JP3782952B2 - Pll回路及びクロック生成方法 - Google Patents
Pll回路及びクロック生成方法 Download PDFInfo
- Publication number
- JP3782952B2 JP3782952B2 JP2001206736A JP2001206736A JP3782952B2 JP 3782952 B2 JP3782952 B2 JP 3782952B2 JP 2001206736 A JP2001206736 A JP 2001206736A JP 2001206736 A JP2001206736 A JP 2001206736A JP 3782952 B2 JP3782952 B2 JP 3782952B2
- Authority
- JP
- Japan
- Prior art keywords
- delay
- signal
- oscillation
- delay time
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
【発明の属する技術分野】
本発明は、PLL回路及びクロック生成方法に関し、例えば電源立上がり時に発振が始まりロック状態になるまでの時間、又はロック状態から何らかの外因でロックが外れ、それから再びロック状態に復帰するまでの時間(以下、適宜、「ロックアップ期間」と言う。)を短縮できるPLL回路及びクロック生成方法に関するものである。
【0002】
【従来の技術】
PLL回路は、多くのシステムLSIにおいて例えばデータリカバリ(クロックリカバリ)、クロックデスキューイング(clock deskewing)、クロック発生(clock generation)、及びデータ抽出(data extraction)等の種々の目的で使用されている。例えば、ハードディスクドライブでは、PLL回路は、データ読込み時のデータリカバリや、クロック発生のために使用されている。ハードディスクドライブでは、ディスク上のデータの各読書きバンドは、同心円状に配置されているので、ディスク上のデータ密度を各バンドで一様化するために、PLL回路により生成するクロックの周波数は、データ読書きバンドの位置に関係して、変化しており、PLL回路は電源電圧立上がり時又は目標周波数が変化するごとに頻繁にアンロック状態へ遷移する。PLL回路のアンロック状態では、磁気ヘッドはアイドリング状態になり、アイドリング期間では、ディスクへのデータの読書きが不能となるので、ロックアップ期間の増大はデータアクセスタイムの増大及びディスクにおける使用不能部分の増大につながる。したがって、ハードディスクドライブにおいてロックアップ期間の減少は必須の課題である。
【0003】
特開平10−268964号公報は、VCO(電圧制御発振)から位相差検出器へのフィードバック回路に第1の遅延回路を設けること、及びVCOの出力側に第2の遅延回路を設けることを開示する。該公報のPLL回路では、基準の入力クロックに対して出力クロックの位相を進ませる場合には、第1の遅延回路の遅延時間を増大させ、また、基準の入力クロックに対して出力クロックの位相を遅らせる場合には、第2の遅延回路の遅延時間を増大させ、これにより、種々の位相の出力クロックを得るに必要な素子数の低減を図っている。
【0004】
【発明が解決しようとする課題】
特開平10−268964号公報のPLL回路は、遅延手段において調整する遅延時間を入力クロックとフィードバック信号との位相差ではなく、入力クロックと外部の入力データとの位相差に基づいて制御するものであり、入力データが決まれば、ロックアップ期間中及びロック期間の遅延手段における遅延時間は固定されている。すなわち、該PLL回路は、遅延手段をフィードバック部に装備するものの、ロックアップ期間中の遅延時間を適宜制御して、ロックアップ期間の短縮を図る機能は存在しない。
【0005】
本発明の目的は、ロックアップ期間を的確に減少させることのできるPLL回路及びクロック生成方法を提供することである。
【0006】
【課題を解決するための手段】
第1の発明のPLL回路によれば、基準入力クロック信号に関係する出力クロック信号を生成する。該PLL回路は、基準入力クロック信号のパルスと出力クロック信号に係るフィードバック信号のパルスとの位相差に関係する信号を出力する位相差検出手段、位相差検出手段の出力に関係する周波数の信号を発生する発振手段、発振手段の出力を遅延させた信号を出力クロック信号として出力する遅延手段、及び遅延手段における遅延時間を制御する遅延時間制御手段、を有している。遅延時間制御手段は、基準入力クロック信号のパルスとフィードバック信号のパルスとの位相差の絶対値が減少する方向へ、遅延手段における遅延時間を適宜、変更するものである。
【0007】
遅延手段は、遅延時間制御手段からの制御を受けて、発振手段の出力を、例えば該出力のサイクルの周期の数分の一から数十分の一程度の時間単位で、遅延可能となっている。PLL回路のアンロック状態のときは、遅延時間制御手段は、基準入力クロック信号のパルスとフィードバック信号のパルスとの位相差の絶対値が減少する方向へ、遅延手段における遅延時間を変更する。PLL回路のアンロック状態のときは、後述の図4に示されるように、基準入力クロック信号とフィードバック信号との周波数差は変動するものの、周波数差の0の時点が存在する。基準入力クロック信号のパルスとフィードバック信号のパルスとの位相差の絶対値が減少する方向へ、遅延手段における遅延時間を変更することにより、両信号の周波数差が0又はそれに近い状態の出力クロック信号を作り出すことができ、結果、後述の図8で説明するように、両信号の周波数差の変動が抑制され、PLL回路は速やかにロック状態へ移行することができる。
【0008】
第2の発明のPLL回路によれば、第1の発明のPLL回路において、遅延時間制御手段は、位相差検出手段の出力の示す位相差の絶対値が所定値以上となったときに、遅延手段における遅延時間を変更するものである。
【0009】
位相差検出手段の出力の示す位相差の絶対値が小さいときは、入力クロック信号のパルスとフィードバック信号のパルスとの位相差の絶対値が小さいときであり、PLL回路がロックアップ状態に近づいた状態も含まれ、該絶対値の減少する方向への遅延手段における遅延時間の変更は弊害となることがある。したがって、位相差検出手段の出力の示す位相差の絶対値が小さいときは、該絶対値の減少する方向への遅延手段における遅延時間の変更は取り止める。
【0010】
第3の発明のPLL回路は、第1又は第2の発明のPLL回路において、次のものを有している。
・PLL回路がアンロック状態にあるか否かを検出する状態検出手段
・PLL回路がアンロック状態にあるときのみ遅延時間制御手段における遅延時間の制御を実施する遅延時間制御手段
【0011】
ロック状態では、位相差検出手段へ入力される基準入力クロック信号及びフィードバック信号の周波数差及び位相差がほとんど零になる。位相差検出手段は、基準入力クロック信号及びフィードバック信号の位相差に関係する出力を生成するので、ロック状態は、例えば位相差検出手段の出力を一定時間、監視することにより検出することができる。
【0012】
第4の発明のPLL回路は、第1〜第3のいずれかの発明のPLL回路において、次のものを有している。
・基準入力クロック信号のパルスに対するフィードバック信号のパルスの位相の進み量の大きいとき程、遅延手段における遅延時間を増大させ、また、基準入力クロック信号のパルスに対するフィードバック信号のパルスの位相の遅れ量の大きいとき程、遅延手段における遅延時間を減少させる遅延時間制御手段
【0013】
第5の発明のPLL回路によれば、第1又は第2の発明のPLL回路において、遅延時間制御手段は、基準入力クロック信号のパルスに対するフィードバック信号のパルスの位相差に関係する計数値を生成するカウンタを含み、遅延手段における遅延時間をカウンタの計数値に関係させるものである。
【0014】
好ましくは、カウンタは、所定のサンプリング間隔で、位相差検出手段の出力が基準入力クロック信号に対してフィードバック信号の進み状態を示すか遅れ状態を示すかによりカウンタ値をデクレメント又はインクレメントするものである。
【0015】
第6の発明のPLL回路は、第5の発明のPLL回路において、次のものを有している。
・カウンタの計数値に対応する遅延時間で発振手段の発振信号の各サイクルを遅延して生成した信号を出力信号とする遅延手段
・発振手段の発振信号の1サイクルの周期をT、及び発振手段からの発振信号の1サイクルについての遅延手段における遅延時間をdとするときにdとTとの比d/Tがカウンタの同一の計数値に対して一定範囲内となるように発振手段の発振信号の周波数と遅延手段におけるカウンタの計数値に対応する遅延時間とを整合させる整合手段
【0016】
電子素子は、温度変化、半導体製造上のばらつき、及び電源電圧の変動等に因り、特性が変化し、これが発振手段の発振信号の周波数や遅延手段における遅延時間の変動原因になる。発振手段の発振信号の周期Tに対する遅延手段の遅延時間dがカウンタの各計数値に対して整合が取れていない場合、カウンタの計数値が等しくても、温度、製造プロセス、及び電源電圧の変化等のために、d/Tが変化することになる。この変化が大き過ぎると、カウンタの係数値を変えたときの位相変化量が大きくばらつくことになり、遅延時間制御手段で正しく遅延制御できなくなる。この弊害を防止するために、整合手段は、d/Tがカウンタの同一の計数値に対して一定範囲内(d/Tがカウンタの同一の計数値に対して同一のときは当然に該一定範囲内である。)となるように、発振手段の発振信号の周期Tと遅延手段におけるカウンタの計数値に対応する遅延時間dとを整合させる。
【0017】
第7の発明のPLL回路によれば、第6の発明のPLL回路において、整合手段は、発振手段の発振周波数を調整するバイアス及び遅延手段における遅延時間を決める電流の生成のためのトランジスタのバイアスを設定するバイアス設定手段である。
【0018】
第8の発明のPLL回路によれば、第6の発明のPLL回路において、整合手段は、発振手段の入力電圧レベルと該入力電圧レベル及び任意に調整可能な外部入力電圧とに基づいて遅延手段における遅延時間を決める電流の生成のためのトランジスタのバイアスレベルを調整するレベル調整手段である。
【0019】
本発明のクロック発生方法によれば、基準入力クロック信号に関係する出力クロック信号を生成するクロック生成方法であって、次のステップを有している。
・基準入力クロック信号のパルスと出力クロック信号に係るフィードバック信号のパルスとの位相差に関係する信号を出力する位相差検出ステップ
・位相差検出ステップの出力に関係する周波数の信号を発生する発振ステップ
・発振ステップの出力を遅延させた信号を出力クロック信号として出力する遅延ステップ
・遅延ステップにおける遅延時間を制御する遅延時間制御ステップ
そして、遅延時間制御ステップは、基準入力クロック信号のパルスとフィードバック信号のパルスとの位相差の絶対値が減少する方向へ、遅延ステップにおける遅延時間を適宜、変更するものである。
【0020】
所定態様のクロック生成方法によれば、遅延時間制御ステップは、位相差検出ステップの出力の示す位相差の絶対値が所定値以上となったときに、遅延ステップにおける遅延時間を変更するものである。さらに、所定態様のクロック生成方法は、出力クロック信号がアンロック状態にあるか否かを検出する状態検出ステップ、及び 出力クロック信号がアンロック状態にあるときのみ遅延時間制御ステップにおける遅延時間の制御を実施する遅延時間制御ステップ、を有している。さらに、所定態様のクロック生成方法は、基準入力クロック信号のパルスに対するフィードバック信号のパルスの位相の進み量の大きいとき程、遅延ステップにおける遅延時間を増大させ、また、基準入力クロック信号のパルスに対するフィードバック信号のパルスの位相の遅れ量の大きいとき程、遅延ステップにおける遅延時間を減少させる遅延時間制御ステップ、を有している。所定態様のクロック生成方法によれば、遅延時間制御ステップは、基準入力クロック信号のパルスに対するフィードバック信号のパルスの位相差に関係する計数値を生成するカウンタを含み、遅延時間ステップは、遅延ステップにおける遅延時間をカウンタの計数値に関係させるものである。
【0021】
さらに、所定態様のクロック生成方法は、カウンタの計数値に対応する遅延時間で発振ステップの発振信号の各サイクルを遅延して生成した信号を出力信号とする遅延ステップ、及び発振ステップの発振信号の1サイクルの周期をT、及び発振ステップからの発振信号の1サイクルについての遅延ステップにおける遅延時間をdとするときにdとTとの比d/Tがカウンタの同一の計数値に対して一定範囲内となるように発振ステップの発振信号の周波数と遅延ステップにおけるカウンタの計数値に対応する遅延時間とを整合させる整合ステップ、を有している。所定態様のクロック生成方法によれば、整合ステップは、発振ステップの発振周波数を調整するバイアス及び遅延ステップにおける遅延時間を決める電流の生成のためのトランジスタのバイアスを設定するバイアス設定ステップであるか、又は、整合ステップは、発振ステップの入力電圧レベルと該入力電圧レベル及び任意に調整可能な外部入力電圧とに基づいて延ステップにおける遅延時間を決める電流の生成のためのトランジスタのバイアスレベルを調整するレベル調整ステップである。
【0022】
【発明の実施の形態】
以下、発明の実施の形態について図面を参照して説明する。
図1はPLL回路10のブロック図である。D分周器(DIV D)14は、基準クロック信号を入力され、周波数を1/D倍したクロック信号を出力する。パルス発生器(PG)15は、D分周器14からの信号の周波数に等しい周波数でかつ一定幅のパルスを生成し、それを出力する。同様に、N分周器(DIV N)29は、PLL Outであるフィードバッククロック信号を入力され、周波数を1/N倍したクロック信号を出力する。パルス発生器(PG)30は、N分周器29からの信号の周波数に等しい周波数でかつ一定幅のパルスを生成して、それを出力する。位相周波数検出器(PFD)16は、パルス発生器15,30からパルスを入力され、後述の図11において詳説するように、両入力パルスの位相差に関係するパルスを出力する。該出力パルスは、パルス発生器15,30から入力パルスの周波数差及び位相差を反映したものとなっている。すなわち、位相周波数検出器16は、パルス発生器30からのパルス信号の周波数がパルス発生器15のパルス信号の周波数に対して高いとき及びパルス発生器30からのパルス信号の位相がパルス発生器15のパルス信号の位相に対して進んでいるとき、ダウン信号ラインにダウン信号としてのパルスを出力し、逆のときは、アップ信号ラインにアップ信号としてのパルスを出力する。チャージポンプ(CP)19は、位相周波数検出器16からアップ信号を入力されている期間では、所定電流をループフィルタ(LF)20へ供給し、位相周波数検出器16からダウン信号を入力されている期間では、所定電流をループフィルタ20から吸引する。ループフィルタ20は、チャージポンプ19により充放電を制御される蓄電圧部を備え、該蓄電圧部の出力を電圧制御発振器(VCO)21へ出力する。電圧制御発振器21は、入力電圧に対応する周波数の信号を発振信号ライン57へ出力する。可変遅延段24は可変遅延器(VD)25及び遅延バイアス発生器(DBG)26とを備えている。可変遅延器25は、発振信号ライン57からの入力信号を、遅延して、出力ライン58へ出力する。可変遅延器25における遅延時間は制御可能になっている。出力ライン58の信号は、PLL回路10の出力(PLL Out)となるほか、N分周器(DIV N)29の入力ともなる。
【0023】
遅延選択装置34は、ローパスフィルタ(LPF)35、比較器(CMP)36、プログラマブルカウンタ(PRG CTR)37、アップダウンカウンタ(U/D CTR)39、及びアンロック検出器(ULD)38を備えている。ローパスフィルタ35は、位相周波数検出器16のアップ信号及びダウン信号の低周波数成分のみを通過させる。すなわち、アップ及びダウンのパルスの内、低周波成分を持つ十分に幅の大きなパルスのみ比較器36へ通されることになる。比較器36は、ローパスフィルタ35から入力されるアップ及びダウンのパルスの高さと基準の高さとを対比し、基準の高さ以上のパルスのみをプログラマブルカウンタ37へ送る。パルス発生器15,30の出力パルスの位相差の絶対値が所定値以下となるときは、アップ及びダウンのパルスのパルス幅が基準値以下となるとともに、アップ及びダウンのパルスは十分に立上る前に、立下がることになり、アップ及びダウンのパルスの高さは基準値以下になる。プログラマブルカウンタ37は、ローパスフィルタ35及び比較器36を通過することのできた十分に幅が大きく高さの高いアップ及びダウンのパルスのみをカウントする。このようにプログラマブルカウンタ37においてカウントされるに至ったアップ及びダウンのパルスを、以下、適宜、「条件をクリアした」アップ及びダウンのパルスとそれぞれ呼ぶことにする。プログラマブルカウンタ37は、条件をクリアしたアップのパルスが所定数mだけ連続入力されると、インクレメントパルスINCを1個、生成し、また、条件をクリアしたダウンのパルスが所定数mだけ連続入力されると、デクレメントパルスDECを1個だけ生成する。条件をクリアしたアップパルスが所定数mだけ連続入力される前に、条件をクリアしたダウンパルスが入力されると、プログラマブルカウンタ37は計数値を1に戻し、条件をクリアしたダウンパルスをカウントするモードに移る。逆に条件をクリアしたダウンパルスが、mだけ連続入力される前に、条件をクリアしたアップパルスが入力されると、プログラマブルカウンタ37は計数値を1に戻し、条件をクリアしたアップパルスをカウントするモードに移る。なお。mは、製造時に調整作業者による遅延調整により適宜、調整可能となっている。アップダウンカウンタ(U/D CTR)39は、プログラマブルカウンタ37においでインクレメントパルスが生成されると、計数値を1だけ増加させ、デクレメントパルスが生成されると、計数値を1だけ減少させる。アップダウンカウンタ39の計数値には、上限及び下限があり、計数値が上限又は下限に達すると、それ以上のインクレメント及びデクレメントは不可能になっている。アップダウンカウンタ39は例えば4ビットカウンタから成り、該4ビットカウンタの計数値の上限及び下限はそれぞれ”1111(=15)”及び”0000(=0)”である。アップダウンカウンタ39の出力は、アップダウンカウンタ39の各出力ビットに対応する各遅延制御ビットライン59を介して可変遅延器25へ送られる。アンロック検出器38は、パルス発生器15,30の出力信号、及び位相周波数検出器16のアップ信号及びダウン信号の計4個の信号に基づいてPLL回路10のアンロック状態及びロック状態を検出する。PLL回路10のロック状態では、(a)パルス発生器15,30のパルス信号の周波数及び位相は相互に等しくなり、また、(b)位相周波数検出器16の出力は(a)に対応する出力、すなわち所定期間におけるアップパルス及びダウンパルスの幅や高さは非常に小さくかつある一定期間に生成されるアップパルスの合計数とダウンパルスの合計数とがほぼ等しいものとなる。したがって、(a)及び/又は(b)を調べることにより、PLL回路10が現在、アンロック状態又はロック状態のどちらにあるかを検出できる。アンロック検出器(ULD)38は、アップダウンカウンタ39がPLL回路10のアンロック状態期間においてのみ作動するように、アップダウンカウンタ39を制御する。
【0024】
バイアス制御器(BIAS)41は、バイアスライン49を介して電圧制御発振器21及び遅延バイアス発生器26のバイアスを調整する。電圧制御発振器21はバイアスライン49からのバイアスにより入力電圧に対する発振周波数特性を調整可能になっている。遅延バイアス発生器26は、バイアスライン49からのバイアスにより可変遅延器25への制御電圧を変化させて、これにより、アップダウンカウンタ39から可変遅延器25への同一計数値に対して、電圧制御発振器21から可変遅延器25への各入力サイクルに対して行う遅延時間を電圧制御発振器21の1サイクルに対して整合可能になっている。
【0025】
図2は遅延バイアス発生器26の詳細図である。なお、FET(電界効果型トランジスタ)において、キャリア(キャリアは、Pチャンネル型FETではホール、Nチャンネル型FETでは電子である。)の移動方向へ上流側及び下流側をそれぞれソース及びドレインと定義する。Nチャンネル型FET45及びPチャンネル型FET46は、ドレイン同士を相互に接続された直列で接続される。Nチャンネル型FET47及びPチャンネル型FET48も、ドレイン同士を相互に接続された直列で接続される。FET46,48のゲートはFET45のドレインに共通に接続され、FET47ではゲートとドレインとは相互に接続されている。FET45はそのゲートへの電圧(Bias In)を可変レベルシフト回路(VLS)44により制御され、FET46,47のゲートはそれぞれバイアス出力のpライン50及びnライン51へ接続され、遅延バイアス発生器26のバイアス出力(Bias Out)p,nをそれぞれ生成する。この遅延バイアス発生器26では、最初に、FET45のソース−ドレイン電流がバイアスライン49の電圧と遅延ステップ入力により決定され、次に、FET46のゲート−ソース電圧が、FET45のソース−ドレイン電流とFET46のソース−ドレイン電流とが相互に等しいことから決定される。また、FET48のゲート−ソース電圧はFET46のゲート−ソース電圧と等しいので、FET48及びFET47のソース-ドレイン電流も決まり、FET47のとゲート−ソース電圧も一意に決定される。こうして、バイアス出力pライン50及びバイアス出力nライン51の電圧は所定の関係をもつ。PLL回路10の製造後において、調整作業者は、可変レベルシフト回路44への入力である遅延ステップを調整することにより、バイアスライン49を介して可変レベルシフト回路44へ入力される電圧に対するFET45のバイアス電圧を補正し、その結果としてバイアス出力pライン50及びバイアス出力nライン51の適切な電圧関係を得る。適切な電圧関係については、図3に関連したバイアス出力pライン50及びバイアス出力nライン51の説明の所で、詳述する。
【0026】
図3は可変遅延器25を構成する可変遅延ユニット64の詳細な回路図である。可変遅延器25は、1個、又は連続して接続された複数個の可変遅延ユニット64から構成され、可変遅延ユニット64の連続接続については後述の図5に示される。可変遅延ユニット64は、遅延段55a,55bの2個の遅延段を装備するが、所望の遅延時間を得るために、遅延段の個数は設計上、選択自在である。各遅延段の構成を説明する便宜上、各遅延段のFETは、D,E,F,G,H,Iで指示するとともに、D,E,F,Gの群の各FETは、さらに添え字1〜nを付して指示することにする。D,E,HはPチャンネル型のFETから成り、F,G,IはNチャンネル型のFETから成る。D1,D2,・・・,Dnは相互に並列接続され、E1,E2,・・・,Enは相互に並列接続され、F1,F2,・・・,Fnは相互に並列接続され、G1,G2,・・・,Gnは相互に並列接続される。D,Eにおいて、添え字の同一のFET同士は、Dが電源側、Eがアース側となるように、直列接続されている。F,Gにおいて、添え字の同一のFET同士は、Fがアース側、Gが電源側となるように、直列接続されている。H,Iは、ドレイン同士を相互に接続され、HのソースはE1,E2,・・・,Enのドレインに共通に接続され、IのソースはG1,G2,・・・,Gnのドレインに共通に接続される。1〜nの各ビットに対応する各遅延制御ビットライン59は、対応のD1,D2,・・・,Dnのゲートへは各インバータ60を介してそれぞれ接続され、また、対応のF1,F2,・・・,Fnのゲートへは直接、それぞれ接続される。バイアス出力pライン50はE1,E2,・・・,Enのゲートへ接続され、バイアス出力nライン51はG1,G2,・・・,Gnのゲートへ接続される。D,E,F,Gの各系列では、添え番号1〜nが大きいもの程、大きいW/L(ただし、Wは各FETのチャンネル幅W、Lは各FETのチャンネル長である。)をもつFETが採用されているとともに、導通時のドレイン電流は添え番号に対応した重み付けを設定されている。すなわち、kp’をDのFET系列に共通の定数、kpをEのFET系列に共通の定数、kn’をFのFET系列に共通の定数、knをGのFET系列に共通の定数とすると、D1,D2,・・・,Dnでは、それぞれW/L=20kp’,W/L=21kp’,・・・,W/L=2n-1kp’と設定され、E1,E2,・・・,Enでは、それぞれW/L=20kp,W/L=21kp,・・・,W/L=2n-1kpと設定され、F1,F2,・・・,Fnでは、それぞれW/L=20kn’,W/L=21kn’,・・・,W/L=2n-1kn’と設定され、G1,G2,・・・,Gnでは、それぞれW/L=20kn,W/L=21kn,W/L=2n-1knと設定される。こうして、E及びGの各番号i(iは1〜n)のFETのオン時の通電電流はそれぞれ2i-1kp,2i-1knの定数倍となる。つまり、これらの電流はそれぞれα・2i-1kp,β・2i-1knと表せる。また、| |を絶対値を表すものとして、各iについて、|α・2i-1kp|=|β・2i-1kn|が実現できるように、Vbias_p、及びVbias_nが設定される。インバータ56a,56bは各遅延段の間に介在し、各可変遅延段の出力波形を反転整形して、次段への入力を生成する。各遅延制御ビット(Delay Control Bits)には、”1”又は”0”がアップダウンカウンタ39から供給され、”1”の遅延制御ビットiに対応するFET DiとFiがオンになる。H,Iのオン時の通電電流は、遅延制御ビットの値(以下、適宜、「遅延制御値」と言う。)に比例する。
【0027】
可変遅延器25において、可変遅延ユニット64のE,Gには、バイアス出力pライン50及びバイアス出力nライン51よりゲート電圧を印加される。遅延制御ビットiが”1”のとき、Di,Fiは導通可能になる。H,Iのゲート電圧は、発振信号ライン57の信号、すなわち電圧制御発振器21の発振信号と一致している。H,Iのゲート電圧が”LOW(ロー)”の期間では、Hが導通状態になり、遅延制御値に対応する電流がインバータ56aのゲートに流れ込み、このノードを”HIGH(ハイ)”にする。また、H,Iのゲート電圧の”HIGH”の期間では、Iが導通状態になり、遅延制御値に対応する電流がインバータ56aのゲートから流れ出し、このノードを”LOW”にする。遅延制御値が大きいとき程、Hがオンになってからインバータ56aの入力電圧がインバータ56aを反転させる所定値V1以上になるまでの時間ta、又はIがオンになってからインバータ56aの入力電圧がインバータ56aを反転させる所定値V2以下になるまでの時間tbは短くなる。インバータ56aは、入力信号を反転させつつ、増幅して、次段の遅延段55bのH,Iのゲートへ伝達する。遅延段55bのH,Iは、インバータ56aからの”LOW”又は”HIGH”の入力電圧が可変遅延段55bを反転するレベルに達すると、反転し、遅延制御値により制御された電流をインバータ56bのゲートへ供給し、又はこのゲートから吸引する。こうして、各遅延段がインバータ56a,56bを反転するときに生ずる遅延時間は、遅延制御値の大きいとき程、短くなる。バイアス出力pライン50及びバイアス出力nライン51のバイアスは、前述のα、βの値を調節し、隣り合う遅延制御値に対する遅延の差分値がVCO21のクロックサイクルをほぼ2n等分するように決められる。具体的には、製造時に図2のバイアスライン49のバイアスと遅延ステップ入力及び可変レベルシフト回路44のレベルシフト量とを調整することにより、調整される。注意すべきは、遅延段55aのH,Iのオン時の供給電流及び吸引電流の値は、次の遅延段55bでは、それぞれH,Iをオンにするための遅延時間に相当することである。
【0028】
図4はPLLロックアップ期間における基準入力クロックに対する出力クロックの周波数差及び位相差の収束状況を示すグラフである。図4の特性は、可変遅延器25を装備しないPLL回路10においても得られる一般的な特性として示している。出力クロックの周波数差及び位相差は、振動しつつ、所定の時間すなわち、所定のロックアップ期間で0へ収束する。この振動現象は以下のことから説明される。PLLの位相周波数検出器は、2個のクロック信号の立上がりエッジ同士又は立下がりエッジ同士の発生時間の時間差を幅とするアップ又はダウンパルスを生成する。例えば、立上がりエッジ同士を比較する場合、基準クロックと出力クロックとが図11のような関係にあるとき、最初は周波数がほぼ同じであるのにもかかわらず、位相のみが出力クロックの方が進んでいるために、ダウンパルスが生成される。この結果、位相差がなくなる頃には、周波数が小さく(遅く)なり過ぎていて、次のサイクルでは、出力クロックが遅れてしまい、アップパルスが生成される。これに伴い、PLLの周波数は上がっていくが、周波数が小さくなり過ぎているので、位相はすぐに進められず、再び位相が合う頃には、周波数は大きく(速く)なり過ぎている。このようなサイクルを繰り返すと、周波数差及び位相差は結局図4に示すような収束曲線を描くことになる。PLL回路10は、この問題点を改善し、ロックアップ期間を短縮する機能を備えている。
【0029】
PLL回路10は、図4のA1、A2、又はA3のような時点で、PLLの位相差を瞬間的に”0”にする、又は”0”に近い値にすることによりロックアップ期間を短縮するものである。PLLの位相周波数検出器16は比較する2個のクロックのエッジの時間差のみをチェックしているので、瞬間的には2個のクロックの位相差しか検出できない。この位相差が或る程度以上の値であるならば、或る高さ以上で、或る幅以上の条件をクリアしたアップ又はダウンパルスのどちらか一方が連続して或る回数以上、生成される。図4のA1.A2.A3で示したエリアは位相差が大きく、この条件を満たすところに相当する。これらのエリアで、PLLの周波数は変化させずに、位相のみを可変遅延器25を用いて、瞬間的に基本入力クロックに等しくする、又は近づけるのが本手法の目的となっている。
【0030】
これにより、図4の周波数差、位相差波形の正及び負のオーバーシュートピークは小さく抑えられ、ロックアップ期間は大きく短縮される。
【0031】
図5は遅延制御値と遅延時間との関係を調べた実験回路のブロック図である。各可変遅延ユニット64は、図3でも示したように、遅延段55a,55b及びインバータ56a,56b,60の1組の対を含むものであり、計30個の可変遅延ユニット64は直列に接続されている。図において、出力(out)iは、i+1番目(ただしiは0〜29)の可変遅延ユニット64の入力であり、かつi番目(ただしiは1〜30)の可変遅延ユニット64の出力である。バイアス回路65は、図1の遅延ステップ入力及びバイアス入力49を持つ遅延バイアス発生器26に対応しており、各可変遅延ユニット64へバイアスp,nを供給する。バイアス回路65では、整合を取るVCOの発振信号がないので、遅延バイアス発生器の遅延ステップ及びバイアス入力49をBias Inの1個で代用し、手動で制御する。入力バッファ70には実験用の所定の発振信号が入力される。アップダウンカウンタ73は、図1のアップダウンカウンタ39に対応し、入力されるINC,DECのパルスを計数するとともに、リセット信号により計数値をリセットされる。制御論理回路74は、選択の指示に応じて、アップダウンカウンタ73の計数値又は外部入力の一方を各可変遅延ユニット64へ出力する。イクスクルーシブ−オア(EX−OR)ゲート76は出力30と出力0との排他的論理和を出力し、EX−ORゲート77は出力20と出力0との排他的論理和を出力し、EX−ORゲート78は出力10と出力0との排他的論理和を出力する。EX−ORゲート76,77,78は、出力0に入力された信号が反転した時及び反転エッジが遅延によりそれぞれ出力30,20,10に達した時、出力を反転する。したがって、EX−ORゲート76,77,78に発生するパルスの幅を測定することにより、それぞれ30個、20個、及び10個の可変遅延ユニット64により信号がどれだけ遅延されたかを検出することができる。出力バッファ80,81,82は、それぞれEX−ORゲート76,77,78の出力を入力され、それぞれ遅延出力(Delay Out)3,2,1を生成する。
【0032】
EX−ORゲート76,77,78は、出力0に対する出力30,20,10の遅延時間をパルス幅として持つパルス信号を出力し、EX−ORゲート76,77,78の出力から検出される遅延時間をそれぞれ1/30,1/20,1/10にした値が1個の可変遅延ユニット64当たりの遅延時間を表わす。図6は図5の実験回路から測定検出された遅延制御値と遅延時間との関係を示すグラフである。遅延時間は、遅延制御値に対して一意であり、遅延制御値の増大に対して単調減少する特性になっている。
【0033】
図7は可変遅延器25を装備しない、すなわち電圧制御発振器21の出力をそのままN分周器29へ送る従来型PLL回路におけるロックアップ期間における出力クロックの周波数変動を示している。0から約25μsecまではPLLが停止状態からターゲットの202MHzにロックするまでの動きである。このときのロックアップ時間を「周波数ロックアップ時間」と呼ぶことにする。また、40μsec付近で基準入力クロックの位相を180°シフトさせ、ロック状態から周波数はそのままで位相のみ180°ずれた状態を実現し、この時の周波数の変動やロックアップ時間も示している。この時のロックアップ時間を「位相ロックアップ時間」と呼ぶことにする。図8はプログラマブルカウンタ37のmの値は5にセットし、図7と同じ条件で評価したPLL回路10におけるロックアップ期間の出力の周波数変動を示している。図9は図8のPLL回路10の特性を得たときの遅延制御値の変化を示している。図9の遅延制御値は、4ビットのアップダウンカウンタ39の出力値で、0から15までの遅延制御値を示すことができる。周波数及び位相についての目標クロック信号に対するPLL回路10の実際の出力クロック信号の差に対応する遅延制御値がアップダウンカウンタ39において生成され、この遅延制御値がアップダウンカウンタ39から可変遅延器25へ送られ、電圧制御発振器21の出力は、可変遅延器25において、遅延制御値に対応する遅延時間分、遅延させられる。図7と図8とを対比して分かるように、可変遅延器25を装備しないPLL回路に比して、可変遅延器25を装備するPLL回路10では、目標周波数に対する実際の出力周波数の変動のオーバーシュートのピークが抑制され、周波数ロックアップ時間及び位相ロックアップ時間の両方共が短縮される。アンロック検出器38は、ロック状態になるや、アップダウンカウンタ39による計数作動を中止させて、可変遅延器25における遅延時間を、それ以上、変化しないようにホールドする。これにより、一旦、ロックアップが成立した後は、可変遅延器25による無用な遅延時間制御により安定動作時のPLLのジッタ特性を悪化させることが回避される。
【0034】
PLL回路10の全体の作用について述べる。位相周波数検出器16は、周波数及び位相についてパルス発生器15からのクロック信号に対してパルス発生器30からクロック信号が遅れているか進んでいるかに応じてアップ又はダウンのパルスを出力する。チャージポンプ19は、位相周波数検出器16の出力に応じてループフィルタ20の蓄電圧部へ電流を供給、又は吸引を行い、電圧制御発振器21は、ループフィルタ20の蓄電圧部の電圧に対応する周波数の発振信号を出力する。一方、プログラマブルカウンタ37は、比較器36から出力される、条件をクリアしたアップ及びダウンのパルスを計数する。条件をクリアしたアップ又はダウンパルスが連続して来ないときには、”1”にリセットし、連続して来ているときは、来るたびに計数値を1ずつ増やす。そして、計数値がmに達すると、INC又はDECパルスを生成する。具体的には、連続してm個の条件をクリアしたアップパルスが入力されると、INCパルスを1個、生成する。逆に、連続してm個の条件をクリアしたダウンパルスが入力されると、DECパルスを1個、生成する。アップダウンカウンタ39はプログラマブルカウンタ37のINC又はDEC出力パルスを受け取ると、計数値をそれぞれ1だけインクレメント又はデクレメントする。アップダウンカウンタ39は例えば4ビットカウンタであって、0〜15の計数値を有し、アップダウンカウンタ39の計数値としての遅延制御値は、各遅延制御ビットの”1”又は”0”の値として可変遅延器25へ送られる。可変遅延器25は、遅延制御値に対応する遅延時間で、電圧制御発振器21から入力される発振信号の各サイクルを遅らせて、出力ライン58へ出力する。このPLL回路10では、図6で説明したように、アップダウンカウンタ39の遅延制御値が大きいとき程、電圧制御発振器21の発振信号の各サイクルについての遅延時間は減少する。このように、条件をクリアしたアップ又はダウンパルスが連続して所定回数m個、繰り返して生成されると、PLL回路10はPLL出力クロックの位相が、基準入力クロックの位相に対し異常に遅れている又は進んでいる状態であると判断する。そして、PLL出力クロックの周波数は変えずに位相のみを瞬間的に進ませる又は遅らせるために、可変遅延器25の遅延時間を小さく又は大きくする。これにより、ロックアップ期間における周波数及び位相についてのパルス発生器15のクロック信号に対するパルス発生器30のクロック信号の無駄な変動やそれによって生じるオーバーシュートが抑制され、ロックアップ期間の短縮が図られる。
【0035】
図10は別のPLL回路90のブロック図である。PLL回路90において、図1のPLL回路10の構成要素と同一の構成要素は、PLL回路10の構成要素の符号と同一の符号で指示して、説明を省略し、PLL回路10との相違点についてのみ説明する。PLL回路90では、PLL回路10のバイアス制御器41が除去され、代わりに、レベルシフト回路(LS)91が、ループフィルタ20と電圧制御発振器21との間に介在し、ループフィルタ20の同一の出力電圧に対して電圧制御発振器21へ出力する電圧レベルをシフトするとともに、そのシフトした電圧レベルと遅延ステップ入力とから生成されるバイアス電圧を遅延バイアス発生器26のバイアス出力pライン50及びバイアス出力nライン51の電圧レベルを調整する。レベルシフト回路91の出力を可変遅延器25のバイアス生成にも用いることにより電圧制御発振器21における発振周波数と可変遅延器25における1サイクル当たりの遅延時間との整合を取り、同一の遅延制御値(遅延制御ビットの値)では、電圧制御発振器21の発振信号の1サイクルの周期Tに対する可変遅延器25における遅延時間dの比d/Tが一定の範囲に入る。したがって、発振信号の1サイクルに対する或る遅延制御値に対応する遅延時間の変動は、温度の変動、半導体製造プロセスのばらつき、及び電源電圧変動等に対して抑制することができる。
【図面の簡単な説明】
【図1】PLL回路のブロック図である。
【図2】遅延バイアス発生器の詳細図である。
【図3】可変遅延器を複数個で構成している可変遅延ユニットの1個についての詳細な回路図である。
【図4】従来型PLL回路のロックアップ期間における基準入力クロックに対する出力クロックの周波数差及び位相差の収束状況を示すグラフである。
【図5】遅延制御値と遅延時間との関係を測定した実験回路のブロック図である。
【図6】図5の実験回路から測定、検出した遅延制御値と遅延時間との関係を示すグラフである。
【図7】可変遅延器を装備しない従来型PLL回路におけるロックアップ期間の出力の周波数変動を示すグラフである。
【図8】可変遅延器を装備するPLL回路におけるロックアップ期間の出力の周波数変動を示す図である。
【図9】図8のPLL回路の特性を得たときの遅延制御値の変化を示す図である。
【図10】可変遅延器を装備する別のPLL回路のブロック図である。
【図11】位相周波数検出器の入力及び出力の波形関係を示す図である。
【符号の説明】
10 PLL回路
16 位相周波数検出器(位相差検出手段)
20 ループフィルタ
21 電圧制御発振器(発振手段)
25 可変遅延器(遅延手段)
26 遅延バイアス発生器
29 N分周器
37 プログラマブルカウンタ(遅延時間制御手段)
39 アップダウンカウンタ(遅延時間制御手段)
38 アンロック検出器
41 バイアス制御器(バイアス設定手段)
90 PLL回路
91 レベルシフト回路(レベル調整手段)
Claims (10)
- 基準入力クロック信号に関係する出力クロック信号を生成するPLL回路において、
基準入力クロック信号のパルスと前記出力クロック信号に係るフィードバック信号のパルスとの位相差に関係する信号を出力する位相差検出手段、
前記PLL回路がアンロック状態にあるか否かを検出する状態検出手段、
前記位相差検出手段の出力に関係する周波数の信号を発生する発振手段、
前記発振手段の出力を遅延させた信号を前記出力クロック信号として出力する遅延手段、及び
前記遅延手段における遅延時間を制御する遅延時間制御手段、
を有し、
前記遅延時間制御手段は、前記PLL回路のアンロック状態期間では、前記基準入力クロック信号のパルスに対する前記フィードバック信号のパルスの位相の進み量が所定値以上であることが継続する時間が長くなるほど、遅延時間を増大させていき、また、基準入力クロック信号のパルスに対する前記フィードバック信号のパルスの位相の遅れ量が所定値以上であることが継続する時間が長くなるほど、遅延時間を減少させていくものとなっていることを特徴とするPLL回路。 - 前記遅延時間制御手段は、前記基準入力クロック信号のパルスに対する前記フィードバック信号のパルスの位相差に関係する計数値を生成するカウンタを含み、前記遅延手段における遅延時間を前記カウンタの計数値に関係させるものである、
ことを特徴とする請求項1記載のPLL回路。 - 前記カウンタの計数値に対応する遅延時間で前記発振手段の発振信号の各サイクルを遅延して生成した信号を出力信号とする前記遅延手段、及び
前記発振手段の発振信号の1サイクルの周期をT、及び前記発振手段からの発振信号の1サイクルについての前記遅延手段における遅延時間をdとするときにdとTとの比d/Tが前記カウンタの同一の計数値に対して一定範囲内となるように前記発振手段の発振信号の周波数と前記遅延手段における前記カウンタの計数値に対応する遅延時間とを整合させる整合手段、
を有していることを特徴とする請求項2記載のPLL回路。 - 前記整合手段は、前記発振手段の発振周波数を調整するバイアス及び前記遅延手段における遅延時間を決める電流の生成のためのトランジスタのバイアスを設定するバイアス設定手段であることを特徴とする請求項3記載のPLL回路。
- 前記整合手段は、前記発振手段の入力電圧レベルと該入力電圧レベル及び任意に調整可能な外部入力電圧とに基づいて遅延手段における遅延時間を決める電流の生成のためのトランジスタのバイアスレベルを調整するレベル調整手段であることを特徴とする請求項3記載のPLL回路。
- 基準入力クロック信号に関係する出力クロック信号を生成するPLL回路のクロック生成方法において、
基準入力クロック信号のパルスと前記出力クロック信号に係るフィードバック信号のパルスとの位相差に関係する信号を出力する位相差検出ステップ、
前記位相差検出ステップの出力に関係する周波数の信号を発生する発振ステップ、
前記発振ステップの出力を遅延させた信号を前記出力クロック信号として出力する遅延ステップ、及び
前記遅延ステップにおける遅延時間を制御する遅延時間制御ステップ、
を有し、
前記遅延時間制御ステップは、前記PLL回路のアンロック状態期間では、前記基準入力クロック信号のパルスに対する前記フィードバック信号のパルスの位相の進み量が所定値以上であることが継続する時間が長くなるほど、遅延時間を増大させていき、また、基準入力クロック信号のパルスに対する前記フィードバック信号のパルスの位相の遅れ量が所定値以上であることが継続する時間が長くなるほど、遅延時間を減少させていくものと なっていることを特徴とするクロック生成方法。 - 前記遅延時間制御ステップは、前記基準入力クロック信号のパルスに対する前記フィードバック信号のパルスの位相差に関係する計数値を生成するカウンタを含み、
前記遅延時間ステップは、前記遅延ステップにおける遅延時間を前記カウンタの計数値に関係させるものである、
ことを特徴とする請求項6記載のクロック生成方法。 - 前記カウンタの計数値に対応する遅延時間で前記発振ステップの発振信号の各サイクルを遅延して生成した信号を出力信号とする前記遅延ステップ、及び
前記発振ステップの発振信号の1サイクルの周期をT、及び前記発振ステップからの発振信号の1サイクルについての前記遅延ステップにおける遅延時間をdとするときにdとTとの比d/Tが前記カウンタの同一の計数値に対して一定範囲内となるように前記発振ステップの発振信号の周波数と前記遅延ステップにおける前記カウンタの計数値に対応する遅延時間とを整合させる整合ステップ、
を有していることを特徴とする請求項7記載のクロック生成方法。 - 前記整合ステップは、前記発振ステップの発振周波数を調整するバイアス及び前記遅延ステップにおける遅延時間を決める電流の生成のためのトランジスタのバイアスを設定するバイアス設定ステップであることを特徴とする請求項8記載のクロック生成方法。
- 前記整合ステップは、前記発振ステップの入力電圧レベルと該入力電圧レベル及び任意に調整可能な外部入力電圧とに基づいて前記遅延ステップにおける遅延時間を決める電流の生成のためのトランジスタのバイアスレベルを調整するレベル調整ステップであることを特徴とする請求項8記載のクロック生成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206736A JP3782952B2 (ja) | 2001-07-06 | 2001-07-06 | Pll回路及びクロック生成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206736A JP3782952B2 (ja) | 2001-07-06 | 2001-07-06 | Pll回路及びクロック生成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003046387A JP2003046387A (ja) | 2003-02-14 |
JP3782952B2 true JP3782952B2 (ja) | 2006-06-07 |
Family
ID=19042823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001206736A Expired - Fee Related JP3782952B2 (ja) | 2001-07-06 | 2001-07-06 | Pll回路及びクロック生成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3782952B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100824791B1 (ko) * | 2006-08-18 | 2008-04-24 | 삼성전자주식회사 | 클록 체배기 및 클록 체배 방법 |
KR101148348B1 (ko) * | 2007-09-21 | 2012-05-21 | 콸콤 인코포레이티드 | 조정가능한 위상을 사용하는 신호 생성기 |
CN111416617B (zh) * | 2020-03-18 | 2024-05-03 | 广州土圭垚信息科技有限公司 | 一种时钟同步方法、装置及电子设备 |
CN111478698B (zh) * | 2020-04-03 | 2023-06-02 | 上海安路信息科技股份有限公司 | 锁相环锁定检测电路 |
US11489518B2 (en) * | 2021-03-05 | 2022-11-01 | Qualcomm Incorporated | Inverter-based delay element with adjustable current source/sink to reduce delay sensitivity to process and supply voltage variation |
-
2001
- 2001-07-06 JP JP2001206736A patent/JP3782952B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003046387A (ja) | 2003-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10608652B2 (en) | Frequency-agile clock multiplier | |
US7236028B1 (en) | Adaptive frequency variable delay-locked loop | |
US7586347B1 (en) | Clock generator with self-bias bandwidth control | |
JP5022445B2 (ja) | スペクトラム拡散クロック発生装置 | |
US7928779B2 (en) | Methods and apparatuses for incremental bandwidth changes responsive to frequency changes of a phase-locked loop | |
US7177611B2 (en) | Hybrid control of phase locked loops | |
JP3094977B2 (ja) | Pll回路 | |
US7339439B2 (en) | Voltage-controlled oscillator with multi-phase realignment of asymmetric stages | |
JP5682281B2 (ja) | Pll回路 | |
JP5686885B2 (ja) | アナログ及びデジタルフィードバック制御を備えた位相ロック・ループ(pll) | |
US7276944B2 (en) | Clock generation circuit and clock generation method | |
US6005425A (en) | PLL using pulse width detection for frequency and phase error correction | |
JP4270339B2 (ja) | Pll回路及びこれに用いられる自動バイアス調整回路 | |
KR101394762B1 (ko) | Dll/pll 에서의 위상 시프트 | |
US7342426B2 (en) | PLL with controlled VCO bias | |
JP3782952B2 (ja) | Pll回路及びクロック生成方法 | |
US7352837B2 (en) | Digital phase-locked loop | |
US7113014B1 (en) | Pulse width modulator | |
EP1538451B1 (en) | Phase -locked loop with a programmable frequency detector | |
KR101390393B1 (ko) | 전하 펌프의 전류 특성을 조정하는 전하 펌프 바이어스 조정 장치 및 이를 이용한 주파수 발생 장치 | |
JP3177025B2 (ja) | Pll回路 | |
JP4082507B2 (ja) | 位相同期回路 | |
KR100235370B1 (ko) | 위상 동기 회로 | |
US11496140B2 (en) | Oscillator closed loop frequency control | |
JP2002246899A (ja) | Pll回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060221 |
|
RD14 | Notification of resignation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7434 Effective date: 20060221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060313 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |