JP3782954B2 - 結晶化膜の評価方法及びその装置 - Google Patents

結晶化膜の評価方法及びその装置 Download PDF

Info

Publication number
JP3782954B2
JP3782954B2 JP2001265214A JP2001265214A JP3782954B2 JP 3782954 B2 JP3782954 B2 JP 3782954B2 JP 2001265214 A JP2001265214 A JP 2001265214A JP 2001265214 A JP2001265214 A JP 2001265214A JP 3782954 B2 JP3782954 B2 JP 3782954B2
Authority
JP
Japan
Prior art keywords
film
light
crystallized
laser beam
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001265214A
Other languages
English (en)
Other versions
JP2003077970A (ja
Inventor
直之 小林
秀晃 草間
純一 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001265214A priority Critical patent/JP3782954B2/ja
Publication of JP2003077970A publication Critical patent/JP2003077970A/ja
Application granted granted Critical
Publication of JP3782954B2 publication Critical patent/JP3782954B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶化膜の評価方法及びその装置に関し、液晶表示装置に用いられる薄膜トランジスタの結晶化シリコンの製造や、ポリイミドなどの合成樹脂を加工する際に、レーザ光を利用して製造される結晶化膜の評価方法及びその装置に関するものである。
【0002】
【従来の技術及びその課題】
例えば、液晶表示装置に用いられる薄膜トランジスタの結晶化シリコンの製造に際し、ラインビームからなるレーザ光を試料に照射する方法が知られている。これは、図12に示すようにパルス・レーザからなるエキシマレーザを発生させるレーザ発振器10で生じさせたレーザ光A1を光学系容器9内に導き、反射ミラー7で方向転換させ、長軸ホモジナイザー2a及び短軸ホモジナイザー2bを通して整形して強度を均一化させた後、再度、反射ミラー8で方向転換させ、集光レンズ3を通すことにより、長軸×短軸が、約200×0.4mmの方形のラインビーム4に整形し、試料5に照射している。試料5は、レーザアニール装置の真空室内に設置されている。
【0003】
この場合の試料5は、ガラス基板6上に薄いa−Si(アモルファスシリコン)膜5aを形成したもので、このa−Si膜5aにラインビーム4を照射することで、a−Si膜5aを結晶化して薄いp−Si(ポリシリコン)膜5bとしている。ガラス基板6は、大きいもので730×920mmあり、ガラス基板6上のa−Si膜5aの全面を結晶化させるために、ラインビーム4の1ショットあたり、ラインビーム短軸幅の5〜10%の送りピッチでガラス基板6をラインビーム4の短軸の方向に間欠的に移動させる。短軸幅0.4mmのとき、具体的な送りピッチは20〜40μmであり、試料5の1箇所当たりのレーザ光の照射回数は10〜20回である。
【0004】
ここで、レーザ光A1のパルス幅(発光時間)は一般に数〜数十ns、発振周波数は数百Hz以下のため、レーザ光A1つまりラインビーム4の試料5への照射が数〜数十ns行われた後、数msの比較的長時間の間隔が開いて、再び数〜数十nsの照射が行われている。試料5への複数回の照射を行うことで、結晶が成長する。この結晶の成長は、1回目の照射で発生した結晶粒が、2回目以降の照射により結合して大きくなるものと考えられている。この結晶の成長のためには、試料5が冷却(常温)の状態から溶融温度近傍まで上昇するように、レーザ光A1の照射を実施する必要がある。
【0005】
このような結晶化シリコンの製造におけるp−Si膜5bの結晶性は、レーザ光A1のエネルギー密度に大きく依存し、エネルギー密度が低すぎても、高すぎても良好に得られない。このため、レーザ光A1のエネルギー密度を変えて複数のp−Si膜5bを作製し、それらのp−Si膜5bをSEM(走査型電子顕微鏡)等で直接観察し、結晶性性の良好なものから最適なエネルギー密度を決定し、そのエネルギー密度により、ガラス基板6上のSi膜5aの全面を結晶化させる方法が一般に採られている。
【0006】
しかしながら、SEMによる評価方法にあつては、p−Si膜を小さく分割し、エッチング後、SEM観察を行なう必要があり、その結果を得るには数時間を要して煩雑であるという技術的課題がある。
【0007】
これに対し、結晶化膜の評価方法として、結晶化したSi膜に光を照射してその反射率から結晶性を評価する方法が提案されている(特開平10−300662号)。この方法は、ELA(エキシマレーザアニール)工程の後に設置され、試料に垂直入射させた光の反射率の内、特定の波長での反射スペクトルの傾きから結晶性を評価する。従つて、結晶性と反射率との関係を予め計測しておく必要がある。
【0008】
また、半導体膜の表面にレーザ光を照射させ、当該半導体膜の表面からの散乱光の強度を計測し、該散乱光の強度に基づいて前記半導体膜の表面の凹凸状態を判定する方法も提案されている(特開2001−110861)。この判定方法は、短時間のうちに非破壊で半導体膜の膜質を評価できるので、TFTの製造工程においてインラインで評価を行い、正常な膜質の多結晶性の半導体膜を形成した基板のみを後工程に回すことができる、としている。
【0009】
しかしながら、前記垂直入射させた光の反射率から結晶性を評価する方法にあつては、Si膜の結晶粒径を直接求めるものではなく、Si膜の評価を簡易かつ正確に行なうことが困難であるのみならず、予め反射率と結晶性との関係を子細に評価しておく必要があるため、p−Si膜の結晶性をSEMで詳細に評価しておかなければならない。加えて、特定領域の波長での反射率の傾きを求める場合、その傾きが現れないこともあり、傾きから結晶性を必ずしも評価することができない。
【0010】
また、レーザ光の散乱光の強度に基づいて半導体膜の表面の凹凸状態を判定する方法にあつては、Si膜の結晶粒径を直接求めるものではなく、より確実な結晶性の評価のために、短波長及び長波長の散乱光の強度を比較して凹凸状態を判定するものであるため、測定結果の良否判定が困難であり、Si膜の評価を簡易かつ正確に行ない得ない。
【0011】
以上から、本発明は、結晶粒径の計測を簡易に行ない、結晶粒径の大きさからSi膜の評価を行なうことにより、良好なレーザ光をSi膜膜に照射して、均一かつ大きな結晶を試料の全面に形成することを可能にすることを第1の目的としている。
【0012】
【課題を解決するための手段】
本発明は、このような従来の技術的課題に鑑みてなされたもので、その構成は、次の通りである。
請求項1の発明は、試料5にレーザ光A1を照射して結晶化させたSi膜5bに対し、光B1を照射し、その反射光B2を計測する結晶化膜の評価方法であつて、
光B1をSi膜5bの表面に入射させ、該Si膜5bの表面から90度未満の反射光B2の反射スペクトルC1の最大強度が得られる波長λmax及び受光角θを測定すると共に、Si膜5bの結晶粒径DをD=λmax・sinθによつて算出し、該結晶粒径Dの大きさから該Si膜5bの評価を行なうことを特徴とする結晶化膜の評価方法である。
請求項2の発明は、前記反射光B2の反射スペクトルC1の最大強度が得られる波長λmax付近のピーク部C2の形状から結晶粒の規則性を推定することを特徴とする請求項1の結晶化膜の評価方法である。
請求項3の発明は、前記Si膜5bが、試料5を所定の送り速度で移動させながらパルス・レーザからなるレーザ光A1を照射して形成されると共に、該試料5の送り速度がSmm/shotであるとき、
前記光B1の試料5の表面上の幅をSmm以下とすることを特徴とする請求項1又は2の結晶化膜の評価方法である。
請求項4の発明は、前記レーザ光A1が、強度の大きな平坦部A2と強度が漸減する傾斜部A3とで構成され、該傾斜部A3を照射した部分のSi膜5bに前記光B1を照射することを特徴とする請求項1,2又は3の結晶化膜の評価方法である。
請求項5の発明は、前記レーザ光A1が、短軸方向及び長軸方向を有する矩形状をなすと共に、Si膜5bの表面に入射させる光B1の入射方向が、平面視で長軸方向と一致していることを特徴とする請求項1,2,3又は4の結晶化膜の評価方法である。
請求項6の発明は、試料5に照射するレーザ光A1の平坦部A2の一部を、透過率100−T%の部材20を透過させて最大強度の100−T%の強度とし、この最大強度の100−T%のレーザ光A1を照射した部分のSi膜5bに前記光B1を照射することを特徴とする請求項4又は5の結晶化膜の評価方法である。
請求項7の発明は、レーザ光A1を照射して結晶化させた直後のSi膜5bに対して光B1を照射すると共に、前記反射スペクトルC1の最大強度が得られる波長λmax付近のピーク部C2の形状を計測し、ピーク部C2の形状が所定の範囲内になるようにレーザ光A1の強度を制御することを特徴とする請求項1,2,3,4,5又は6の結晶化膜の評価方法である。
請求項8の発明は、試料5にレーザ光A1を照射して結晶化させたSi膜5bに対し、光B1を照射し、その反射光B2を計測する結晶化膜の評価装置であつて、
多波長の光B1をSi膜5bの表面に入射させる光源B3と、Si膜5bからの反射光B2を受光し、その反射スペクトルC1を求めると共に反射スペクトルC1の最大強度が得られる波長λmaxを示すことができる検出器B4とを有し、該検出器B4により、該Si膜5bの表面から90度未満の反射光B2の反射スペクトルC1の最大強度が得られる波長λmax及び受光角θを測定すると共に、Si膜5bの結晶粒径DをD=λmax・sinθによつて算出し、該結晶粒径Dの大きさから該Si膜5bの評価を行なうことを特徴とする結晶化膜の評価装置である。
【0013】
【発明の実施の形態】
図1〜図11は、本発明に係る結晶化膜の評価装置の1実施の形態を示し、この装置により、図12に示すレーザ光の照射装置を用いて製作した結晶化膜の品質の評価を行なう。この結晶化膜は、ラインビーム4を照射して結晶化した試料5のガラス基板6上の膜、つまりa−Si膜5aを結晶化させたp−Si膜5bである。パルス・レーザからなるレーザ光A1であるラインビーム4は、図4,図5に示すように強度の大きな平坦部A2と、平坦部A2の周囲に形成され、平坦部A2から強度が漸減する傾斜部A3とで構成され、短軸方向及び長軸方向を有する矩形状をなしている。試料5のp−Si膜5bは、a−Si膜5aに平坦部A2が照射されて結晶化した大面積の平坦部照射部と、この平坦部照射部の周囲に形成され、傾斜部A3が照射されて結晶化した小面積の傾斜部照射部とを有している。
【0014】
p−Si膜5bの評価装置は、図1,図2に示すように、Si膜5bを有する試料5を載置する基台15と、基台15上のSi膜5bに多波長の平行な光B1を任意の角度αで入射させることのできる光源B3と、Si膜5bからの反射光B2を受光し、その反射スペクトルC1を求めると共に反射スペクトルC1の最大強度が得られる波長λmaxを示すことができる検出器B4とを有する。具体的には、光源B3からの光B1を図外の光ファイバーで導き、基台15上のSi膜5bに平行光線として入射させ、Si膜5bからの反射光B2を検出器B4によつて受光するようになつている。検出器B4は、反射光B2を図外の光ファイバーに入射させて、分光器に導く装置である。光源B3は、ハロゲンランプを発光体として備える。
【0015】
本発明者等は、このような結晶化膜の評価装置によつて反射光B2の反射スペクトルC1に明確に得られる最大強度の波長λmaxを把握し、そのときの受光角θ及び最大強度の波長λmaxを用い、Si膜5bの結晶粒径DをD=λmax・sinθで算出することができることを見出した。
【0016】
Si膜5bが適正に結晶化していると、その表面には、図3に示すようにSi膜5bの結晶粒径をDとして、境界部dで囲まれた結晶粒径Dの結晶が微細な凹凸を伴つて整然と形成されて規則性を有している。この状態で、図1〜図3に示すように実質的に平行な光B1をSi膜5bの表面からの角度αで入射させれば、回折格子のように、規則性を有して反射光B2が生ずる。
【0017】
但し、この場合の光B1の入射方向及び反射方向は、Si膜5bのx方向(長軸方向)を含む垂直面上であり、平面視で長軸方向と一致させることが望ましい。この方向を0度とすれば、図11から分かるように所定の波長(約500nm)において強度が大きな反射光が得られるためである。Si膜5bのx方向を含む垂直面上と直交する面上、つまりSi膜5bのy方向(短軸方向)を含む垂直面上で光B1を照射すれば、図11に示す90度の特性になり、この場合にも所定の波長(約560nm)において強度が比較的大きな反射光が得られ、反射光B2の反射スペクトルC1に明確に得られる最大強度の波長λmaxを把握することが可能である。しかし、これ以外の角度(60度、45度、30度)では、大きな強度の反射光が得られず、反射光B2の反射スペクトルC1に明確に得られる最大強度の波長λmaxを把握し難い。このため、光源B3は、長軸方向(x方向)を含む垂直面上又は短軸方向(y方向)を含む垂直面上のいずれかに配置させる。
【0018】
次に、反射光B2のSi膜5bの表面からの受光角θが90度のときは、多くの結晶粒界からの反射光が強め合うことがないため、反射光B2の反射スペクトルC1に明確に得られる最大強度の波長λmaxを計測し難い。すなわち、図3に示すように実質的に平行な反射光B2のSi膜5bの表面からの受光角がθ度であるとき、境界部dで囲まれた結晶粒径Dの結晶が多数形成された状態で、反射光B2の方向から見た1個の結晶の斜めの幅S1は、S1=D・cosθで与えられる。これから、受光角θが90度のときは、cosθ=0であるから、D=S1/cosθは無限大となつて結晶粒径Dを求めることができない。
【0019】
そこで、光源B3からの光B1は、Si膜5bの表面からの角度θを90度未満とする任意の反射方向を受光角θとする。また、光源B3からの光B1は、Si膜5bの表面からの角度を90度未満とする任意の入射角αとする。
【0020】
このようなことから、光B1を入射角αで入射させ、Si膜5bの平面からの受光角θ(90度以外)で反射した反射光B2の反射スペクトルC1を計測すると共に、この反射スペクトルC1の最大強度が明確に得られる波長λmaxを測定した。
【0021】
反射スペクトルC1の最大強度からSi膜5bの結晶粒径Dを測定できるのは、340mJ/cm2の強度のレーザ光A1を照射した場合、及び320mJ/cm2の強度のレーザ光A1を照射した場合に見られるような、結晶に規則性が生じた場合である。この結晶の規則性は、レーザ光A1が、エキシマレーザで発生した光をホモジナイザー(2a,2b)によりラインビーム形状に整形し、ホモジナイザーによりラインビーム形状に整形して照射されたとき、レーザ結晶化によつて見られるもので、一般には照射するレーザ光A1の波長の大きさの結晶が整列するが、その理由は明確には分かつていない。例えばレーザ光A1のパルス幅が20nsのときには、規則性が良好に生じることが確認されている。
【0022】
このとき、レーザ光A1を照射したSi膜5bの部分に計測用の光B1を照射して、その反射光B2を受光角θと共に計測し、反射光B2の反射スペクトルC1の最大強度が明確に得られる波長λmaxからSi膜5bの結晶粒径Dを測定することができる。
【0023】
一般に、Si膜5bの結晶に規則性を生じているきは、ガラス基板6上のa−Si膜5aの全体がほぼ均一な粒径のp−Si膜5bとなつているため、このSi膜5bを使つた液晶ディスプレイ用TFT(薄膜トランジスタ)の性能が均一になることが知られており、規則性を生ずる条件を与えながら結晶化が行なわれる。
【0024】
実際にSi膜5bを形成し、多波長の光B1をSi膜に入射角α=45度で入射させ、反射光B2の反射スペクトルC1を受光面(検出器B4)によつて計測した。レーザ光A1の照射エネルギーを変化させて得られた反射スペクトルC1を図9に示す。図9のY−scaleは、反射強度(a.u.)である。図9から分かるように、レーザ光A1の照射エネルギー320mJ/cm2及び340mJ/cm2で、反射スペクトルC1中の波長λmax=約440nmに明確なピーク部C2が現れた。反射光B2のSi膜5bの表面からの受光角θは、45度であつた。その反射スペクトルC1の最大強度値が得られる波長λmaxを用い、結晶化したSi膜5bの結晶粒径DをD=λmax・sinθで算出すると、D=440nm・sin45°=311nmである。
【0025】
これらの反射スペクトルC1の最大強度が明確に得られる波長λmaxの測定は、レーザ光A1を照射させて結晶化させながら行い、同時に結晶化膜を評価した。すなわち、図1のような308nmの波長を発生するエキシマであるXeClからのエキシマレーザ1をホモジナイザー(2a及び2b)により約200×0.4mmの方形のラインビーム4に整形し、このレーザ光A1からなるラインビーム4を試料5つまりガラス基板6上のa−Si膜5aに照射し、Si膜を結晶化させてp−Si膜5bとした。レーザ光A1のパルス幅は、26nsとした。なお、図1,図2のレーザ光の照射装置は、図12のレーザ光の照射装置と同一の構造を有している。
【0026】
ガラス基板6は、730×920mmの大きさのものを使用し、ガラス基板6上のa−Si膜5aの全面を結晶化させるために、レーザ光A1の1ショットあたり、ラインビーム4の短軸幅0.4mmの5%である20μmの送りピッチで、ラインビーム4の短軸方向(y方向)にガラス基板6を移動させた。
【0027】
そして、試料5にレーザ光A1(ラインビーム4)を照射させながら、図1,図2に示すようにランプからなる光源B3により発生させた光B1をp−Si膜5bの表面上方x方向から角度α=45度で入射させ、反射光B2の反射スペクトルC1を分光器としても機能する検出器B4で計測した。光B1は、レーザ光A1の平坦部A2が照射されて結晶化した直後の大面積のp−Si膜5bの部分(平坦部照射部)にのみ間欠的に入射させた。レーザ光A1の照射エネルギーは、300mJ/cm2、320mJ/cm2、340mJ/cm2、360mJ/cm2及び380mJ/cm2に調節変更させた。
【0028】
その結果、上述したように、Si膜5bには、レーザ光A1の照射エネルギーを320mJ/cm2及び340mJ/cm2としたとき、311nm(大略300nm)の粒径の結晶が規則性を有して整列していた。
【0029】
この結果は、SEMによる評価と良好に合致していた。図7及び図8は、レーザ光A1(ラインビーム4)の強度を380mJ/cm2〜300mJ/cm2に変えてSi膜5bを形成したときのSEM写真を模式的に示す。
【0030】
反射スペクトルC1の最大強度からSi膜5bの結晶粒径Dを測定できるのは、図7(ハ)の340mJ/cm2の強度のレーザ光A1を照射した場合、及び図8(イ)の320mJ/cm2の強度のレーザ光A1を照射した場合に見られるような、結晶に規則性が生じた場合であつた。図7(イ)の380mJ/cm2及び(ロ)の360mJ/cm2の強度のレーザ光A1を照射した場合、及び図8(ロ)の300mJ/cm2の強度のレーザ光A1を照射した場合には、結晶に規則性が生じておらず、図9からも反射光B2の反射スペクトルC1の最大強度が明確に得られる波長λmaxを測定することができなかつた。
【0031】
反射スペクトルC1の最大強度が明確に得られる波長λmax付近のピーク部C2の形状を測定・観察すると、レーザ光A1の照射エネルギーを320mJ/cm2及び340mJ/cm2としたとき、ピーク部C2の強度値が高いのみならず、半値幅などのピーク部C2の幅が狭く、このときにSi膜5bの結晶に規則性があることが確認できた。従つて、本発明に係る結晶化膜の評価方法によれば、形成されたSi膜5bに多波長の光B1を斜めから照射すれば、反射光B2が球面波として生じる。そして、Si膜5bの表面から90度未満の反射光B2の反射スペクトルC1を観察することにより、反射スペクトルC1の最大強度が明確に得られる波長λmaxが得られ、結晶粒径DをD=λmax・sinθで算出し、この結晶粒径Dから結晶化膜の規則性の良否を直接的に評価することができる。勿論、Si膜5bを形成する度にSEM観察する必要はない。
【0032】
更に、Si膜5bを形成した1つの試料5に対し、多波長の光B1をSi膜に角度α=45度で入射させると共に反射させ、Si膜の平面からの角度0〜90度未満の範囲で反射光B2の反射スペクトルC1を受光面(検出器B4)によつて計測し、反射角度θにおける反射スペクトルC1の最大強度が明確に得られる波長λmax及びそのときの受光角θを測定した。
【0033】
その結果は図10に示すようであり、受光角40度で波長λmax=490nmが得られ、受光角45度で波長λmax=440nmが得られ、受光角60度で波長λmax=380nmが得られた。なお、レーザ光の照射装置、ガラス基板6及びレーザ光A1の1ショットあたりのラインビーム4の送りピッチは、レーザ光A1(ラインビーム4)の強度を380mJ/cm2〜300mJ/cm2に変えて計測した上記の場合と同じである。但し、レーザ光A1の強度は320mJ/cm2とした。
【0034】
これらの受光角θ及び波長λmaxから、結晶粒径DをD=λmax・sinθで算出した。その結果、を次に示す。
D40°=490nm×sin40°=315nm
D45°=440nm×sin45°=311nm
D60°=380nm×sin60°=329nm
【0035】
これらの結晶粒径D=大略300nmという結果から、受光角θの如何によらず、反射光B2の受光角θと反射スペクトルC1の最大強度が明確に得られる波長λmaxとを用い、結晶粒径Dを算出でき、結晶粒径Dの値が250nm〜350nmの範囲、好ましくは300nm付近にあれば、Si膜5bの結晶に規則性があることが分かる。これらの結果は、SEMによる評価と良好に合致していた。
【0036】
ところで、結晶粒径Dの計測に多波長の光B1を用いれば、波長λの幅が広くなり、計測できる結晶粒径Dの範囲が広くなる。すなわち、D=λmax・sinθから、試料5に照射する光B1の波長λの幅が広いほど、最大強度が明確に得られる波長λmaxの幅も広くなり、計測できる結晶粒径Dの範囲が広くなる。一般に、Si膜5bの結晶に概ね規則性があるとき、結晶粒径Dは200〜1000nmのため、光B1の波長は280nm〜1500nmの範囲にあることが好ましい。
【0037】
これに対し、波長λがほぼ単一の光B1を用い、Si膜5bの表面からの角度0〜90度未満の範囲で受光面(検出器B4)を移動させながら、反射光B2の反射スペクトルC1を計測し、反射スペクトルC1の最大強度が明確に得られる受光角θを測定し、D=λmax・sinθからSi膜5bの結晶粒径Dを求めることも可能である。
【0038】
理論的には、Si膜5bの結晶粒に完全な規則性があれば、D=λmax・sinθの結晶粒径Dが試料5の全体にわたつて同じであるから、反射光B2の受光角θを所定角度にしたとき、反射光B2の反射スペクトルC1の最大強度が得られる波長λmaxは1つの値になる。しかしながら、実際には結晶粒の回折格子のような規則性が乱れることも多く、その際には、結晶粒径Dの数値幅が大きくなつている。従つて、光B1の反射光の受光角θ及び最大強度が明確に得られる波長λmaxのみに着目するのではなく、この波長λmax付近で反射スペクトルC1のピーク部C2が明確に現れて結晶粒に実用上問題のない規則性が生じていると考えられる状態で、ピーク部C2の形状をも観察し、Si膜5bの結晶粒の規則性を総合的に判定することが望まれる。すなわち、波長λmax付近で反射スペクトルC1のピーク部C2が明確に現れていると共に、更に、ピーク部C2の最大強度値が高く半値幅などのピーク部C2の幅が狭いほど規則性がある、と判断することができる。
【0039】
上述のように、ガラス基板6上のa−Si膜5aの全面を結晶化させるために、ラインビーム4の短軸方向(y方向)に、レーザ光A1の1ショットあたり、ラインビーム短軸幅の5〜10%の送りピッチでガラス基板6(試料5)を動かす。短軸幅0.4mmのとき、1ショットあたりのy方向の間欠的な送り速度Smm/shotは、20〜40μmである。
【0040】
そして、レーザ光A1はショット毎のエネルギー変動があることが知られており、大きな変動のあるレーザ光A1が1ショット照射された場合は、Smmの幅内の結晶性が変化することになる。この結晶性が変化している部分を計測するためには、光B1の試料5の表面上のy方向の幅をSmm以下とし、レーザ光A1の1ショット分の照射部分の結晶の規則性を判断する方法が有効である。このとき、図2に示すように光源B3により発生させた光B1をp−Si膜5bの表面上方x方向から斜めに入射させる。多波長の光B1の幅をSmm以下とすることは、波長によつて焦点位置が異なることを補正した焦点距離の短いレンズを用いて集光させて行なわれる。
【0041】
但し、光B1の試料5の表面上のy方向の幅をSmmとして、レーザ光A1の平坦部A2が照射されて結晶化した大面積のp−Si膜5bの平坦部照射部及び傾斜部A3が照射されて結晶化した小面積のp−Si膜5bの傾斜部照射部の両者に入射させた場合には、平坦部A2が照射されて結晶化した平坦部照射部のみに光B1を照射する場合と比較して、ピーク部C2の半値幅などのピーク部C2の幅が大きくなるが、最大強度値は同じである。
【0042】
また、上述したように、照射するレーザ光A1の強度を320mJ/cm2や340mJ/cm2としてSi膜5bに結晶化すると、結晶の規則性が良く、粒径が揃つているので、この条件で結晶化するのが一般的である。しかし、レーザ光A1の強度を360mJ/cm2や380mJ/cm2にすると規則性は悪いが粒径が大きくなるため、この条件で結晶化することがある。
【0043】
このような360mJ/cm2や380mJ/cm2の強度では規則性が悪く、図9の320mJ/cm2や340mJ/cm2のような明確なピークが現れないので、レーザ光A1の平坦部A2を照射した平坦部照射部に計測用の光B1を照射して、その反射光B2を計測し、反射スペクトルC1の最大強度からSi膜5bの結晶粒径Dを測定することが困難である。従つて、結晶化膜の評価が事実上できない。
【0044】
このように結晶の規則性が良好に得られる条件よりも高いエネルギー密度のレーザ光A1を照射して結晶化させたSi膜5b、つまり図7の(ロ)360mJ/cm2や(イ)380mJ/cm2が結晶化条件として使われたSi膜5bの場合には、試料5のレーザ光A1の傾斜部A3を照射した傾斜部照射部に計測用の光B1を照射してその反射光B2を計測すればよい。
【0045】
すなわち、傾斜部A3は、強度が大きな平坦部A2よりも20〜40mJ/cm2程度強度が低いので、傾斜部A3が照射された傾斜部照射部が10nm程度の幅があれば、強度が低い傾斜部A3が照射されたSi膜5bの傾斜部照射部を狙つて光B1を照射して、同様に計測し、レーザ光A1の強度を320mJ/cm2や340mJ/cm2として平坦部A2によつて結晶化した平坦部照射部と同様に、評価できる。
【0046】
更には、試料5の平坦部A2が照射された平坦部照射部の一部に、20〜40mJ/cm2程度低く照射されたSi膜5bの部分を人為的に作成し、そのSi膜5bの平坦部照射部に光B1を照射して、同様に計測しても、320mJ/cm2や340mJ/cm2で結晶化した平坦部A2と同様に、評価できることになる。
【0047】
具体的には、図6に示すように、試料5に照射するレーザ光A1の一部をさえぎるように透過率100−T%の材料からなる部材20を配置し、レーザ光A1の一部を透過率100−T%の部材20を透過させて最大強度の100−T%の強度(20〜40mJ/cm2程度減)として照射し、その後、この領域の平坦部照射部に光B1を照射する。このレーザ光A1の一部をさえぎる部材20の配置箇所は、ラインビーム4の長軸方向の端部位置となる平坦部照射部がよい。
【0048】
これにより、レーザ光A1からなるラインビーム4のほとんどを360〜380mJ/cm2の強度とし、ラインビーム4の一部(端部)を320〜340mJ/cm2の強度として、試料5に照射して、320〜340mJ/cm2で照射した領域(平坦部照射部)に光B1を照射し、反射光を測定することになるので、試料5に所要の結晶化が行なわれているか否かを観測することができる。部材20が有する透過率100−T%の内のT%は、ラインビーム4の強度が380mJ/cm2のとき、理論上は、(380mJ/cm2−340mJ/cm2)/380mJ/cm2=10.5%程度であるが、9〜12%程度が使用可能である。
【0049】
実際に、ラインビーム4の強度を380mJ/cm2とし、x方向の幅が200nmのラインビーム4の内、端部10nmをT=10%の半透過ガラスからなる部材20を透過させて試料5に照射し、その照射領域である平坦部照射部に計測用の光B1を照射して、反射光B2を計測したところ、図9に示す340mJ/cm2と同様の著しいピーク部を生じた。
【0050】
この反射スペクトルC1の最大強度が得られる波長λmax及び反射光B2の受光角θとを用い、Si膜5bの結晶粒径Dを算出し、その適否から試料5全体の結晶粒の規則性を推定した。T=10%の半透過ガラス(部材20)を透過させたラインビーム4の照射領域に適正な規則性が生じていることを推定・確認した後、半透過ガラス(部材20)を透過させていない箇所の試料5についてSEMによる計測を行なつたところ、図7の(イ)380mJ/cm2と同様の粒径400nm程度の結晶がSi膜5bに実用上問題がない程度に得られていた。
【0051】
このような結晶化膜の評価装置は、図1,図2に示すように結晶化工程中に組み込み、レーザ光A1(ラインビーム4)を照射して結晶化させた直後のSi膜5bに対して光B1を照射し、Si膜5bの結晶の評価を行なうことが可能であるが、ラインビーム4を試料5に照射し、ガラス基板6上のa−Si膜5aを結晶化してp−Si膜5bとする結晶化工程の後工程として組み込むことができることも勿論である。
【0052】
結晶化膜の評価装置を結晶化工程中に組み込めば、反射光B2の反射スペクトルC1の最大強度が明確に得られる波長λmax及び受光角θ並びにピーク部C2のピーク強度値及び半値幅等の幅を計測しながら、レーザ光A1を照射してa−Si膜5aを結晶化してp−Si膜5bとすることになる。従つて、結晶粒径Dやピーク部C2の形状が所定の範囲内になるようにレーザ発振器10を速やかに調節し、レーザ光A1の透過率をアッテネータによつて変更するなどしてレーザ光A1の強度を適正に制御したり、照射回数を適正に制御したりすることができる。これにより、結晶化膜の評価を速やかにフィードバックさせ、ガラス基板6上のほぼ全体に均一なSi膜5bの結晶を得ることができる。
【0053】
このピーク部C2の形状、つまりピーク強度値や半値幅などのピーク部C2の幅を測定すると共に、ピーク部C2の形状が所定の範囲内にあるかどうかを判定し、結晶粒が高度に同じ大きさ及び間隔で整列しているか否を定性的に評価できる。例えば、ピーク部C2のピーク強度値を計測し、低い場合には、ピーク強度値を規則性の良好な結晶が形成され得る高い値になるように制御する。また、ピーク部C2の半値幅等の幅を計測して、幅が広い場合には、半値幅等の幅が所定値以下になるように制御し、規則性の良好な結晶が形成されるようにする。
【0054】
すなわち、反射光B2の反射スペクトルC1の最大強度が明確に得られる波長λmax付近で反射スペクトルC1のピーク部C2が明確に現れている状態で、更に、ピーク部C2の最大強度が高く半値幅などのピーク部C2の幅が狭いほど規則性がある、と判断することができる。例えば、図9に示す320mJ/cm2の強度のときの半値幅は約30nmであり、波長λmaxは415nmから445nmの幅があるので、受光角θ=45°から、D=λmax・sinθ=293nm〜314nmの間で粒径がばらついていることが分かる。勿論、ピーク部C2の半値幅(50%強度のときの幅)よりも強度が少し低い値での幅(例えば強度20%のときの幅)から、粒径のばらつきを把握して、結晶粒の規則性の有無を判断することもできる。
【0055】
【発明の効果】
以上の説明によつて理解されるように、本発明に係る結晶化膜の評価方法及びその装置によれば、結晶化させたSi膜の表面に光を入射させ、Si膜の表面から90度未満の反射光の反射スペクトルの最大強度が得られる波長λmax及び受光角θを測定すると共に、Si膜の結晶粒径DをD=λmax・sinθによつて算出し、結晶粒径Dの大きさからSi膜の評価を行なうので、Si膜の評価を簡易かつ比較的正確に行なうことが可能になり、高品質の結晶化膜を歩留り良く製作することが可能になるという効果を奏することができる。
【図面の簡単な説明】
【図1】 本発明の1実施の形態に係る結晶化膜の評価装置を組み込んだレーザ光の照射装置の要部を示す正面図。
【図2】 同じく結晶化膜の評価装置を組み込んだレーザ光の照射装置の要部を示す右側面図。
【図3】 同じく結晶化膜の評価装置を示す説明図。
【図4】 同じくレーザビームを示す説明図。
【図5】 同じくレーザビームの強度−位置特性を示す線図。
【図6】 同じくレーザビームの試料への照射状態を示す図。
【図7】 同じくSi膜のSEM写真を模式的に示す図。
【図8】 同じくSi膜のSEM写真を模式的に示す図。
【図9】 同じく光源でSi膜を照らしたときの反射光の波長−強度特性を示す線図。
【図10】 同じく光源でSi膜を照らしたときの受光角の相違による波長−強度特性を示す線図。
【図11】 同じく光源でSi膜を照らしたときの受光方向を相違させたときの反射光の波長−強度特性を示す線図。
【図12】 従来のレーザ光の照射装置を示し、(イ)は正面図、(ロ)は右側面図。
【符号の説明】
2a:長軸ホモジナイザー(ホモジナイザー)、2b:短軸ホモジナイザー(ホモジナイザー)、5:試料、5a:a−Si膜、5b:p−Si膜(Si膜)、6:ガラス基板、10:レーザ発振器、20:部材、A1:レーザ光、A2:平坦部、A3:傾斜部、B1:光、B2:反射光、B3:光源、B4:検出器、C1:反射スペクトル、C2:ピーク部、D:結晶粒径、λmax:反射スペクトルの最大強度が得られる波長、α:入射角、θ:受光角。

Claims (8)

  1. 試料(5)にレーザ光(A1)を照射して結晶化させたSi膜(5b)に対し、光(B1)を照射し、その反射光(B2)を計測する結晶化膜の評価方法であつて、
    光(B1)をSi膜(5b)の表面に入射させ、該Si膜(5b)の表面から90度未満の反射光(B2)の反射スペクトル(C1)の最大強度が得られる波長λmax及び受光角θを測定すると共に、Si膜(5b)の結晶粒径DをD=λmax・sinθによつて算出し、該結晶粒径Dの大きさから該Si膜(5b)の評価を行なうことを特徴とする結晶化膜の評価方法。
  2. 前記反射光(B2)の反射スペクトル(C1)の最大強度が得られる波長λmax付近のピーク部(C2)の形状から結晶粒の規則性を推定することを特徴とする請求項1の結晶化膜の評価方法。
  3. 前記Si膜(5b)が、試料(5)を所定の送り速度で移動させながらパルス・レーザからなるレーザ光(A1)を照射して形成されると共に、該試料(5)の送り速度がSmm/shotであるとき、
    前記光(B1)の試料(5)の表面上の幅をSmm以下とすることを特徴とする請求項1又は2の結晶化膜の評価方法。
  4. 前記レーザ光(A1)が、強度の大きな平坦部(A2)と強度が漸減する傾斜部(A3)とで構成され、該傾斜部(A3)を照射した部分のSi膜(5b)に前記光(B1)を照射することを特徴とする請求項1,2又は3の結晶化膜の評価方法。
  5. 前記レーザ光(A1)が、短軸方向及び長軸方向を有する矩形状をなすと共に、Si膜(5b)の表面に入射させる光(B1)の入射方向が、平面視で長軸方向と一致していることを特徴とする請求項1,2,3又は4の結晶化膜の評価方法。
  6. 試料(5)に照射するレーザ光(A1)の平坦部(A2)の一部を、透過率100−T%の部材(20)を透過させて最大強度の100−T%の強度とし、この最大強度の100−T%のレーザ光(A1)を照射した部分のSi膜(5b)に前記光(B1)を照射することを特徴とする請求項4又は5の結晶化膜の評価方法。
  7. レーザ光(A1)を照射して結晶化させた直後のSi膜(5b)に対して光(B1)を照射すると共に、前記反射スペクトル(C1)の最大強度が得られる波長λmax付近のピーク部(C2)の形状を計測し、ピーク部(C2)の形状が所定の範囲内になるようにレーザ光(A1)の強度を制御することを特徴とする請求項1,2,3,4,5又は6の結晶化膜の評価方法。
  8. 試料(5)にレーザ光(A1)を照射して結晶化させたSi膜(5b)に対し、光(B1)を照射し、その反射光(B2)を計測する結晶化膜の評価装置であつて、
    多波長の光(B1)をSi膜(5b)の表面に入射させる光源(B3)と、Si膜(5b)からの反射光(B2)を受光し、その反射スペクトル(C1)を求めると共に反射スペクトル(C1)の最大強度が得られる波長λmaxを示すことができる検出器(B4)とを有し、
    該検出器(B4)により、該Si膜(5b)の表面から90度未満の反射光(B2)の反射スペクトル(C1)の最大強度が得られる波長λmax及び受光角θを測定すると共に、Si膜(5b)の結晶粒径DをD=λmax・sinθによつて算出し、該結晶粒径Dの大きさから該Si膜(5b)の評価を行なうことを特徴とする結晶化膜の評価装置。
JP2001265214A 2001-09-03 2001-09-03 結晶化膜の評価方法及びその装置 Expired - Fee Related JP3782954B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265214A JP3782954B2 (ja) 2001-09-03 2001-09-03 結晶化膜の評価方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265214A JP3782954B2 (ja) 2001-09-03 2001-09-03 結晶化膜の評価方法及びその装置

Publications (2)

Publication Number Publication Date
JP2003077970A JP2003077970A (ja) 2003-03-14
JP3782954B2 true JP3782954B2 (ja) 2006-06-07

Family

ID=19091714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265214A Expired - Fee Related JP3782954B2 (ja) 2001-09-03 2001-09-03 結晶化膜の評価方法及びその装置

Country Status (1)

Country Link
JP (1) JP3782954B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237525A (ja) * 2005-02-28 2006-09-07 Nec Lcd Technologies Ltd レーザ照射方法及び装置
JP5316846B2 (ja) * 2008-08-01 2013-10-16 Nltテクノロジー株式会社 多結晶薄膜の粒径均一性の判定装置及びレーザ照射装置

Also Published As

Publication number Publication date
JP2003077970A (ja) 2003-03-14

Similar Documents

Publication Publication Date Title
KR100837128B1 (ko) 다결정 실리콘막을 형성하기 위한 레이저 조사 방법 및장치
KR100371986B1 (ko) 레이저 열처리용 광학장치, 레이저 열처리 장치 및 반도체의 제조방법
US6336969B1 (en) Optical processing apparatus and optical processing method
US7208358B2 (en) Laser annealing method
KR100833761B1 (ko) 다결정 실리콘 막 생산 공정
US6210996B1 (en) Laser illumination system
US7102750B2 (en) Method of in-situ monitoring of crystallization state
US9245757B2 (en) Laser annealing treatment apparatus and laser annealing treatment method
US20030017658A1 (en) Non-single crystal film, substrate with non-single crystal film, method and apparatus for producing the same, method and apparatus for inspecting the same, thin film trasistor, thin film transistor array and image display using it
JP2002176007A (ja) レーザ処理装置のレーザパワーの測定方法と測定装置
JP3794482B2 (ja) 結晶化Si膜の評価方法及びその装置
JP3782954B2 (ja) 結晶化膜の評価方法及びその装置
JP4024657B2 (ja) 結晶の周期性構造の形成方法及びその装置
JP2001308009A (ja) 非単結晶膜、非単結晶膜付き基板、その製造方法及びその製造装置並びにその検査方法及びその検査装置並びにそれを用いた薄膜トランジスタ、薄膜トランジスタアレイ及び画像表示装置
JP3587900B2 (ja) 結晶性珪素膜の作製方法
JP4131752B2 (ja) 多結晶半導体膜の製造方法
JP3977379B2 (ja) 薄膜材料の結晶化方法及びその装置
JP2000174286A (ja) 薄膜トランジスタの製造方法およびレーザアニール装置
JP4225121B2 (ja) レーザアニーリング方法および装置
KR20000028860A (ko) 다결정실리콘의 제조방법
JP5309059B2 (ja) 微結晶化判定方法及び装置
JPH0851078A (ja) 光処理装置および光処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees