area of the through holes 2 itself is large, or a large number of through holes 2 have a small pitch. A region A having a large pore density, such as densely packed, and a region B having a small pore density, such as sparsely arranged through holes 2, may coexist. In such a case, the amount of metal electrodeposited per unit area in the electrodeposition method (electrodeposition amount) is substantially constant, so that a difference in current density occurs during electroforming, and the region A in which the mask thickness is large in the through hole density. Thus, a difference in mask thickness occurs in that it is thicker and thinner in the region B having a small hole density. In such a metal mask 1, when this is printed upside down as described above, as shown in FIG. 15B, the electroformed surface side (printing surface side) 1b of the region B having a small hole density is formed. As a result, the ink paste P 'wraps around the printing surface 1b of the metal mask 1 due to floating from the surface of the substrate 3 and this causes blurring and blurring, which makes it impossible to print cleanly.
[0008]
Further, when a parallel exposure machine with improved parallelism of the light beam is used for the exposure of the photoresist 11, the light beam travels vertically over the entire surface of the electroforming mother die 10 as shown in FIG. Then, exposure is performed so that even a fine portion of the pattern film 12 is faithfully copied onto the pattern resist film 13. Accordingly, the portion corresponding to the inner peripheral edge of the through-hole drawn on the pattern film 12 has fine jaggedness when viewed on the micron order, but this jagged image is faithfully displayed on the pattern resist film 13 by a parallel exposure machine having good performance. As a result, when the metal mask 1 is electroformed using the pattern resist film 13, the fine groove 2a as shown in the enlarged view of FIG. 13 (F) is formed on the inner surface of the through hole 2 of the metal mask 1. It is formed. For this reason, the ink / paste P does not completely escape from the through-holes 2 during printing, but remains on the inner surface of the ink-holes P, causing a decrease in printability.
[0009]
An object of the present invention, the plate omission of the ink paste, such as this, a metal mask which is excellent in printing accuracy can be easily obtained, it can be further controlled taper hole section of the metal mask any angle The object is to provide a method of manufacturing a metal mask.
[0010]
[0011]
[0012]
[0013]
[0014]
[0015]
[Means for Solving the Problems]
The method of manufacturing a metal mask according to the first aspect of the present invention includes a step of laminating or coating the photoresist 11 on the surface of a base 26 made of a flat plate so that the photoresist 11 can be peeled off, and a pattern film 12 superimposed on the photoresist 11 A step of exposing the photoresist 11 with light that travels perpendicularly to the substrate 26; a step of peeling the pattern film 12 to transfer the photoresist 11 to the electroformed mother die 10; and a development and drying treatment to form a pattern resist film. 13 is formed on the electroformed mother die 10, the step of forming the electrodeposited metal 24 on the surface of the electroformed mother die 10 that is not covered with the pattern resist film 13, and the electrodeposited metal 24 is formed on the electroformed mother. And a step of peeling from the mold 10.
[0016]
[Action]
The pore size of the electroforming mother die surface 1a through hole 2 of the cross-sectional tapered shape of main Tarumasuku 1, when there are formed larger than the hole diameter of the electroformed surface side 1b, an electroformed surface 1b as a squeegee surface, smooth In addition, it is possible to perform printing by making the electroformed mother die side 1a having excellent adhesion close to the substrate 3 with a high degree of adhesion, and the ink / paste is excellent in plate slippage, as well as the difference in mask thickness. Even if there is, there is no blur or blurring, and it can be printed neatly.
[0017]
[0018]
[0019]
[0020]
In the first aspect of the present invention, the photoresist 11 laminated or coated on the surface of the base 26 is exposed, and the exposed photoresist 11 is transferred to the electroforming mold 10 side for electroforming. , a pore size of electroforming mother die surface 1a, a metal mask 1 having a cross-sectional tapered hole 2 of the larger than the diameter of the electroformed surface 1b can be easily obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an electroformed metal mask according to the present invention will be described with reference to FIGS. In FIG. 1, the metal mask 1 is formed by patterning through holes 2 for ink and paste passage in correspondence with a desired printing pattern. The cross-sectional shape of the through-hole 2 is formed in a taper shape so that the hole diameter on the electroforming mold surface side 1a is large and the hole diameter on the electroforming surface side 1b is small.
[0022]
For example, as shown in FIG. 2, the metal mask 1 having such a cross-sectional shape of the through-hole 2 is placed on the surface of the substrate 3 with the electroforming mother die surface 1 a facing down, The side 1b is used as the squeegee application surface 4, and the ink paste P is placed thereon, and the squeegee S is applied to fill the ink paste P into the through hole 2.
At that time, since the through hole 2 is formed such that the hole diameter on the electroforming surface side 1a is larger than the hole diameter on the electroforming surface side 1b, the ink / paste P is excellent in the ability to slip through the printing medium 3. It is. Moreover, since the electroforming mother die surface side 1a of the metal mask 1 is formed on a smooth surface, the adhesion with the surface of the substrate 3 is improved. Further, even when the metal mask 1 has a difference in mask thickness due to the difference in density of the through-hole pattern as shown in FIG. 3, the smooth electroformed mother die surface side 1 a is adhered to the surface of the substrate 3 to be printed. Printing with high accuracy and no blurring or blurring.
[0023]
Hereinafter, to no reference example for the manufacturing method according to electroforming the metal mask include real施例.
[0024]
(First Reference Example)
FIG. 4 shows a first reference example of the production method of the present invention. First, as shown in FIG. 4A, several photoresists 11 made of a dry film are laminated on the surface of a stainless steel electroformed mother die 10 to form a uniform film of, for example, 200 μm. The photoresist 11 may be a liquid photoresist instead of a dry film.
[0025]
Next, as shown in FIG. 4B, a pattern film (negative type) 12 having a pattern corresponding to a desired mask pattern is brought into close contact with the photoresist 11 and irradiated with an ultraviolet lamp to be exposed, developed and dried. By performing each treatment, a pattern resist film 13 is formed as shown in FIG.
[0026]
In the exposure, a parallel exposure machine is used. At this time, the electroformed mother die 10 in which the pattern film 12 is adhered to the photoresist 11 is arranged at an arbitrary angle on the horizontal plane in the exposure machine as shown in FIG. It mounts on the turntable 14 installed in the state which only inclined. The turntable 14 includes a motor 15 with a speed reducer on the lower side of the inclined mounting base plate 16, and the electroformed mother die 10 is placed on the mounting base plate 16. In the parallel exposure apparatus, a light source 17 is installed, and a planar reflector 19 is installed in an upwardly inclined manner below the light source 17, and a curved reflector 20 is placed on the planar reflector 19 directly above the turntable 14. Install relative to each other. A light shielding plate 21 is installed between the curved reflector 20 and the turntable 14 and the light source 17 so that direct light from the light source 17 does not act on the turntable 14.
[0027]
Thus, the light from the light source 17 is reflected by the planar reflecting plate 19 through the lens 22, and the reflected light is projected onto the curved reflecting plate 20, and the parallel light reflected by the curved reflecting plate 20 is reflected on the electroformed mother die 10. The photoresist 11 is irradiated through the pattern film 12. At the same time, exposure is performed by rotating the turntable 14 about an axis Q perpendicular to the surface of the electroforming mold 10. As shown in the enlarged view in FIG. 5, the transmission state of the parallel light beam to the photoresist 11, the parallel light beam m · n corresponds to the inclination angle of the electroforming mold 10 in the photoresist 11 with respect to the resist thickness direction. It penetrates in the oblique direction. A parallel light beam m indicates a light beam transmitted at a certain position in the rotation direction of the electroforming mother mold 10, and a parallel light beam n indicates a light beam after the electroforming mother mold 10 is further rotated by 180 ° from the position. In this way, the parallel light is obliquely transmitted through the pattern film 12 to the photoresist 11 and exposed while rotating at the same time. Therefore, the electroformed mother mold 10 side of the photoresist 11 is wider than the pattern film 12 side. The exposure part 11a having a trapezoidal cross section is cured by exposure. Even when the exposed portion 11a has a fine jagged portion corresponding to the inner peripheral edge of the through hole of the pattern film 12, since the exposure is performed while rotating the electroformed mother die 10, the jagged portion is formed on the electroformed mother die 10. It is not projected on the pattern resist film 13.
[0028]
Instead of emitting parallel rays using the flat reflector 19 and the curved reflector 20, it is also possible to emit parallel rays using a parabolic reflector 23 as shown in FIG.
[0029]
Thereafter, the unexposed portion 11b is dissolved and removed by development. As a result, a pattern resist film 13 is formed as shown in FIG.
[0030]
Next, as usual, the electroforming mother mold 10 is transferred to an electroforming tank such as a nickel sulfamate bath, and electroforming is performed with nickel or a nickel-cobalt alloy. As shown in FIG. An electrodeposited metal 24 is formed on the surface of the mold 10 that is not covered with the pattern resist film 13. After electroforming, as shown in FIG. 4E, the surface of the electrodeposited metal 24 is polished by mechanical polishing or electrolytic polishing.
[0031]
Finally, after removing the pattern resist film 13, the electrodeposited metal 24 is peeled from the electroformed mother die 10, so that the cross-sectional shape of the through hole 2 becomes the electroformed mother die surface side as shown in FIG. The metal mask 1 is formed in a taper shape in which the hole diameter of 1a is larger than the hole diameter of the electroformed surface side 1b, and the inner peripheral surface of the through hole 2 is a smooth surface without the groove 2a as shown in FIG. Get an electroformed product.
[0032]
(Second reference example)
7 and 8 show a second reference example of the production method of the present invention. In this second reference example, an electroformed mother die 10 with a photoresist 11 and a pattern film 12 placed on its surface is placed on a turntable 14 installed horizontally in an exposure machine, and the turntable 14 is placed on an electroformed mother. While rotating around an axis Q perpendicular to the surface of the mold 10 and exposing the photoresist 11 by irradiating parallel rays from an oblique direction through the pattern film 12 on the surface of the electroforming mother mold 10, The same as in the case of the first reference example.
[0033]
Also in this method, the cross-sectional shape of the through hole 2 is formed in a taper shape in which the hole diameter on the electroforming mold side 1a is larger than the hole diameter on the electroforming surface 1b, and the inner peripheral surface of the through hole 2 is a smooth surface. An electroformed product of the metal mask 1 can be obtained.
[0034]
(Third reference example)
FIG. 9 shows a third reference example of the production method of the present invention. In the third reference example, incident light is refracted only in one direction on the pattern film 12 on the surface of the electroforming mold 10 on which the photoresist 11 and the pattern film 12 are placed, and the photo is transmitted through the pattern film 12. A polarizing filter 25 that emits light in a certain oblique direction with respect to the resist 11 is disposed in parallel, and the polarizing filter 25 is exposed while being rotated about an axis Q perpendicular to the surface of the electroforming mother die 10. This is the same as the case of 1 Reference Example.
[0035]
Also in this method, the cross-sectional shape of the through hole 2 is formed in a taper shape in which the hole diameter on the electroforming mold side 1a is larger than the hole diameter on the electroforming surface 1b, and the inner peripheral surface of the through hole 2 is a smooth surface. An electroformed product of the metal mask 1 can be obtained.
[0036]
(Real施例)
10 and 11 show the actual施例of the manufacturing method of the present invention. In the real施例this, first, as shown in FIG. 10 (A), on the surface of the base 26 made of a flat plate such as a glass plate or a plastic plate, laminating a photoresist 27 discarded. As the discarded photoresist 27, a dry film resist (20 to 50 μm thick) having a protective sheet 29 such as a vinyl chloride resin removably attached on both sides is used, but the protective sheet 29 is attached on the upper surface side when laminating. Laminate as it is. Next, several layers of photoresist 11 made of a dry film are laminated on the protective sheet 29 so as to have a predetermined thickness. Thereafter, as shown in FIG. 10B, the pattern film 12 is overlaid on the photoresist 11, and the photoresist 11 is exposed through the pattern film 12 with light that goes straight to the base 26. Next, the pattern film 12 is peeled off, and the electroformed mother die 10 is pressed from above the photoresist 11 while applying heat, as shown in FIG. 10C, and the photoresist 11 is transferred to the electroformed mother die 10 side. At this time, since the photoresist 11 is easily peeled off from the protective sheet 29 that is discarded on the base 26 side and left together with the photoresist 27, the photoresist 11 is transferred as it is without being deformed to the electroformed mother die 10 side. easy.
[0037]
Next, by performing development and drying, a pattern resist film 13 is formed on the electroformed mother die 10 as shown in FIG. Next, electroforming is performed, and an electrodeposited metal 24 is formed on the surface of the electroforming mother die 10 that is not covered with the pattern resist film 13 as shown in FIG.
[0038]
Next, the electrodeposited metal 24 is peeled off from the electroforming mold 10, so that the cross-sectional shape of the through hole 2 similar to that of the metal mask 1 shown in FIG. An electroformed product of the metal mask 1 formed in a tapered shape that is larger than the hole diameter of the surface side 1b is obtained.
[0039]
In the embodiment example above, and subsequently after electroforming, for example, by performing half-etching operation, as shown in FIG. 11 (F) ~ (H) , the pattern of the metal mask 1 as shown in FIG. 11 (H) It is also possible to easily obtain the metal mask 1 having the concave portion 31 in which a part of the portion is made thinner than other portions.
That is, for example, as a part to be soldered to a printed circuit board or the like, it is necessary to mount a mixture of ultra-small parts to large parts at a high density, and with the miniaturization of electrodes and patterns of the mounted parts, the parts It is necessary to adjust the printing amount of the cream solder in accordance with the shape. In such a case, it is required to form a recess 31 having a shape in which a part of the pattern part of the same metal mask 1 is thinner than the other part. In order to meet this requirement, after electroforming the metal mask 1, an etching pattern film 30 is superimposed on the surface of the metal mask 1 as shown in FIG. 11 (F), and etching is performed as shown in FIG. 11 (G). As shown in FIG. 11 (H), the metal mask 1 having the concave portion 31 in which a part of the pattern portion of the metal mask 1 is made thinner than other portions can be obtained.
[0040]
A method of manufacturing a metal mask having the same cross-sectional shape is proposed in Japanese Patent Laid-Open No. 6-210817. In this method, the metal mask is once peeled off from the electroforming mother mold and turned upside down so that the electroforming mother mold is obtained. Since it is a method of etching to the surface side, the number of processes increases, and there is a risk of deformation when the metal mask is peeled off from the electroforming mother mold. According to this embodiment, the metal mask 1 is formed from the electroforming mother mold. Since the etching can be performed with the metal mask 1 being attached, it is advantageous that the number of processes is reduced and there is no deformation when the metal mask 1 is peeled off.
[0041]
【The invention's effect】
According to the first aspect of the present invention, the hole diameter on the electroforming mother die surface side 1a of the through hole 2 having a tapered cross section of the metal mask 1 is formed larger than the hole diameter on the electroforming surface side 1b. Therefore, it is possible to perform printing by making the electroformed mother die surface 1a which is smooth and excellent in adhesiveness adhere to the substrate 3 with a high degree of adhesion, and has good ink-paste detachment, mask Even when there is a difference in thickness, there is no blurring or blurring, and high-accuracy screen printing is possible.
[0042]
The pore size of the electroforming mother die surface 1a, it is possible to easily obtain a metal mask having a cross-sectional tapered hole 2 of the larger than the diameter of the electroformed surface 1b. Further, the taper angle of the through hole 2 can be arbitrarily adjusted. Therefore, for example, in a metal mask for vapor deposition, the taper angle can be increased so that the hole diameter on the vapor deposition surface side of the through hole 2 becomes extremely large. Although it is required, it will be able to respond sufficiently to such a request. Furthermore, the entire inner surface of the through-hole 2 can be formed on a smooth surface, and no ink or paste remains on the inner surface of the through-hole 2 during printing. This also increases the cleaning effect after printing.
[0043]
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view of a metal mask.
FIG. 2 is a cross-sectional view showing an example of using a metal mask.
FIG. 3 is a cross-sectional view showing a usage example of a metal mask according to another embodiment.
FIG. 4 is a process explanatory diagram of a manufacturing process of a metal mask according to a first reference example;
FIG. 5 is a schematic view of an exposure apparatus in the process of manufacturing the metal mask of the first reference example.
FIG. 6 is a schematic view of another exposure apparatus in the process of manufacturing the metal mask of the first reference example.
7 is a process explanatory diagram of a manufacturing process of a metal mask of a second reference example; FIG.
FIG. 8 is a schematic view of an exposure apparatus in the process of manufacturing a metal mask of a second reference example.
FIG. 9 is a process explanatory diagram of a manufacturing process of a metal mask of a third reference example.
10 is a process explanatory view to pattern the resist film forming step of the manufacturing process of the metal mask of the actual施例.
11 is a process explanatory view of the electroforming step of the manufacturing process of the metal mask of the actual施例to the etching process.
FIG. 12 is a cross-sectional view showing a state in which a metal mask is used as a vapor deposition mask for vapor deposition.
FIG. 13 is a process explanatory diagram of a manufacturing process of a conventional metal mask.
FIG. 14 is a cross-sectional view showing an example of use of a conventional metal mask.
15A is a partially enlarged cross-sectional view of another conventional metal mask, and FIG. 15B is a cross-sectional view showing an example of using the metal mask.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal mask 2 Through-hole 3 Printed body 10 Electroforming mother mold 11 Photoresist 12 Pattern film 13 Pattern resist film 14 Turntable 24 Electrodeposition metal 25 Polarizing filter 26 Base

Claims (1)

平板からなるベース(26)の表面上にフォトレジスト(11)を剥離可能にラミネート又は塗布する工程と、Laminating or coating the photoresist (11) on the surface of the base (26) made of a flat plate in a peelable manner;
フォトレジスト(11)の上にパターンフィルム(12)を重ね、ベース(26)に対し垂直に直進する光でフォトレジスト(11)を露光する工程と、A step of superposing a pattern film (12) on the photoresist (11), and exposing the photoresist (11) with light traveling straight perpendicular to the base (26);
パターンフィルム(12)を剥がして、フォトレジスト(11)を電鋳母型(10)側に転写する工程と、Peeling the pattern film (12) and transferring the photoresist (11) to the electroforming mother mold (10) side;
現像、乾燥処理してパターンレジスト膜(13)を電鋳母型(10)の上に形成する工程と、A step of developing and drying to form a pattern resist film (13) on the electroforming mold (10);
電鋳母型(10)のパターンレジスト膜(13)で覆われていない表面に電着金属(24)を形成する工程と、Forming an electrodeposited metal (24) on the surface not covered with the pattern resist film (13) of the electroforming mother mold (10);
電着金属(24)を電鋳母型(10)から剥離する工程とからなるメタルマスクの製造方法。 A method for producing a metal mask, comprising a step of peeling the electrodeposited metal (24) from the electroforming mold (10).
JP13587997A 1997-05-08 1997-05-08 Metal mask manufacturing method Expired - Fee Related JP3786313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13587997A JP3786313B2 (en) 1997-05-08 1997-05-08 Metal mask manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13587997A JP3786313B2 (en) 1997-05-08 1997-05-08 Metal mask manufacturing method

Publications (2)

Publication Number Publication Date
JPH10305670A JPH10305670A (en) 1998-11-17
JP3786313B2 true JP3786313B2 (en) 2006-06-14

Family

ID=15161916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13587997A Expired - Fee Related JP3786313B2 (en) 1997-05-08 1997-05-08 Metal mask manufacturing method

Country Status (1)

Country Link
JP (1) JP3786313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239364A1 (en) 2011-10-14 2017-11-01 Hitachi Chemical Company, Ltd. Method for producing metal filters

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147905A1 (en) * 1998-11-05 2001-10-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing printed-circuit board, method of manufacturing recording device, and mask for printed-circuit board
JP4671255B2 (en) * 2000-12-20 2011-04-13 九州日立マクセル株式会社 Method for producing electroformed metal mask
JP2004225126A (en) 2003-01-24 2004-08-12 Pioneer Electronic Corp Film deposition mask, and method for manufacturing the same
JP5052821B2 (en) * 2006-05-31 2012-10-17 京セラクリスタルデバイス株式会社 Exposure equipment
JP4911682B2 (en) * 2006-07-20 2012-04-04 富士フイルム株式会社 Exposure equipment
JP2008305703A (en) * 2007-06-08 2008-12-18 Hitachi Chem Co Ltd Production method of pattern-engraved metal foil
JP2010007095A (en) * 2008-06-24 2010-01-14 Hitachi Chem Co Ltd Plating method
JP2010007127A (en) * 2008-06-26 2010-01-14 Hitachi Chem Co Ltd Electroconductive base material for plating, method for manufacturing the same, and method for manufacturing conductor layer pattern using the base material or base material with the conductor layer pattern
JP5029566B2 (en) * 2008-10-14 2012-09-19 日立電線株式会社 Thin coaxial cable connection structure, wiring pattern forming method, cable harness, and printed wiring board
WO2011046169A1 (en) * 2009-10-14 2011-04-21 国立大学法人京都大学 Method for producing microstructure
JP5640396B2 (en) * 2010-02-25 2014-12-17 日立化成株式会社 Metal foil obtained by a method for producing a patterned metal foil
CN103203967B (en) * 2012-01-16 2017-06-13 昆山允升吉光电科技有限公司 A kind of electrocasting prepares the manufacture craft of stepped formwork
CN103203966B (en) * 2012-01-16 2017-06-06 昆山允升吉光电科技有限公司 A kind of manufacture craft of step electroforming template
KR101871956B1 (en) * 2016-11-28 2018-07-02 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR20230039489A (en) 2021-09-13 2023-03-21 맥셀 주식회사 Metal mask for printing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239364A1 (en) 2011-10-14 2017-11-01 Hitachi Chemical Company, Ltd. Method for producing metal filters
US10258906B2 (en) 2011-10-14 2019-04-16 Hitachi Chemical Company, Ltd. Metal filter and method for concentrating cancer cells

Also Published As

Publication number Publication date
JPH10305670A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP3786313B2 (en) Metal mask manufacturing method
US4424089A (en) Photoprinting process and apparatus for exposing paste-consistency photopolymers
EP0141868A1 (en) High resolution phototransparency image forming with photopolymers
JPH08183151A (en) Manufacture of mesh-integrated metal mask
JP2009127105A (en) Method for manufacturing electroforming component
US4954421A (en) Photoflashing a liquid polymer layer on a phototool surface exposed to air
US4888270A (en) Photoprinting process and apparatus for exposing paste consistency photopolymers
JPH1034870A (en) Production of electroforming product
KR100470272B1 (en) Method of manufacturing the metal pattern screen mask
JPH06234202A (en) Manufacture of mask for screen printing
JP2000275865A (en) Drum-like exposure device and production of printed circuit board using the device
US4657839A (en) Photoprinting process and apparatus for exposing paste-consistency photopolymers
US4591265A (en) System for contact printing with liquid photopolymers
JPH0357697A (en) Printing metal mask and preparation thereof
JP2001326448A (en) Method and device for forming etching resist pattern when circuit pattern is formed on printed board
US4669869A (en) Photoprinting process and apparatus for exposing paste-consistency photopolymers
US4560639A (en) Reusable phototransparency image forming tools for direct contact printing
JP2019214195A (en) Screen printing plate, and method of manufacturing the same
CA1197406A (en) High resolution phototransparency image forming with photopolymers
JPS6148831A (en) Photosetting structural body
JPH02251195A (en) Manufacture of printed wiring board
JPH06130676A (en) Production of mask for screen printing
JPH0582962A (en) Manufacture of printed wiring board
JPH0813187A (en) Production of metallic mask
JPH039358A (en) Gravure pringing plate and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees