JP3780977B2 - Failure diagnosis device and failure diagnosis method for cell voltage detection circuit - Google Patents

Failure diagnosis device and failure diagnosis method for cell voltage detection circuit Download PDF

Info

Publication number
JP3780977B2
JP3780977B2 JP2002152400A JP2002152400A JP3780977B2 JP 3780977 B2 JP3780977 B2 JP 3780977B2 JP 2002152400 A JP2002152400 A JP 2002152400A JP 2002152400 A JP2002152400 A JP 2002152400A JP 3780977 B2 JP3780977 B2 JP 3780977B2
Authority
JP
Japan
Prior art keywords
cell
detection circuit
reference voltage
cell voltage
voltage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002152400A
Other languages
Japanese (ja)
Other versions
JP2003346916A (en
Inventor
祐志 中田
智永 杉本
剛 森田
宇貴 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002152400A priority Critical patent/JP3780977B2/en
Publication of JP2003346916A publication Critical patent/JP2003346916A/en
Application granted granted Critical
Publication of JP3780977B2 publication Critical patent/JP3780977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組電池のセル電圧を検出するセル電圧検出回路の故障箇所を特定することができる診断装置および故障診断方法に関する。
【0002】
【従来の技術】
従来、複数のセルから構成される組電池のセル電圧を検出する回路の故障診断装置が知られている。特開平11−252809号公報には、組電池の総電圧VAを検出するとともに、各セル電圧を検出して加算することにより加算電圧VTを求めて、両電圧値VA,VTを比較して一致しなければ、異常が発生したと判定する技術が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の故障診断装置では、両電圧値VA,VTが不一致であった場合に、いずれの箇所に故障が発生したかを特定することができなかった。
【0004】
本発明の目的は、セル電圧検出回路の故障診断を行うセル電圧検出回路の故障診断装置および故障診断方法を提供することにある。
【0005】
【課題を解決するための手段】
(1)本発明によるセル電圧検出回路の故障診断装置は、組電池を構成するセルのセル電圧を検出する複数のセル電圧検出回路と、複数のセル電圧検出回路のうちのいずれかのセル電圧検出回路に基準電圧を印加する基準電圧印加回路と、基準電圧を印加するセル電圧検出回路を切り替える印加電圧切替回路と、基準電圧が印加されたセル電圧検出回路にて検出された検出電圧と、印加された基準電圧とに基づいて、基準電圧が印加されたセル電圧検出回路の故障診断を行う故障診断回路とを備えることにより、上記目的を達成する。
(2)本発明によるセル電圧検出回路の故障診断方法は、組電池を構成するセルのセル電圧を検出する複数のセル電圧検出回のうちのいずれかのセル電圧検出回路に基準電圧を印加し、印加された基準電圧をセル電圧検出回路にて検出し、基準電圧が印加されたセル電圧検出回路にて検出された検出電圧と、実際に印加された基準電圧とに基づいて、セル電圧検出回路の故障診断を行うことにより、上記目的を達成する。
【0006】
【発明の効果】
本発明によるセル電圧検出回路の故障診断装置およびセル電圧検出回路の故障診断方法によれば、セルごとに設けられるセル電圧検出回路に印加された基準電圧を検出した検出電圧と、実際に印加された基準電圧とに基づいて、セル電圧検出回路の故障診断を行うことにより、セル電圧検出回路の故障を確実に検出することができる。
【0007】
【発明の実施の形態】
図1および図2は、本発明によるセル電圧検出回路の故障診断装置の一実施の形態の構成を示す図である。組電池1は、8つのセルC1〜C8を直列に接続して構成される。容量調整回路E1〜E8は、各セルC1〜C8ごとにセルと並列に接続されて、対応するセルを放電させることによる容量調整を行い、各セル間の容量バラツキを抑制する。
【0008】
切替スイッチ部5は、CPU10から送られる制御信号Iに基づいて、スイッチSW1〜SW8を切り替える。制御信号IがLoレベルの時は、SW1〜SW8をセル電圧回路側にセットし、制御信号IがHiレベルの時は、SW1〜SW8を基準電圧回路側にセットする。図1では、スイッチSW1〜SW8が全てセル電圧回路側にセットされている状態を示しており、この状態では、後述するセル電圧検出回路3により、各セル電圧を検出することができる。
【0009】
セル電圧検出回路3は、差動増幅部D1〜D8を備える。スイッチSW1〜SW8がセル電圧回路側にセットされている時は、差動増幅部D1〜D8の出力にて、対応するセルC1〜C8のセル電圧Vc1〜Vc8を検出する。一方、スイッチSW1〜SW8が基準電圧回路側にセットされている時は、差動増幅部D1〜D8に印加される基準電圧を検出する。検出した電圧値は、それぞれCPU10に送信される。なお、基準電圧とは、セル電圧検出回路3の故障診断時に用いられる電圧のことである。
【0010】
図2は、セル電圧検出回路3の診断回路部の詳細な構成を示す図である。診断回路部は、切替スイッチ部5と、セル電圧検出回路3の故障診断を行う際に用いられる基準電圧を設定する基準電圧設定部6と、基準電圧設定部6で設定された基準電圧をセル電圧検出回路3に印加するためのアナログスイッチIC部7と、CPU10とを備える。アナログスイッチIC部7は、基準電圧を印加する切替スイッチ部5を定めるマルチプレクサMPX1と、接地電圧を印加する切替スイッチ部5を定めるマルチプレクサMPX2とを有する。上述したように、切替スイッチ部5は、CPUから送られる制御信号Iに基づいて、スイッチSW1〜SW8の切替を行い、制御信号IがHiレベルの場合には、スイッチSW1〜SW8を基準電圧回路側にセットする。
【0011】
D/Aコンバータを有する基準電圧設定部6は、CPU10から送られる制御信号に基づいて、故障診断に用いる基準電圧のアナログ信号を発生して、アナログスイッチIC部7のマルチプレクサMPX1のXポートに送る。基準電圧は任意の値を設定することができるが、本実施の形態では、2.0(V)〜4.5(V)の範囲の電圧値を基準電圧として用いる。アナログスイッチIC部7は、CPU10から送られる制御信号A,B,Cに基づいて、基準電圧を印加するセル間を切り替える。基準電圧を印加するセル間の切替方法について、図3を用いて説明する。
【0012】
図3は、CPU10の制御信号I,A,B,Cの信号レベルに応じて、いずれのセル間に基準電圧が印加されるかを示す表である。制御信号IがLoレベルの時は、MPX1,2の端子Xと端子X0〜X7間は、全てオフとなる。制御信号IがHiレベルの場合には、制御信号A,B,Cのレベルに応じて、MPX1,2は、ともに各々の端子Xと端子X0〜X7のうちのいずれか1つの端子との間がオンとなる。例えば、制御信号A,B,Cの全てがLoレベルの場合には、図3に示すように、端子Xと端子X0との間がオンとなる。この場合、差動増幅部D1のプラス側には基準電圧設定部6で設定された基準電圧VdがMPX1を介して印加され、マイナス側にはMPX2を介して接地電圧(0V)が印加される。従って、差動増幅部D1は、印加される基準電圧Vdを入力電圧Vin1として検出して、CPU10に出力する。
【0013】
同様に、制御信号(A,B,C)の信号レベルが(H,L,L)の時には、差動増幅部D2に基準電圧Vdが入力電圧Vin2として印加され、(L,H,L)の時には、差動増幅部D3に基準電圧Vdが入力電圧Vin3として印加される。差動増幅部D4〜D8に基準電圧Vdを印加するときの制御信号(A,B,C)の信号レベルはそれぞれ、(H,H,L)、(L,L,H)、(H,L,H)、(H,H,L)、(H,H,H)である。なお、差動増幅部D8のマイナス側は接地されているので、MPX2を介して接地電圧が印加されることは無い。
【0014】
セル電圧検出回路3の故障診断方法について説明する。CPU10は、制御信号IをHレベルにすることにより、スイッチSW1〜SW8を基準電圧回路側にセットする。差動増幅部D1の故障診断を行う場合は、制御信号(A,B,C)の信号レベルを(L,L,L)とする。これにより、差動増幅部D1には、基準電圧Vdが印加されるので、差動増幅部D1は、基準電圧Vdを入力電圧Vin1として検出して、CPU10に出力する。CPU10は、差動増幅部D1にて検出された電圧Vin1と実際に印加した基準電圧Vdとを比較し、両電圧の差が所定の範囲内になければ、差動増幅部D1に故障があると判定する。本実施の形態では、基準電圧Vdを2.0(V)および4.3(V)とし、所定の範囲を0.15(V)とする。
【0015】
図4は、本発明によるセル電圧検出回路の故障診断装置による故障診断制御手順を示す一実施の形態のフローチャートである。ステップS1から始まる処理は、CPU10にて行われる。ステップS1では、制御信号IをLoレベルからHiレベルに切り替える。これにより、スイッチSW1〜SW8がセル電圧回路側から基準電圧回路側に切り替えられる。次のステップS2では、診断基準電圧Vdを4.3(V)とするデジタル信号を基準電圧設定部6に送信する。本実施の形態では、各セルの過充電時の電圧が4.5(V)であるので、基準電圧Vdを4.3(V)に設定することにより、過充電検知領域での故障診断を行う。
【0016】
診断基準電圧Vdを4.3(V)に設定すると、ステップS3に進む。ステップS3では、故障診断を行うセル間に応じて、制御信号A,B,Cの信号レベルを切り替える。セルC1に対応する差動増幅部D1の故障診断を行う場合には、制御信号A,B,Cを全てLoレベルとする。これにより、差動増幅部D1は、印加される基準電圧Vdを入力電圧Vin1として検出して、CPU10に出力する。次のステップS4では、差動増幅部D1で検出した電圧Vin1とステップS2で設定した基準電圧Vdとの差が所定の範囲内(0.15(V))であるか否かを判定する。電圧Vin1とVdとの差が所定の範囲内であると判定するとステップS5に進み、両電圧差が所定の範囲内に無いと判定するとステップS11に進む。ステップS11では、差動増幅部D1に故障が発生したと判定して、本フローチャートによる処理を終了する。
【0017】
ステップS5では、全ての差動増幅部D1〜D8に対して、故障診断を行ったか否かを判定する。全ての差動増幅部D1〜D8に対して故障診断を行っていないと判定すると、ステップS3に戻って、故障診断を行っていない差動増幅部に対して、上述したステップS3,S4の処理を行う。全ての差動増幅部D1〜D8に対して故障診断を行ったと判定すると、ステップS6に進む。
【0018】
ステップS6では、各セルの過放電時の電圧が1.8(V)であるので、診断基準電圧Vdを2.0(V)とするデジタル信号を基準電圧設定部6に送信する。すなわち、ステップS6以降の処理では、過放電検知領域での故障診断を行う。ステップS6に続くステップS7では、故障診断を行うセル間に応じて、制御信号A,B,Cの信号レベルを切り替える。ステップS7で行う処理は、ステップS3で行った処理と同じである。故障診断を行うセル間に応じて制御信号A,B,Cの信号レベルを切り替えると、ステップS8に進む。ステップS8では、ステップS7の信号レベル切替制御により基準電圧が印加される差動増幅部で検出した電圧Vinと、ステップS6で設定した基準電圧Vdとの差が所定の範囲内(0.15(V))であるか否かを判定する。電圧VinとVdとの差が所定の範囲内であると判定するとステップS9に進み、両電圧差が所定の範囲内に無いと判定するとステップS12に進む。ステップS12では、差動増幅部D1に故障が発生したと判定して、本フローチャートによる処理を終了する。
【0019】
ステップS9では、全ての差動増幅部D1〜D8に対して、基準電圧Vdを2.0(V)とした時の故障診断を行ったか否かを判定する。全ての差動増幅部D1〜D8に対して故障診断を行っていないと判定すると、ステップS7に戻って、故障診断を行っていない差動増幅部に対して、上述したステップS7,S8の処理を行う。全ての差動増幅部D1〜D8に対して故障診断を行ったと判定すると、ステップS10に進む。ステップS10では、制御信号IをHiレベルからLoレベルに切り替えて、本フローチャートによる処理を終了する。これにより、スイッチSW1〜SW8は、基準電圧回路側からセル電圧回路側に切り替えられるとともに、MPX1,2からの出力が禁止される。
【0020】
なお、ステップS11またはステップS12にて、差動増幅部に故障が発生したと判定された場合には、不図示のインジケータやスピーカにより、故障が生じたことを知らせることができる。この場合、故障診断は、各差動増幅部D1〜D8ごとに行うので、故障が発生した差動増幅部を特定して故障が生じたことを報知することができる。
【0021】
(1)本実施の形態におけるセル電圧検出回路の故障診断装置によれば、差動増幅部D1〜D8に印加された基準電圧を検出した検出電圧Vinと、実際に印加された基準電圧Vdとに基づいて、差動増幅部D1〜D8の故障診断を行うことにより、差動増幅部D1〜D8の故障を確実に検出することができる。基準電圧を印加する差動増幅部D1〜D8は、アナログスイッチIC部7にて順次切り替えられるので、全ての差動増幅部D1〜D8の故障診断を行うことができる。また、故障診断に用いられる基準電圧は、CPU10からの指令に基づいて基準電圧設定部6にて任意の値に設定することができるので、差動増幅部D1〜D8の電圧検出範囲の全域に渡る故障診断を行うことができる。
【0022】
(2)複数のセルを接続して構成される組電池では、セル電圧を検出することにより、組電池の過充電および過放電を防止する機能を備えるものが多い。従って、故障診断に用いる基準電圧をセルの過充電電圧領域の値、および、過放電電圧領域の値に各々設定して診断することにより、差動増幅部D1〜D8の過充電検知領域および過放電電圧領域での故障診断を各々行い、確実に組電池の過充電および過放電を防止することができる。本実施の形態におけるセル電圧検出回路の故障診断装置のように、1回の故障診断時に基準電圧をセルの過充電電圧領域の値に設定した後、過放電電圧領域の値に設定することにより、一度に過充電および過放電検知領域での故障診断を行うことができる。
【0023】
(3)差動増幅部D1〜D8の故障診断を行う際には、スイッチSW1〜SW8をセル電圧回路側から基準電圧回路側に切り替えることにより、差動増幅部D1〜D8に基準電圧を印加するようにした。これにより、故障診断時には、容量調整回路E1〜E8と差動増幅部D1〜D8とが切り離されるので、セルC1〜C8の容量調整の有無に関わらず、故障診断を行うことができる。すなわち、セルC1〜C8の容量調整を行っている時にセル電圧検出回路3(差動増幅部D1〜D8)の故障診断を行う場合でも、容量調整を中断する必要はない。
【0024】
(4)従来の故障診断方法のように、組電池の総電圧VAを検出するとともに、各セル電圧を検出して加算することにより加算電圧VTを求めて、両電圧を比較する方法では、いずれのセル電圧検出回路に故障が生じたかを特定することができない。また、ある一つのセル電圧検出回路の検出値がプラス側にずれるとともに、別のセル電圧検出回路の検出値がマイナス側にずれて、加算電圧VTを求めた時に両者のずれ幅が相殺される場合には、故障が無いと判定される可能性もある。これに対して、本実施の形態におけるセル電圧検出回路の故障診断装置では、セル電圧を検出する差動増幅部ごとに故障診断を行うので、故障が生じた差動増幅部を確実に特定することができる。また、セル電圧と組電池の総電圧との電圧サンプリングを考慮する必要もない。
【0025】
(5)所定の数のセルを接続してモジュールを構成する組電池においては、1つのモジュール内に含まれる電圧検出回路に基準電圧を印加して、電圧検出回路の故障診断を行うことも考えられる。すなわち、印加する基準電圧をモジュールを構成するセル数で割った値と、電圧検出回路で検出された電圧値とを比較することにより、故障診断を行う方法である。しかし、この方法では、セルの過充電検知領域での故障診断を行う際には、満充電時のセル電圧にモジュールを構成するセル数を乗じた電圧を基準電圧として印加する必要があるので、コストアップにつながる可能性がある。本実施の形態のセル電圧検出回路の故障診断装置によれば、セル単位ごとに基準電圧を印加して故障診断を行うので、上述したような問題は生じることはない。また、印加する基準電圧をモジュールを構成するセル数で割った値を基準値とする方法に比べて、精度良く確実に故障診断を行うことができる。
【0026】
本発明は、上述した一実施の形態に限定されることはない。例えば、故障診断時に用いる基準電圧は、上述した4.3(V)や2.0(V)に限定されることはなく、任意の値を設定することができる。また、上述した一実施の形態の説明では、過充電検知領域の故障診断と過放電検知領域の故障診断を同時に行ったが、別々に行うこともできる。さらに、本発明が、組電池を構成するセル数や、基準電圧を印加する差動増幅部D1〜D8を順次切り替える方法に限定されることもなく、組電池を使用する製品についても何ら限定されることはない。本実施の形態におけるセル電圧検出回路の故障診断装置は、例えば、組電池を走行駆動源とする電気自動車に搭載することができる。
【0027】
特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、差動増幅部D1〜D8がセル電圧検出回路を、基準電圧設定部6,アナログスイッチIC部7が基準電圧印加回路を、基準電圧設定部6が変更部を、アナログスイッチIC部7が印加電圧切替回路を、CPU10が故障診断回路を、容量調整回路E1〜E8が容量調整回路を、スイッチSW1〜SW8が切り離し手段をそれぞれ構成する。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明によるセル電圧検出回路の故障診断装置の一実施の形態の構成を示す図
【図2】セル電圧検出回路の診断時に用いられる基準電圧印加回路の詳細な構成を示す図
【図3】CPUの制御信号I,A,B,Cの信号レベルに応じて、いずれのセル間に基準電圧が印加されるかを示す表
【図4】本発明によるセル電圧検出回路の故障診断装置による故障診断制御手順を示す一実施の形態のフローチャート
【符号の説明】
1…組電池、3…セル電圧検出回路、5…切替スイッチ部、6…基準電圧設定部、7…アナログスイッチIC部、10…CPU、C1〜C8…セル、D1〜D8…差動増幅部、E1〜E8…容量調整回路、SW1〜SW8…スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diagnosis device and a failure diagnosis method that can specify a failure location of a cell voltage detection circuit that detects a cell voltage of an assembled battery.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a circuit failure diagnosis apparatus that detects a cell voltage of an assembled battery composed of a plurality of cells is known. In Japanese Patent Laid-Open No. 11-252809, the total voltage VA of the assembled battery is detected, and each cell voltage is detected and added to obtain an added voltage VT, and the two voltage values VA and VT are compared. If not, a technique for determining that an abnormality has occurred is disclosed.
[0003]
[Problems to be solved by the invention]
However, in the conventional failure diagnosis apparatus, when the voltage values VA and VT do not coincide with each other, it has not been possible to specify the location where the failure has occurred.
[0004]
An object of the present invention is to provide a failure diagnosis device and failure diagnosis method for a cell voltage detection circuit that performs failure diagnosis of the cell voltage detection circuit.
[0005]
[Means for Solving the Problems]
(1) A failure diagnosis apparatus for a cell voltage detection circuit according to the present invention includes a plurality of cell voltage detection circuits for detecting a cell voltage of a cell constituting an assembled battery, and any one of the plurality of cell voltage detection circuits. A reference voltage application circuit for applying a reference voltage to the detection circuit, an application voltage switching circuit for switching a cell voltage detection circuit for applying the reference voltage, a detection voltage detected by the cell voltage detection circuit to which the reference voltage is applied , The above object is achieved by providing a failure diagnosis circuit that performs failure diagnosis of the cell voltage detection circuit to which the reference voltage is applied based on the applied reference voltage .
(2) In the cell voltage detection circuit failure diagnosis method according to the present invention, a reference voltage is applied to any one of a plurality of cell voltage detection circuits for detecting a cell voltage of a cell constituting an assembled battery. The cell voltage detection circuit detects the applied reference voltage, and detects the cell voltage based on the detection voltage detected by the cell voltage detection circuit to which the reference voltage is applied and the reference voltage actually applied. The above object is achieved by performing circuit fault diagnosis.
[0006]
【The invention's effect】
According to the failure diagnosis apparatus for cell voltage detection circuit and the failure diagnosis method for cell voltage detection circuit according to the present invention, a detection voltage obtained by detecting a reference voltage applied to a cell voltage detection circuit provided for each cell, and a voltage that is actually applied. The failure diagnosis of the cell voltage detection circuit can be reliably detected by performing the failure diagnosis of the cell voltage detection circuit based on the reference voltage.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 are diagrams showing the configuration of an embodiment of a failure diagnosis apparatus for a cell voltage detection circuit according to the present invention. The assembled battery 1 is configured by connecting eight cells C1 to C8 in series. The capacity adjustment circuits E1 to E8 are connected in parallel to the cells for each of the cells C1 to C8, perform capacity adjustment by discharging the corresponding cells, and suppress capacity variation between the cells.
[0008]
The changeover switch unit 5 switches the switches SW <b> 1 to SW <b> 8 based on the control signal I sent from the CPU 10. When the control signal I is at the Lo level, SW1 to SW8 are set to the cell voltage circuit side, and when the control signal I is at the Hi level, SW1 to SW8 are set to the reference voltage circuit side. FIG. 1 shows a state in which all the switches SW1 to SW8 are set on the cell voltage circuit side. In this state, each cell voltage can be detected by the cell voltage detection circuit 3 described later.
[0009]
The cell voltage detection circuit 3 includes differential amplifiers D1 to D8. When the switches SW1 to SW8 are set on the cell voltage circuit side, the cell voltages Vc1 to Vc8 of the corresponding cells C1 to C8 are detected by the outputs of the differential amplifiers D1 to D8. On the other hand, when the switches SW1 to SW8 are set on the reference voltage circuit side, the reference voltage applied to the differential amplifiers D1 to D8 is detected. Each detected voltage value is transmitted to the CPU 10. The reference voltage is a voltage used at the time of failure diagnosis of the cell voltage detection circuit 3.
[0010]
FIG. 2 is a diagram showing a detailed configuration of the diagnostic circuit section of the cell voltage detection circuit 3. The diagnostic circuit unit includes a changeover switch unit 5, a reference voltage setting unit 6 for setting a reference voltage used when performing a failure diagnosis of the cell voltage detection circuit 3, and a reference voltage set by the reference voltage setting unit 6. An analog switch IC unit 7 for applying to the voltage detection circuit 3 and a CPU 10 are provided. The analog switch IC unit 7 includes a multiplexer MPX1 that defines a changeover switch unit 5 that applies a reference voltage, and a multiplexer MPX2 that defines a changeover switch unit 5 that applies a ground voltage. As described above, the changeover switch unit 5 switches the switches SW1 to SW8 based on the control signal I sent from the CPU. When the control signal I is at the Hi level, the switches SW1 to SW8 are switched to the reference voltage circuit. Set to the side.
[0011]
The reference voltage setting unit 6 having a D / A converter generates an analog signal of a reference voltage used for failure diagnosis based on a control signal sent from the CPU 10 and sends it to the X port of the multiplexer MPX1 of the analog switch IC unit 7. . Although an arbitrary value can be set as the reference voltage, a voltage value in the range of 2.0 (V) to 4.5 (V) is used as the reference voltage in the present embodiment. The analog switch IC unit 7 switches between cells to which the reference voltage is applied based on the control signals A, B, and C sent from the CPU 10. A method for switching between cells to which a reference voltage is applied will be described with reference to FIG.
[0012]
FIG. 3 is a table showing between which cells the reference voltage is applied according to the signal levels of the control signals I, A, B, and C of the CPU 10. When the control signal I is at the Lo level, the terminals X of the MPX1 and 2 and the terminals X0 to X7 are all turned off. When the control signal I is at the Hi level, the MPX1 and MPX2 are both connected between each terminal X and any one of the terminals X0 to X7 according to the levels of the control signals A, B, and C. Is turned on. For example, when all of the control signals A, B, and C are at the Lo level, the terminal X and the terminal X0 are turned on as shown in FIG. In this case, the reference voltage Vd set by the reference voltage setting unit 6 is applied to the plus side of the differential amplification unit D1 through the MPX1, and the ground voltage (0 V) is applied to the minus side through the MPX2. . Therefore, the differential amplifier D1 detects the applied reference voltage Vd as the input voltage Vin1, and outputs it to the CPU 10.
[0013]
Similarly, when the signal level of the control signal (A, B, C) is (H, L, L), the reference voltage Vd is applied to the differential amplifier D2 as the input voltage Vin2, and (L, H, L) In this case, the reference voltage Vd is applied as the input voltage Vin3 to the differential amplifier D3. The signal levels of the control signals (A, B, C) when the reference voltage Vd is applied to the differential amplifiers D4 to D8 are (H, H, L), (L, L, H), (H, L, H), (H, H, L), (H, H, H). Since the negative side of the differential amplifier D8 is grounded, no ground voltage is applied via MPX2.
[0014]
A failure diagnosis method for the cell voltage detection circuit 3 will be described. The CPU 10 sets the switches SW1 to SW8 to the reference voltage circuit side by setting the control signal I to the H level. When performing failure diagnosis of the differential amplifier D1, the signal level of the control signal (A, B, C) is set to (L, L, L). Thereby, since the reference voltage Vd is applied to the differential amplifier D1, the differential amplifier D1 detects the reference voltage Vd as the input voltage Vin1 and outputs it to the CPU 10. The CPU 10 compares the voltage Vin1 detected by the differential amplifier D1 with the actually applied reference voltage Vd. If the difference between the two voltages is not within a predetermined range, the differential amplifier D1 has a failure. Is determined. In this embodiment, the reference voltage Vd is 2.0 (V) and 4.3 (V), and the predetermined range is 0.15 (V).
[0015]
FIG. 4 is a flowchart of an embodiment showing a failure diagnosis control procedure by the failure diagnosis apparatus for a cell voltage detection circuit according to the present invention. The process starting from step S1 is performed by the CPU 10. In step S1, the control signal I is switched from the Lo level to the Hi level. As a result, the switches SW1 to SW8 are switched from the cell voltage circuit side to the reference voltage circuit side. In the next step S <b> 2, a digital signal for setting the diagnostic reference voltage Vd to 4.3 (V) is transmitted to the reference voltage setting unit 6. In this embodiment, since the voltage at the time of overcharging of each cell is 4.5 (V), failure diagnosis in the overcharge detection region is performed by setting the reference voltage Vd to 4.3 (V).
[0016]
When the diagnostic reference voltage Vd is set to 4.3 (V), the process proceeds to step S3. In step S3, the signal levels of the control signals A, B, and C are switched according to the cell in which the failure diagnosis is performed. When performing failure diagnosis of the differential amplifier D1 corresponding to the cell C1, all the control signals A, B, and C are set to Lo level. Thereby, the differential amplifier D1 detects the applied reference voltage Vd as the input voltage Vin1, and outputs it to the CPU 10. In the next step S4, it is determined whether or not the difference between the voltage Vin1 detected by the differential amplifier D1 and the reference voltage Vd set in step S2 is within a predetermined range (0.15 (V)). If it is determined that the difference between the voltages Vin1 and Vd is within the predetermined range, the process proceeds to step S5, and if it is determined that the voltage difference is not within the predetermined range, the process proceeds to step S11. In step S11, it is determined that a failure has occurred in the differential amplifying unit D1, and the processing according to this flowchart ends.
[0017]
In step S5, it is determined whether failure diagnosis has been performed for all the differential amplifiers D1 to D8. If it is determined that failure diagnosis has not been performed for all the differential amplification units D1 to D8, the process returns to step S3, and the above-described processing of steps S3 and S4 is performed on the differential amplification unit that has not been subjected to failure diagnosis. I do. If it is determined that failure diagnosis has been performed for all the differential amplifiers D1 to D8, the process proceeds to step S6.
[0018]
In step S6, since the voltage at the time of overdischarge of each cell is 1.8 (V), a digital signal for setting the diagnostic reference voltage Vd to 2.0 (V) is transmitted to the reference voltage setting unit 6. That is, in the processing after step S6, failure diagnosis is performed in the overdischarge detection region. In step S7 following step S6, the signal levels of the control signals A, B, and C are switched in accordance with the cells that perform failure diagnosis. The process performed in step S7 is the same as the process performed in step S3. When the signal levels of the control signals A, B, and C are switched according to the cells that perform failure diagnosis, the process proceeds to step S8. In step S8, the difference between the voltage Vin detected by the differential amplifier to which the reference voltage is applied by the signal level switching control in step S7 and the reference voltage Vd set in step S6 is within a predetermined range (0.15 (V). ). If it is determined that the difference between the voltages Vin and Vd is within the predetermined range, the process proceeds to step S9. If it is determined that the voltage difference is not within the predetermined range, the process proceeds to step S12. In step S12, it is determined that a failure has occurred in the differential amplifying unit D1, and the processing according to this flowchart ends.
[0019]
In step S9, it is determined whether or not a fault diagnosis has been performed for all the differential amplifiers D1 to D8 when the reference voltage Vd is 2.0 (V). If it is determined that failure diagnosis has not been performed for all the differential amplification units D1 to D8, the process returns to step S7, and the above-described processing of steps S7 and S8 is performed for the differential amplification unit that has not been subjected to failure diagnosis. I do. If it is determined that failure diagnosis has been performed for all the differential amplifiers D1 to D8, the process proceeds to step S10. In step S10, the control signal I is switched from the Hi level to the Lo level, and the processing according to this flowchart ends. As a result, the switches SW1 to SW8 are switched from the reference voltage circuit side to the cell voltage circuit side, and output from the MPXs 1 and 2 is prohibited.
[0020]
In addition, when it is determined in step S11 or step S12 that a failure has occurred in the differential amplifier, it is possible to notify that a failure has occurred by an indicator or speaker (not shown). In this case, since the failure diagnosis is performed for each of the differential amplification units D1 to D8, it is possible to identify the differential amplification unit in which the failure has occurred and notify that the failure has occurred.
[0021]
(1) According to the failure diagnosis apparatus for the cell voltage detection circuit in the present embodiment, the detection voltage Vin detected from the reference voltage applied to the differential amplifiers D1 to D8, and the reference voltage Vd actually applied Based on the above, failure diagnosis of the differential amplifiers D1 to D8 can be reliably detected by detecting the failure of the differential amplifiers D1 to D8. Since the differential amplifiers D1 to D8 to which the reference voltage is applied are sequentially switched by the analog switch IC unit 7, failure diagnosis of all the differential amplifiers D1 to D8 can be performed. Moreover, since the reference voltage used for the failure diagnosis can be set to an arbitrary value by the reference voltage setting unit 6 based on a command from the CPU 10, the entire voltage detection range of the differential amplifiers D1 to D8 can be set. Cross fault diagnosis can be performed.
[0022]
(2) Many assembled batteries configured by connecting a plurality of cells have a function of preventing overcharge and overdischarge of the assembled battery by detecting the cell voltage. Accordingly, the reference voltage used for failure diagnosis is set to the value of the overcharge voltage region and the value of the overdischarge voltage region of the cell, respectively, and diagnosed, whereby the overcharge detection region and the overcharge detection region of the differential amplifiers D1 to D8 are detected. Each failure diagnosis in the discharge voltage region is performed, and overcharge and overdischarge of the assembled battery can be surely prevented. By setting the reference voltage to a value in the overcharge voltage region of the cell and then setting it to a value in the overdischarge voltage region at the time of one failure diagnosis as in the failure diagnosis device of the cell voltage detection circuit in the present embodiment Failure diagnosis in the overcharge and overdischarge detection region can be performed at a time.
[0023]
(3) When performing fault diagnosis of the differential amplifiers D1 to D8, the reference voltage is applied to the differential amplifiers D1 to D8 by switching the switches SW1 to SW8 from the cell voltage circuit side to the reference voltage circuit side. I tried to do it. Thereby, at the time of failure diagnosis, the capacity adjustment circuits E1 to E8 and the differential amplifiers D1 to D8 are disconnected, so that the failure diagnosis can be performed regardless of whether or not the capacity adjustment of the cells C1 to C8 is performed. That is, even when performing fault diagnosis of the cell voltage detection circuit 3 (differential amplifiers D1 to D8) while performing capacity adjustment of the cells C1 to C8, it is not necessary to interrupt capacity adjustment.
[0024]
(4) Like the conventional failure diagnosis method, in the method of detecting the total voltage VA of the assembled battery and detecting and adding each cell voltage to obtain the added voltage VT, the two voltages are compared. It is impossible to specify whether a failure has occurred in the cell voltage detection circuit. In addition, the detection value of one cell voltage detection circuit shifts to the plus side, and the detection value of another cell voltage detection circuit shifts to the minus side, and when the addition voltage VT is obtained, the shift width between the two is canceled out. In some cases, it may be determined that there is no failure. On the other hand, in the cell voltage detection circuit failure diagnosis apparatus according to the present embodiment, failure diagnosis is performed for each differential amplification unit that detects a cell voltage, so that the differential amplification unit in which the failure has occurred is reliably identified. be able to. Further, it is not necessary to consider voltage sampling of the cell voltage and the total voltage of the assembled battery.
[0025]
(5) In an assembled battery in which a module is configured by connecting a predetermined number of cells, it is also possible to apply a reference voltage to a voltage detection circuit included in one module and perform a fault diagnosis of the voltage detection circuit. It is done. That is, this is a method of performing failure diagnosis by comparing a value obtained by dividing the applied reference voltage by the number of cells constituting the module with a voltage value detected by the voltage detection circuit. However, in this method, when performing failure diagnosis in the overcharge detection area of the cell, it is necessary to apply a voltage obtained by multiplying the cell voltage at full charge by the number of cells constituting the module as a reference voltage. It may lead to cost increase. According to the failure diagnosis device for a cell voltage detection circuit of the present embodiment, since the failure diagnosis is performed by applying the reference voltage for each cell unit, the above-described problem does not occur. In addition, failure diagnosis can be performed accurately and reliably compared to a method in which a value obtained by dividing the applied reference voltage by the number of cells constituting the module is used as the reference value.
[0026]
The present invention is not limited to the embodiment described above. For example, the reference voltage used at the time of failure diagnosis is not limited to 4.3 (V) or 2.0 (V) described above, and an arbitrary value can be set. In the description of the embodiment described above, the failure diagnosis of the overcharge detection region and the failure diagnosis of the overdischarge detection region are performed at the same time, but they can be performed separately. Furthermore, the present invention is not limited to the number of cells constituting the assembled battery or the method of sequentially switching the differential amplifiers D1 to D8 to which the reference voltage is applied, and the product using the assembled battery is not limited at all. Never happen. The cell voltage detection circuit failure diagnosis apparatus according to the present embodiment can be mounted on, for example, an electric vehicle using an assembled battery as a travel drive source.
[0027]
The correspondence between the constituent elements of the claims and the constituent elements of the embodiment is as follows. That is, the differential amplifiers D1 to D8 are cell voltage detection circuits, the reference voltage setting unit 6 and the analog switch IC unit 7 are reference voltage application circuits, the reference voltage setting unit 6 is a changing unit, and the analog switch IC unit 7 is The applied voltage switching circuit, the CPU 10 constitutes a failure diagnosis circuit, the capacitance adjustment circuits E1 to E8 constitute a capacitance adjustment circuit, and the switches SW1 to SW8 constitute disconnect means. In addition, as long as the characteristic function of this invention is not impaired, each component is not limited to the said structure.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an embodiment of a cell voltage detection circuit failure diagnosis apparatus according to the present invention. FIG. 2 is a diagram showing a detailed configuration of a reference voltage application circuit used when diagnosing a cell voltage detection circuit. FIG. 3 is a table showing which cell is applied with a reference voltage according to the signal level of CPU control signals I, A, B, and C. FIG. 4 is a fault diagnosis of a cell voltage detection circuit according to the present invention. Flowchart of an embodiment showing a failure diagnosis control procedure by the apparatus [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery assembly, 3 ... Cell voltage detection circuit, 5 ... Changeover switch part, 6 ... Reference voltage setting part, 7 ... Analog switch IC part, 10 ... CPU, C1-C8 ... Cell, D1-D8 ... Differential amplification part , E1 to E8 ... capacity adjustment circuit, SW1 to SW8 ... switch

Claims (8)

組電池を構成する複数のセルごとに設けられて、対応するセルのセル電圧を検出する複数のセル電圧検出回路と、
前記複数のセル電圧検出回路のうちのいずれかのセル電圧検出回路に基準電圧を印加する基準電圧印加回路と、
前記基準電圧を印加する前記セル電圧検出回路を切り替える印加電圧切替回路と、
前記基準電圧が印加されたセル電圧検出回路にて検出された検出電圧と、前記印加された基準電圧とに基づいて、前記基準電圧が印加されたセル電圧検出回路の故障診断を行う故障診断回路とを備えることを特徴とするセル電圧検出回路の故障診断装置。
A plurality of cell voltage detection circuits provided for each of a plurality of cells constituting the assembled battery and detecting a cell voltage of a corresponding cell;
A reference voltage application circuit that applies a reference voltage to any one of the plurality of cell voltage detection circuits ;
An applied voltage switching circuit for switching the cell voltage detection circuit for applying the reference voltage;
A failure diagnosis circuit that performs failure diagnosis of the cell voltage detection circuit to which the reference voltage is applied based on the detection voltage detected by the cell voltage detection circuit to which the reference voltage is applied and the applied reference voltage A failure diagnosis apparatus for a cell voltage detection circuit.
請求項1に記載のセル電圧検出回路の故障診断装置において、
前記基準電圧印加回路は、前記印加する基準電圧を変更する変更部を有することを特徴とするセル電圧検出回路の故障診断装置。
In the failure diagnosis device for a cell voltage detection circuit according to claim 1,
The failure diagnosis apparatus for a cell voltage detection circuit, wherein the reference voltage application circuit includes a changing unit that changes the reference voltage to be applied.
請求項1または2に記載のセル電圧検出回路の故障診断装置において、
前記基準電圧は、前記セルの過充電電圧領域の値であることを特徴とするセル電圧検出回路の故障診断装置。
In the failure diagnosis device for a cell voltage detection circuit according to claim 1 or 2,
The fault diagnosis device for a cell voltage detection circuit, wherein the reference voltage is a value in an overcharge voltage region of the cell.
請求項1または2に記載のセル電圧検出回路の故障診断装置において、
前記基準電圧は、前記セルの過放電電圧領域の値であることを特徴とするセル電圧検出回路の故障診断装置。
In the failure diagnosis device for a cell voltage detection circuit according to claim 1 or 2,
The fault diagnosis apparatus for a cell voltage detection circuit, wherein the reference voltage is a value in an overdischarge voltage region of the cell.
請求項1または2に記載のセル電圧検出回路の故障診断装置において、
前記基準電圧印加回路は、前記セルの過充電電圧領域の値および前記セルの過放電電圧領域の値をそれぞれ基準電圧として印加し、
前記故障診断回路は、前記印加される基準電圧を用いて一度に過充電検知領域および過放電検知領域の故障診断を行うことを特徴とするセル電圧検出回路の故障診断装置。
In the failure diagnosis device for a cell voltage detection circuit according to claim 1 or 2,
The reference voltage application circuit applies a value of the overcharge voltage region of the cell and a value of the overdischarge voltage region of the cell as a reference voltage,
The fault diagnosis circuit according to claim 1, wherein the fault diagnosis circuit performs fault diagnosis of an overcharge detection region and an overdischarge detection region at a time using the applied reference voltage.
請求項1〜5のいずれかに記載のセル電圧検出回路の故障診断装置において、
前記複数のセルごとに設けられて、対応するセルの容量調整を行う容量調整回路と、
前記容量調整回路と前記セル電圧検出回路とを切り離す切り離し手段とをさらに備え、
前記切り離し手段は、前記基準電圧印加回路により前記セル電圧検出回路に前記基準電圧を印加する時は、前記容量調整回路と前記セル電圧検出回路とを切り離すことを特徴とするセル電圧検出回路の故障診断装置。
In the failure diagnosis device for a cell voltage detection circuit according to any one of claims 1 to 5,
A capacity adjustment circuit which is provided for each of the plurality of cells and adjusts the capacity of the corresponding cell;
A separation means for separating the capacity adjustment circuit and the cell voltage detection circuit;
The disconnection means disconnects the capacity adjustment circuit and the cell voltage detection circuit when the reference voltage is applied to the cell voltage detection circuit by the reference voltage application circuit. Diagnostic device.
請求項1〜6のいずれかに記載のセル電圧検出回路の故障診断装置において、
前記故障診断回路は、前記印加された基準電圧を前記セル電圧検出回路にて検出された検出電圧と、前記印加された基準電圧との差が所定の範囲外であるときに、前記セル電圧検出回路に故障が発生したと判定することを特徴とするセル電圧検出回路の故障診断装置。
In the failure diagnosis device for a cell voltage detection circuit according to any one of claims 1 to 6,
The fault diagnosis circuit detects the cell voltage when a difference between the applied reference voltage detected by the cell voltage detection circuit and the applied reference voltage is outside a predetermined range. A failure diagnosis apparatus for a cell voltage detection circuit, characterized in that it is determined that a failure has occurred in a circuit.
組電池を構成する複数のセルごとに設けられて、対応するセルのセル電圧を検出する複数のセル電圧検出回路の故障診断を行うセル電圧検出回路の故障診断方法は、
前記複数のセル電圧検出回路のうちのいずれかのセル電圧検出回路に基準電圧を印加し、
前記印加された基準電圧を前記セル電圧検出回路にて検出し、
前記基準電圧が印加されたセル電圧検出回路にて検出された検出電圧と、実際に印加された基準電圧とに基づいて、前記セル電圧検出回路の故障診断を行うことを特徴とするセル電圧検出回路の故障診断方法。
A fault diagnosis method for a cell voltage detection circuit, which is provided for each of a plurality of cells constituting an assembled battery and performs a fault diagnosis of a plurality of cell voltage detection circuits for detecting a cell voltage of a corresponding cell,
Applying a reference voltage to any one of the plurality of cell voltage detection circuits ,
The applied reference voltage is detected by the cell voltage detection circuit,
Cell voltage detection characterized by performing a fault diagnosis of the cell voltage detection circuit based on a detection voltage detected by a cell voltage detection circuit to which the reference voltage is applied and a reference voltage actually applied Circuit fault diagnosis method.
JP2002152400A 2002-05-27 2002-05-27 Failure diagnosis device and failure diagnosis method for cell voltage detection circuit Expired - Lifetime JP3780977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152400A JP3780977B2 (en) 2002-05-27 2002-05-27 Failure diagnosis device and failure diagnosis method for cell voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152400A JP3780977B2 (en) 2002-05-27 2002-05-27 Failure diagnosis device and failure diagnosis method for cell voltage detection circuit

Publications (2)

Publication Number Publication Date
JP2003346916A JP2003346916A (en) 2003-12-05
JP3780977B2 true JP3780977B2 (en) 2006-05-31

Family

ID=29769741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152400A Expired - Lifetime JP3780977B2 (en) 2002-05-27 2002-05-27 Failure diagnosis device and failure diagnosis method for cell voltage detection circuit

Country Status (1)

Country Link
JP (1) JP3780977B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635162A (en) * 2009-02-27 2015-05-20 株式会社日立制作所 Battery monitoring system and method of diagnosing the same
US9941712B2 (en) 2012-12-03 2018-04-10 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US10096992B2 (en) 2012-12-03 2018-10-09 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US10158241B2 (en) 2012-12-03 2018-12-18 Toyota Jidosha Kabushiki Kaisha Electricity storage system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250230B2 (en) 2007-09-28 2013-07-31 株式会社日立製作所 Power supply system for vehicle and integrated circuit for battery cell control
JP4770894B2 (en) * 2008-09-03 2011-09-14 日本テキサス・インスツルメンツ株式会社 Voltage detector
JP4803228B2 (en) * 2008-09-03 2011-10-26 日本テキサス・インスツルメンツ株式会社 Voltage detector
JP5390951B2 (en) * 2009-06-19 2014-01-15 矢崎総業株式会社 Voltage measurement device for multiple assembled batteries
JP6086654B2 (en) * 2012-03-29 2017-03-01 株式会社ケーヒン Cell voltage measurement board inspection equipment
JP6358107B2 (en) * 2015-01-20 2018-07-18 株式会社デンソー Power monitoring circuit
JP6657011B2 (en) * 2016-05-20 2020-03-04 ラピスセミコンダクタ株式会社 Semiconductor device, battery monitoring system, and diagnostic method
JP7014565B2 (en) * 2016-12-15 2022-02-01 エイブリック株式会社 Secondary battery monitoring device and failure diagnosis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635162A (en) * 2009-02-27 2015-05-20 株式会社日立制作所 Battery monitoring system and method of diagnosing the same
US9941712B2 (en) 2012-12-03 2018-04-10 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US10096992B2 (en) 2012-12-03 2018-10-09 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US10158241B2 (en) 2012-12-03 2018-12-18 Toyota Jidosha Kabushiki Kaisha Electricity storage system

Also Published As

Publication number Publication date
JP2003346916A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US8489347B2 (en) Battery pack monitoring apparatus
JP3780977B2 (en) Failure diagnosis device and failure diagnosis method for cell voltage detection circuit
EP2595275B1 (en) Assembled-battery voltage equalization apparatus
US8587262B2 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
US7924016B2 (en) Voltage measuring device
US7834635B2 (en) Car power source apparatus
JP4832840B2 (en) Battery control device
JP5160024B2 (en) Battery module
US10274544B2 (en) Route switching circuit and voltage detection device
JP4836729B2 (en) Power supply device for vehicle and method for detecting disconnection of power supply device
EP2190055A1 (en) Battery device comprising a voltage detection and control circuit
JP2007256113A (en) Battery voltage measuring circuit, battery voltage measuring method, and battery ecu
EP0943926B1 (en) Instrument for measuring voltages of cells
JP2009276297A (en) Apparatus and method of measuring voltage
JP2012103108A (en) Voltage detection device and voltage detection system
JP4835570B2 (en) Voltage detection device for battery pack
JP2013024800A (en) Voltage detection device
JP4533357B2 (en) Voltage measuring device
JP5169949B2 (en) Voltage detector
EP1118869B1 (en) Battery voltage detection apparatus and detection method
JP4601494B2 (en) Power supply for vehicle
JP2002243771A (en) Battery voltage detecting circuit
JP2002062341A (en) Method of detecting current of battery system for electric vehicle
US10778015B2 (en) Voltage detection apparatus
US20180088178A1 (en) Voltage-Detecting Device Applied to Battery Pack Having Serially Connected Body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3780977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

EXPY Cancellation because of completion of term