JP2002243771A - Battery voltage detecting circuit - Google Patents

Battery voltage detecting circuit

Info

Publication number
JP2002243771A
JP2002243771A JP2001039081A JP2001039081A JP2002243771A JP 2002243771 A JP2002243771 A JP 2002243771A JP 2001039081 A JP2001039081 A JP 2001039081A JP 2001039081 A JP2001039081 A JP 2001039081A JP 2002243771 A JP2002243771 A JP 2002243771A
Authority
JP
Japan
Prior art keywords
voltage
battery
circuit
battery voltage
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001039081A
Other languages
Japanese (ja)
Inventor
Tsutomu Ando
努 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001039081A priority Critical patent/JP2002243771A/en
Publication of JP2002243771A publication Critical patent/JP2002243771A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce current consumption required for a system by lowering the power supply voltage of a microcomputer by accurately detecting a battery voltage in a smart battery system. SOLUTION: In the battery voltage circuit of a smart battery, a power supply circuit having a power supply voltage of 2 V or less, which is not required to read a battery voltage is separately prepared, and the battery voltage circuit is changed to a circuit system to output the battery voltage to an analog terminal after subtracting the power supply circuit voltage from the battery voltage, so that the battery voltage can be accurately detected by computation by outputting the power supply voltage and the offset voltage by using the same differential amplifier circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池のバッテリ
ーパックにおいて、電圧や充放電電流などのバッテリー
状態監視が要求される回路と該バッテリー状態監視回路
とバッテリー装置外への外部接続端子とスイッチ素子と
二次電池とセンス抵抗とを含むバッテリー装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for a battery pack of a secondary battery, which requires monitoring of a battery state such as a voltage and a charging / discharging current. The present invention relates to a battery device including an element, a secondary battery, and a sense resistor.

【0002】[0002]

【従来の技術】従来の電池電圧検出回路としては、図3
に回路ブロック図で示すような回路が知られていた。こ
のような回路において、二次電池301,302の各電
池電圧を検出し、マイコンのアナログ−デジタル変換入
力端子に対し端子311にアナログ信号として出力す
る。二次電池301,302に接続された端子311,
312,313に印加された電圧をスイッチ回路303
により信号線309,310に切り替え、差動増幅回路
314の入力とする。その際の差動増幅回路314は、
309,310間の電位差をアナログ出力端子300の
電位とGND電位との電位差に変換し、アナログ出力端子
300にアナログ信号として出力する。スイッチ316
とスイッチ317をONし、スイッチ回路303のその他
のスイッチをOFFし、差動増幅回路315の入力信号3
09,310に電池301の負端子電圧を印加する。そ
の際のアナログ出力端子300には、二次電池301測
定時における差動増幅回路314自身のオフセット電圧
とオフセット調整用電圧源315の電圧を加算した電圧
Aが出力されることになる。次にスイッチ316,31
8をONし、スイッチ回路303のその他のスイッチをOF
Fすることで、差動増幅回路314には電池301の両
端電圧が入力される。その際のアナログ出力端子300
には、電池301電圧と差動増幅回路314自身のオフ
セット電圧、およびオフセット調整用電圧源315の電
圧を加算した電圧Bが出力されることになる。電池電圧
を高精度で検出するために、誤差成分であるオフセット
電圧Aを出力し、次にオフセット電圧を含んだ電池電圧B
を出力する。出力されたアナログ信号である電圧値をマ
イコンによりアナログ−デジタル変換した後、電圧B−
電圧Aをマイコンにて演算する。この演算により差動増
幅器自身のオフセットによる誤差成分を含まない二次電
池301の電池電圧を検出することが出来る。
2. Description of the Related Art As a conventional battery voltage detecting circuit, FIG.
A circuit as shown in a circuit block diagram has been known. In such a circuit, the respective battery voltages of the secondary batteries 301 and 302 are detected and output as analog signals to a terminal 311 to an analog-digital conversion input terminal of the microcomputer. Terminals 311, connected to secondary batteries 301, 302
The voltage applied to 312 and 313 is
To switch to the signal lines 309 and 310 to input the differential amplifier circuit 314. At that time, the differential amplifier circuit 314
The potential difference between 309 and 310 is converted into a potential difference between the potential of the analog output terminal 300 and the GND potential, and output to the analog output terminal 300 as an analog signal. Switch 316
And the switch 317 are turned on, and the other switches of the switch circuit 303 are turned off.
09, 310 is applied with the negative terminal voltage of the battery 301. At this time, the analog output terminal 300 has a voltage obtained by adding the offset voltage of the differential amplifier circuit 314 itself and the voltage of the offset adjustment voltage source 315 when the secondary battery 301 is measured.
A will be output. Next, switches 316 and 31
8 is turned on, and the other switches of the switch circuit 303 are turned off.
By performing F, the voltage across the battery 301 is input to the differential amplifier circuit 314. Analog output terminal 300 at that time
The voltage B is obtained by adding the voltage of the battery 301, the offset voltage of the differential amplifier circuit 314 itself, and the voltage of the offset adjustment voltage source 315. To detect the battery voltage with high accuracy, the offset voltage A, which is an error component, is output, and then the battery voltage B including the offset voltage is output.
Is output. After the analog-to-digital conversion of the output analog signal voltage value by the microcomputer, the voltage B-
The voltage A is calculated by the microcomputer. By this calculation, the battery voltage of the secondary battery 301 that does not include an error component due to the offset of the differential amplifier itself can be detected.

【0003】同様にスイッチ318とスイッチ319を
ONし、スイッチ回路303のその他のスイッチをOFFす
ることで、差動増幅回路314の入力信号309,31
0には電池302の負端子電圧を印加される。その際の
アナログ出力端子300には、二次電池302測定時の
差動増幅回路314自身のオフセット電圧とオフセット
調整電圧源315の電圧を加算した電圧Cが出力される
ことになる。次にスイッチ319,320をONし、その
他のスイッチをOFFすることで、差動増幅回路314に
は電池302の両端電圧が入力される。その際のアナロ
グ出力端子300には、電池302電圧と差動増幅回路
314自身のオフセット電圧、およびオフセット調整電
圧源315の電圧を加算した電圧Dが出力されることに
なる。そして電圧D−電圧Cを演算する。この演算により
差動増幅器自身のオフセットによる誤差成分を含まない
二次電池302の電池電圧を検出することが出来る。ま
た、図4に示すようにスイッチを増やし、電池の接続を
そのスイッチにより切り替えることで、直列に接続され
たN個の二次電池の電圧を、一つの作動増幅回路314
で検出することが可能となる。
Similarly, switch 318 and switch 319
When the other switches of the switch circuit 303 are turned on and the other switches of the switch circuit 303 are turned off, the input signals 309 and 31 of the differential amplifier circuit 314 are changed.
To 0, the negative terminal voltage of the battery 302 is applied. At this time, a voltage C obtained by adding the offset voltage of the differential amplifier circuit 314 itself and the voltage of the offset adjustment voltage source 315 at the time of measurement of the secondary battery 302 is output to the analog output terminal 300. Next, by turning on the switches 319 and 320 and turning off the other switches, the voltage between both ends of the battery 302 is input to the differential amplifier circuit 314. At this time, a voltage D obtained by adding the voltage of the battery 302, the offset voltage of the differential amplifier circuit 314 itself, and the voltage of the offset adjustment voltage source 315 is output to the analog output terminal 300. Then, voltage D−voltage C is calculated. By this calculation, the battery voltage of the secondary battery 302 that does not include an error component due to the offset of the differential amplifier itself can be detected. Also, as shown in FIG. 4, the number of switches is increased, and the connection of the batteries is switched by the switches, so that the voltages of the N rechargeable batteries connected in series can be reduced by one operation amplifier circuit 314.
Can be detected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン二次電池の場合、使用電圧範囲は2Vから5V程
度であるため差動増幅回路314の増幅率が1倍であっ
た場合、電池電圧出力にはオフセット電圧を含んだ電圧
値が出力されるため、アナログ出力端子300には最大
で5V以上の電圧が出力されることとなる。そのため5V
電源のマイコンで読み取りが不可能な場合が存在するこ
ととなる。現状では電池電圧が高い場合でも、差動増幅
回路314の増幅率を1倍以下に設定し、マイコンで読
み取り可能な範囲まで出力電圧を低下させて端子300
に出力していた。この場合、マイコンで読み取った電圧
値を演算により元の電圧値に戻すため、マイコンでのア
ナログ−デジタル変換時の量子化誤差も差動増幅回路の
増幅率分の1倍されてしまい、電池電圧の読み取り誤差
が大きくなるという問題が存在した。
However, in the case of a lithium ion secondary battery, the operating voltage range is about 2 V to 5 V. Therefore, when the amplification factor of the differential amplifier circuit 314 is 1, the battery voltage output is reduced. Since a voltage value including an offset voltage is output, a voltage of 5 V or more is output to the analog output terminal 300 at the maximum. Therefore 5V
In some cases, reading by the power supply microcomputer is impossible. At present, even if the battery voltage is high, the amplification factor of the differential amplifier circuit 314 is set to 1 or less, and the output voltage is reduced to a range that can be read by the microcomputer, and the terminal 300 is turned off.
Was output to. In this case, since the voltage value read by the microcomputer is returned to the original voltage value by calculation, the quantization error at the time of analog-digital conversion by the microcomputer is also multiplied by one times the amplification factor of the differential amplifier circuit, and the battery voltage is reduced. There is a problem that the reading error of the image becomes large.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明はオフセット調整用電源を別に用意し、測定
した電池電圧からオフセット調整用電圧を減算してアナ
ログ端子に出力する様にした。電池電圧を測定する際
に、読み取りに必要のない一定電圧以下の電圧を電池電
圧から減算を行うことで、出力されるアナログ信号電圧
を低くすることが可能となる。それにより、読み取り側
のマイコンの電圧を低くすることが可能となり、マイコ
ンの消費電流を低く抑えることが可能となる。また、電
池電圧,オフセット調整電圧および差動増幅器自身のオ
フセット電圧を同一の差動増幅器を用い出力すること
で、マイコンでの演算により誤差成分である差動増幅器
自身のオフセット電圧を取り除くことが可能となり、電
池電圧を高精度で検出できる様にした。
In order to solve the above-mentioned problems, the present invention separately prepares an offset adjusting power supply, subtracts the offset adjusting voltage from the measured battery voltage, and outputs the result to the analog terminal. . When the battery voltage is measured, the analog signal voltage to be output can be reduced by subtracting a voltage that is not necessary for reading and equal to or lower than a certain voltage from the battery voltage. As a result, the voltage of the microcomputer on the reading side can be reduced, and the current consumption of the microcomputer can be reduced. In addition, by using the same differential amplifier to output the battery voltage, offset adjustment voltage, and offset voltage of the differential amplifier itself, it is possible to remove the offset voltage of the differential amplifier itself, which is an error component, by calculation in the microcomputer. , So that the battery voltage can be detected with high accuracy.

【0006】[0006]

【発明の実施の形態】上記の様に構成された電池電圧検
出回路においては、差動増幅器の増幅率を1倍に設定し
ても、電池電圧検出に必要のない2V以下の電圧をオフ
セット調整用電圧として、入力された電池電圧から減算
してマイコンに出力するため、5Vの電池をモニタした
場合でもアナログ出力端子電圧は3V程度となる。この
ように出力電圧が低くなるためマイコンの電源電圧を下
げても検出することが可能となり、マイコンの消費電流
を低く抑えることが可能となる。また、差動増幅回路の
増幅率は1倍であるためアナログ−デジタル変換時の量
子化誤差が大きくなることもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a battery voltage detecting circuit configured as described above, even if the amplification factor of a differential amplifier is set to 1, a voltage of 2 V or less that is unnecessary for battery voltage detection is offset adjusted. Since the output voltage is subtracted from the input battery voltage and output to the microcomputer, the analog output terminal voltage is about 3 V even when a 5 V battery is monitored. Since the output voltage is reduced as described above, it is possible to detect even if the power supply voltage of the microcomputer is lowered, and it is possible to suppress the current consumption of the microcomputer. Further, since the amplification factor of the differential amplifier circuit is 1, the quantization error at the time of analog-digital conversion does not increase.

【0007】[0007]

【実施例】以下にこの発明の実施例を図1に基づいて説
明する。図1は、本発明を含む電池電圧検出回路の回路
ブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a circuit block diagram of a battery voltage detection circuit including the present invention.

【0008】まず、電池電圧検出回路の回路構成を図1
に基づいて説明する。直列に接続された二次電池10
1,102の負端子を112端子に、正端子を114端
子に、電池の中点を113端子にそれぞれ接続する。そ
してスイッチ回路103に内臓されるスイッチ121か
ら125までの各スイッチのON,OFFを切り替える
ことで、差動増幅回路115の入力110,111に各
二次電池101,102の負端子電圧、両端電圧を印加
できるように接続する。また、作動増幅回路の加算端子
に接続される信号線112には、スイッチ119,12
0によりGND電位またはオフセット調整用電源118の
電圧を切り替えて入力できるように接続する。そして作
動増幅回路の減算端子に接続される信号線113には、
スイッチ121,122により、GND電位またはオフセ
ット調整用電源118の電圧を切り替えて入力できるよ
うに接続する。また、図2に示すように測定する二次電
池203と電池接続端子214を増やすことでN個の電
池を接続できる。
First, the circuit configuration of the battery voltage detection circuit is shown in FIG.
It will be described based on. Secondary battery 10 connected in series
The negative terminal of 1,102 is connected to the 112 terminal, the positive terminal is connected to the 114 terminal, and the midpoint of the battery is connected to the 113 terminal. By switching ON and OFF of each of the switches 121 to 125 included in the switch circuit 103, the negative terminal voltage of each of the secondary batteries 101 and 102 and the voltage between both terminals are applied to the inputs 110 and 111 of the differential amplifier circuit 115. Is connected so that can be applied. Switches 119 and 12 are connected to the signal line 112 connected to the addition terminal of the operational amplifier circuit.
The connection is made such that the GND potential or the voltage of the offset adjustment power supply 118 can be switched and input according to 0. The signal line 113 connected to the subtraction terminal of the operational amplifier circuit has
The switches 121 and 122 are connected so that the GND potential or the voltage of the offset adjustment power supply 118 can be switched and input. Also, as shown in FIG. 2, N batteries can be connected by increasing the number of secondary batteries 203 and battery connection terminals 214 to be measured.

【0009】そして電池電圧検出回路の動作を図1に基
づいて説明する。スイッチ123とスイッチ124をON
し、スイッチ回路103のその他のスイッチをOFFする
ことで、差動増幅回路117の入力信号110,111
に電池101の負端子電圧が印加される。また、スイッ
チ119,121をONし、スイッチ120,122をOF
Fすることでアナログ出力端子100には、二次電池1
01測定時における差動増幅回路117自身のオフセッ
ト電圧Eが出力されることになる。次にその状態からス
イッチ119をOFFし、スイッチ120をONすることで
差動増幅回路117の加算端子にオフセット調整用電圧
源118の電圧が印加される。その際、アナログ出力端
子100には差動増幅回路117自身のオフセット電圧
とオフセット調整電圧源118の電圧を加算した電圧F
が出力されることになる。その後、スイッチ回路103
内のスイッチ123,126をONし、その他のスイッチ
をOFFすることで差動増幅回路117には電池101の
両端電圧が入力される。さらにスイッチ119,122
をONし、スイッチ120,121をOFFすることで、ア
ナログ出力端子100には、電池101電圧とオフセッ
ト調整電圧源118との電位差に、差動増幅回路117
自身のオフセット電圧Eを含んだ電圧Gが出力される。電
池電圧を高精度で検出するために、まず誤差成分である
オフセット電圧Eを出力する。次にオフセット調整用電
圧源にオフセット電圧Eを含んだオフセット調整電圧Fを
出力する。その後電池101電圧とオフセット調整用電
圧源118の電位差にオフセット電圧Eを含んだ電池測
定電圧Gを出力する。これら電圧E,F,Gをマイコンでア
ナログ−デジタル変換した後、電圧G+電圧F−(電圧E
×2)を演算することで、二次電池101の電池電圧を
高精度で検出することが出来る。二次電池102につい
ても同様にスイッチ制御を行うことで二次電池102の
電池電圧を高精度で検出することが出来る。そして、こ
の測定の際に、従来の方式ではアナログ出力端子に電池
電圧にオフセット調整用電圧を加算した値が出力されて
いたが、本方式にすることでアナログ出力端子には電池
電圧からオフセット調整用電圧を減算した値が出力され
る。そのためアナログ出力端子の最大電圧を電池電圧以
下に抑えることが可能となる。それにより読み取り側の
マイコンの電源電圧も低く抑えることが可能となりマイ
コンの消費電流を低減することが可能となる。また、図
2に示すようにスイッチを増やし電池の接続をスイッチ
により切り替えることで、直列に接続されたN個の二次
電池の電圧を一つの作動増幅回路117で検出すること
が可能となる。
The operation of the battery voltage detecting circuit will be described with reference to FIG. Turn on switch 123 and switch 124
Then, by turning off the other switches of the switch circuit 103, the input signals 110 and 111 of the differential amplifier circuit 117 are turned off.
To the negative terminal voltage of the battery 101. Further, the switches 119 and 121 are turned on, and the switches 120 and 122 are turned off.
By pressing F, the secondary battery 1 is connected to the analog output terminal 100.
The offset voltage E of the differential amplifier circuit 117 at the time of the 01 measurement is output. Next, from this state, the switch 119 is turned off and the switch 120 is turned on, so that the voltage of the offset adjusting voltage source 118 is applied to the addition terminal of the differential amplifier circuit 117. At this time, a voltage F obtained by adding the offset voltage of the differential amplifier circuit 117 itself and the voltage of the offset adjustment voltage source 118 is applied to the analog output terminal 100.
Is output. After that, the switch circuit 103
By turning on the switches 123 and 126 and turning off the other switches, the voltage across the battery 101 is input to the differential amplifier circuit 117. Further, switches 119 and 122
Is turned on and the switches 120 and 121 are turned off, the differential output circuit 117 receives the potential difference between the battery 101 voltage and the offset adjustment voltage source 118 at the analog output terminal 100.
A voltage G including its own offset voltage E is output. To detect the battery voltage with high accuracy, first, an offset voltage E, which is an error component, is output. Next, an offset adjustment voltage F including the offset voltage E is output to the offset adjustment voltage source. Thereafter, a battery measurement voltage G including the offset voltage E in the potential difference between the voltage of the battery 101 and the offset adjustment voltage source 118 is output. After analog-to-digital conversion of these voltages E, F, and G by the microcomputer, voltage G + voltage F− (voltage E
X2), the battery voltage of the secondary battery 101 can be detected with high accuracy. By similarly performing switch control on the secondary battery 102, the battery voltage of the secondary battery 102 can be detected with high accuracy. At the time of this measurement, in the conventional method, a value obtained by adding the offset adjustment voltage to the battery voltage was output to the analog output terminal, but this method allows the analog output terminal to perform the offset adjustment from the battery voltage. The value obtained by subtracting the operating voltage is output. Therefore, the maximum voltage of the analog output terminal can be suppressed to the battery voltage or less. As a result, the power supply voltage of the microcomputer on the reading side can be suppressed low, and the current consumption of the microcomputer can be reduced. Further, as shown in FIG. 2, by increasing the number of switches and switching the connection of the batteries by the switches, it becomes possible to detect the voltage of the N secondary batteries connected in series with one operation amplifier circuit 117.

【0010】[0010]

【発明の効果】本発明は、以上説明したようにマイコン
の電源電圧を下げることが可能となり、従来の電池電圧
検出回路に比較し低消費化が可能になる。また、差動増
幅回路の増幅率が1倍に出来るためアナログ−デジタル
変化時の量子化誤差の増加を押さえるという効果があ
る。
According to the present invention, the power supply voltage of the microcomputer can be reduced as described above, and the power consumption can be reduced as compared with the conventional battery voltage detection circuit. Further, since the amplification factor of the differential amplifier circuit can be made one, there is an effect that an increase in quantization error at the time of analog-digital change is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池電圧検出回路の回路ブロックを示
した説明図である。
FIG. 1 is an explanatory diagram showing a circuit block of a battery voltage detection circuit according to the present invention.

【図2】本発明の電池電圧検出回路の他の例を示す回路
ブロック図である。
FIG. 2 is a circuit block diagram showing another example of the battery voltage detection circuit of the present invention.

【図3】従来の電池電圧検出回路の回路ブロックを示し
た説明図である。
FIG. 3 is an explanatory diagram showing a circuit block of a conventional battery voltage detection circuit.

【図4】従来の電池電圧検出回路の他の例を示す回路ブ
ロック図である。
FIG. 4 is a circuit block diagram showing another example of a conventional battery voltage detection circuit.

【符号の説明】[Explanation of symbols]

100・・・アナログ出力端子 101,102・・・二次電池 103・・・スイッチ回路 104,105,106,107,108・・・差動増
幅率調整用抵抗素子 109・・・オペアンプ 110,111,112,113・・・信号線 114,115,116・・・電池接続端子 117・・・差動増幅回路 118・・・オフセット調整電圧源 119,120,121,122・・・オフセット切り
替えスイッチ素子 123、124,125,126,127・・・電池接
続切り替えスイッチ素子 200・・・アナログ出力端子 201,202,203・・・二次電池 204・・・スイッチ回路 205・・・オフセット調整電圧源 206,207・・・信号線 208,209,210,211・・・オフセット切り
替えスイッチ素子 212,213,214,215・・・電池接続端子 300・・・アナログ出力端子 301,302・・・二次電池 303・・・スイッチ回路 304,305,306,307・・・差動増幅率調整
用抵抗素子 308・・・オペアンプ 309,310・・・信号線 311,312,313・・・電池接続端子 314・・・差動増幅回路 315・・・オフセット調整電圧源 316,317,318,319,320・・・電池接
続切り替えスイッチ素子 400・・・アナログ出力端子 401,402,403・・・二次電池 404・・・スイッチ回路 405・・・オフセット調整電圧源 406,407・・・信号線 408,409,410,411・・・電池接続端子
100: Analog output terminal 101, 102: Secondary battery 103: Switch circuit 104, 105, 106, 107, 108: Differential amplification factor adjusting resistor element 109: Operational amplifier 110, 111 , 112, 113 ... signal line 114, 115, 116 ... battery connection terminal 117 ... differential amplifier circuit 118 ... offset adjustment voltage source 119, 120, 121, 122 ... offset switching switch element 123, 124, 125, 126, 127 ... battery connection changeover switch element 200 ... analog output terminal 201, 202, 203 ... secondary battery 204 ... switch circuit 205 ... offset adjustment voltage source 206 , 207... Signal line 208, 209, 210, 211. Units 212, 213, 214, 215 Battery connection terminal 300 Analog output terminal 301, 302 Secondary battery 303 Switch circuit 304, 305, 306, 307 Differential amplification factor Adjusting resistance element 308 Operational amplifier 309, 310 Signal line 311, 312, 313 Battery connection terminal 314 Differential amplifier circuit 315 Offset adjustment voltage source 316, 317, 318, 319, 320: battery connection switch element 400: analog output terminal 401, 402, 403: secondary battery 404: switch circuit 405: offset adjustment voltage source 406, 407: signal Lines 408, 409, 410, 411 ... battery connection terminals

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な二次電池電圧を検出する回
路において、複数の電池をスイッチにより切り替えを行
い、各電池電圧の測定する際に同一の差動増幅器を用
い、オフセット調整用に用意した電源電圧値、差動増幅
器自身のオフセット電圧値、および差動増幅器に入力さ
れた電池電圧からオフセット調整用電圧源電圧を減算し
た電圧値の3状態の出力を切りかえる為のスイッチを有
し、出力された電圧値をアナログ信号としてマイコンに
出力し、その電圧値をマイコンにより演算することで電
池電圧を高精度で検出することを特徴とした回路。
1. A circuit for detecting a chargeable / dischargeable secondary battery voltage, wherein a plurality of batteries are switched by a switch, and the same differential amplifier is used when measuring each battery voltage, and is prepared for offset adjustment. A power supply voltage value, an offset voltage value of the differential amplifier itself, and a switch for switching the three-state output of a voltage value obtained by subtracting the offset adjustment voltage source voltage from the battery voltage input to the differential amplifier, A circuit that outputs the output voltage value to a microcomputer as an analog signal, and calculates the voltage value by the microcomputer to detect the battery voltage with high accuracy.
【請求項2】 検出する二次電池において、検出する必
要のない一定電圧以下の電圧にオフセット調整用電圧を
設定することで、検出しようとする二次電池電圧からオ
フセット調整用電圧を減算することにより、本回路から
の出力電圧を低くすることが可能となり、その出力を読
み取るためのマイコンの電源電圧も低くすることが可能
となり、マイコンの消費電流を抑えることを特徴とした
回路。
2. An offset adjustment voltage is subtracted from a secondary battery voltage to be detected by setting the offset adjustment voltage to a voltage that is not more than a certain voltage that does not need to be detected in the secondary battery to be detected. This makes it possible to lower the output voltage from this circuit, lower the power supply voltage of the microcomputer for reading the output, and reduce the current consumption of the microcomputer.
JP2001039081A 2001-02-15 2001-02-15 Battery voltage detecting circuit Withdrawn JP2002243771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039081A JP2002243771A (en) 2001-02-15 2001-02-15 Battery voltage detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039081A JP2002243771A (en) 2001-02-15 2001-02-15 Battery voltage detecting circuit

Publications (1)

Publication Number Publication Date
JP2002243771A true JP2002243771A (en) 2002-08-28

Family

ID=18901946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039081A Withdrawn JP2002243771A (en) 2001-02-15 2001-02-15 Battery voltage detecting circuit

Country Status (1)

Country Link
JP (1) JP2002243771A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274748A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Circuit and method for controlling power supply device
JP2008145180A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2008232735A (en) * 2007-03-19 2008-10-02 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2009063511A (en) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd Battery voltage detection circuit
US7696725B2 (en) 2003-06-19 2010-04-13 O2Micro International Limited Battery cell monitoring and balancing circuit
KR100982597B1 (en) * 2008-01-23 2010-09-15 산요 세미컨덕터 컴퍼니 리미티드 Battery voltage detecting circuit
US7812568B2 (en) 2006-12-07 2010-10-12 Sanyo Electric Co., Ltd. Voltage detecting circuit
JP2011237266A (en) * 2010-05-10 2011-11-24 Denso Corp Cell voltage detection device
JP2012095436A (en) * 2010-10-26 2012-05-17 Lapis Semiconductor Co Ltd Semiconductor circuit, semiconductor device, fault diagnosis method for wiring, and fault diagnostic program
CN103178305A (en) * 2011-12-21 2013-06-26 北京科易动力科技有限公司 Smart battery
US8872478B2 (en) 2010-03-09 2014-10-28 O2Micro Inc. Circuit and method for balancing battery cells
CN105445523A (en) * 2014-09-26 2016-03-30 华润矽威科技(上海)有限公司 Battery voltage sampling circuit, battery voltage sampling method, and battery pack voltage detection system
CN105629029A (en) * 2014-11-27 2016-06-01 华润矽威科技(上海)有限公司 Battery pack voltage detection system and detection method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696725B2 (en) 2003-06-19 2010-04-13 O2Micro International Limited Battery cell monitoring and balancing circuit
US8836290B2 (en) 2003-06-19 2014-09-16 O2Micro International Limited Battery cell monitoring and balancing circuit
US8237411B2 (en) 2003-06-19 2012-08-07 O2Micro International Limited Battery cell monitoring and balancing circuit
JP2007274748A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Circuit and method for controlling power supply device
JP4484839B2 (en) * 2006-03-30 2010-06-16 富士通マイクロエレクトロニクス株式会社 Power supply control circuit and power supply control method
US7812568B2 (en) 2006-12-07 2010-10-12 Sanyo Electric Co., Ltd. Voltage detecting circuit
JP2008145180A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2008232735A (en) * 2007-03-19 2008-10-02 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2009063511A (en) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd Battery voltage detection circuit
US7663375B2 (en) 2007-09-07 2010-02-16 Sanyo Electric Co., Ltd. Battery voltage detecting circuit
US7911185B2 (en) 2008-01-23 2011-03-22 Sanyo Electric Co., Ltd. Battery voltage detection circuit
KR100982597B1 (en) * 2008-01-23 2010-09-15 산요 세미컨덕터 컴퍼니 리미티드 Battery voltage detecting circuit
US8872478B2 (en) 2010-03-09 2014-10-28 O2Micro Inc. Circuit and method for balancing battery cells
JP2011237266A (en) * 2010-05-10 2011-11-24 Denso Corp Cell voltage detection device
JP2012095436A (en) * 2010-10-26 2012-05-17 Lapis Semiconductor Co Ltd Semiconductor circuit, semiconductor device, fault diagnosis method for wiring, and fault diagnostic program
CN103178305A (en) * 2011-12-21 2013-06-26 北京科易动力科技有限公司 Smart battery
CN103178305B (en) * 2011-12-21 2016-07-13 北京科易动力科技有限公司 Intelligent battery
CN105445523A (en) * 2014-09-26 2016-03-30 华润矽威科技(上海)有限公司 Battery voltage sampling circuit, battery voltage sampling method, and battery pack voltage detection system
CN105629029A (en) * 2014-11-27 2016-06-01 华润矽威科技(上海)有限公司 Battery pack voltage detection system and detection method

Similar Documents

Publication Publication Date Title
EP0516130B1 (en) Circuit for measuring battery current
US8305035B2 (en) Energy storage device
JP4241787B2 (en) Total battery voltage detection and leak detection device
JP3157127B2 (en) Charge / discharge control circuit with charge / discharge current detection function and rechargeable power supply
US6335611B1 (en) Current monitoring circuit for secondary battery
US20090295396A1 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
JP4719972B2 (en) Charge / discharge current measuring device
JP2014137272A (en) Voltage monitoring device
JP2002243771A (en) Battery voltage detecting circuit
JP2007240299A (en) Flying capacitor system voltage measuring device
JP2002156392A (en) Device for detecting voltage of battery assembly
JP2001186684A (en) Lithium ion battery charger
GB2321714A (en) Device for determining remaining battery capacity
JP2001242200A (en) Monitor signal output circuit, cell pack, cell voltage monitor circuit, cell system, apparatus, cell voltage monitoring method, medium for recording cell voltage monitor program
JP2007304006A (en) Secondary battery charge/discharge inspection device and method
JP2002062341A (en) Method of detecting current of battery system for electric vehicle
JP3204091B2 (en) Charge / discharge current measuring device
JP2005328603A (en) Battery control system
JP2003282158A (en) Battery voltage measuring circuit
JPH11332111A (en) Battery state monitoring circuit and battery device
CN111123106B (en) Sensor and method for checking a sensor
JPH0833213A (en) Capacity indicator for secondary battery
KR100587526B1 (en) Cell voltage monitoring apparatus and method of a rechargeable battery
JP2001185232A (en) Battery pack
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091218