JP2007240299A - Flying capacitor system voltage measuring device - Google Patents

Flying capacitor system voltage measuring device Download PDF

Info

Publication number
JP2007240299A
JP2007240299A JP2006062387A JP2006062387A JP2007240299A JP 2007240299 A JP2007240299 A JP 2007240299A JP 2006062387 A JP2006062387 A JP 2006062387A JP 2006062387 A JP2006062387 A JP 2006062387A JP 2007240299 A JP2007240299 A JP 2007240299A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
measurement
resistor
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006062387A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawamura
佳浩 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006062387A priority Critical patent/JP2007240299A/en
Publication of JP2007240299A publication Critical patent/JP2007240299A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage measuring device capable of improving noise resistance without delay of measuring time. <P>SOLUTION: The flying capacitor system voltage measuring device includes a capacitor 3, a first multiplexer 1, a second multiplexer 2, a voltage measuring means 7, a sample voltage measurement switch 4, a control means 7, voltage detection terminals T1 to T5 connected to both ends of voltage sources V1 to V4, respectively, and a plurality of filters comprising a pair of resistors Rf1, Rf2 connected between the multiplexers and a capacitor Cf connected between connection points of the pair of resistors Rf1, Rf2 and the multiplexers. A resistance value of one resistor Rf1 from among the pair of resistors connected to the first and (N+1)-th voltage detection terminals from among the (N+1) voltage detection terminals is set so as to be smaller than a resistance value of the other resistor Rf2 of the pair of resistors, and the total resistance value of the pair of resistors is set so as to be equal in all of the plurality of filters. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フライングキャパシタ方式電圧測定装置に関する。   The present invention relates to a flying capacitor type voltage measuring apparatus.

電気自動車の電源のように、多数個の電池(電圧源)を直列接続して構成される高圧電源において、各個別電池(電圧源)の電圧をそれぞれ測定する装置として、フライングキャパシタ方式電圧測定装置がある。   As a device for measuring the voltage of each individual battery (voltage source) in a high-voltage power source configured by connecting a large number of batteries (voltage sources) in series like a power source of an electric vehicle, a flying capacitor type voltage measuring device There is.

図3は、従来のフライングキャパシタ方式電圧測定装置の構成図である。図3において、高圧電源Vにおいて直列接続された電圧源(たとえば、バッテリ)V1〜V4は、電圧検出端子T1〜T5から、電圧サンプルスイッチS1,S3,S5からなる第1のマルチプレクサ1および電圧サンプルスイッチS2,S4からなる第2のマルチプレクサ2を経由してコンデンサ3に接続され、さらに、コンデンサ3は、スイッチ4a,4bからなるサンプル電圧計測スイッチ4を経由して電圧計測回路5に接続されている。   FIG. 3 is a configuration diagram of a conventional flying capacitor type voltage measuring apparatus. In FIG. 3, voltage sources (for example, batteries) V1 to V4 connected in series in the high-voltage power supply V are connected to a first multiplexer 1 and voltage samples including voltage sample switches S1, S3, and S5 from voltage detection terminals T1 to T5. The capacitor 3 is connected to the voltage measuring circuit 5 via the sample voltage measuring switch 4 consisting of the switches 4a and 4b. The capacitor 3 is connected to the capacitor 3 via the second multiplexer 2 consisting of the switches S2 and S4. Yes.

また、電圧検出端子T1〜T5と第1および第2のマルチプレクサ1、2の電圧サンプルスイッチS1〜S5の間には、それぞれ抵抗Rfが接続されていると共に、抵抗Rfと電圧サンプルスイッチS1〜S5の各接続点間には、コンデンサCfが接続されている。抵抗RfとコンデンサCfはローパスフィルタの作用を行うフィルタ回路8を構成し、コンデンサ3への充電経路に乗るノイズを軽減し、第1および第2のマルチプレクサ1,2以降の計測系への影響を防止している。   A resistor Rf is connected between the voltage detection terminals T1 to T5 and the voltage sample switches S1 to S5 of the first and second multiplexers 1 and 2, and the resistor Rf and the voltage sample switches S1 to S5. A capacitor Cf is connected between the connection points. The resistor Rf and the capacitor Cf constitute a filter circuit 8 that acts as a low-pass filter, reduces noise on the charging path to the capacitor 3, and affects the measurement system after the first and second multiplexers 1 and 2. It is preventing.

上述の構成において、電圧測定装置は、サンプル電圧計測スイッチ4が開いた状態で、第1および第2のマルチプレクサ1,2により所望の電圧源を選択した後に、第1および第2のマルチプレクサ1,2を開いてサンプル電圧計測スイッチ4を閉じる動作を繰り返すことにより、電圧源V1〜V4の各電圧を絶縁的に計測することができる。   In the above-described configuration, the voltage measuring apparatus selects the desired voltage source by the first and second multiplexers 1 and 2 with the sample voltage measurement switch 4 opened, and then the first and second multiplexers 1 and 2. By repeating the operation of opening 2 and closing the sample voltage measuring switch 4, each voltage of the voltage sources V1 to V4 can be measured in an insulating manner.

たとえば、電圧サンプルスイッチS1とS2を閉じれば、電圧源V1の電圧がコンデンサ3に充電され、次に電圧サンプルスイッチS1とS2を開いた後、サンプル電圧計測スイッチ4を閉じると、電圧計測回路5にコンデンサ3の充電電圧、すなわち電圧源V1の電圧に対応する電圧が入力される。このようにして、マルチプレクサ1,2とサンプル電圧計測スイッチ4は同時に閉じないため、電圧計測回路5は、電圧源V1と絶縁された状態でその電圧を計測することができる。   For example, when the voltage sample switches S1 and S2 are closed, the voltage of the voltage source V1 is charged in the capacitor 3. Next, after the voltage sample switches S1 and S2 are opened and then the sample voltage measurement switch 4 is closed, the voltage measurement circuit 5 A voltage corresponding to the charging voltage of the capacitor 3, that is, the voltage of the voltage source V1 is input to the input. In this way, since the multiplexers 1 and 2 and the sample voltage measurement switch 4 are not closed at the same time, the voltage measurement circuit 5 can measure the voltage while being insulated from the voltage source V1.

また、この電圧測定装置では、奇数番目の電圧源に対して偶数番目の電圧源の検出電圧が、極性反転して電圧計測回路5に入力されるため、奇数番目の電圧源と偶数番目の電圧源の検出電圧極性を揃えるための極性補正手段6を備えている(たとえば、特許文献1および2参照)。
特開平11−248755号公報 特開2003−114243号公報
Further, in this voltage measuring device, the detected voltage of the even-numbered voltage source with respect to the odd-numbered voltage source is inverted in polarity and input to the voltage measuring circuit 5, so that the odd-numbered voltage source and the even-numbered voltage source are input. Polarity correction means 6 for aligning the detection voltage polarity of the source is provided (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 11-248755 JP 2003-114243 A

しかしながら、上述の構成の電圧測定装置では、フィルタ回路8の抵抗RfおよびコンデンサCfが、計測電圧(コンデンサ3に充電される電圧)の検出精度に影響を与えてしまう。すなわち、コンデンサ3には、個別電圧源V1〜V4の各電圧が直接充電されるのではなく、いったんフィルタ回路8のコンデンサCfへ充電された後、コンデンサCfに充電された電荷がコンデンサ3側へ放電されてコンデンサ3が充電される。したがって、フィルタ回路8の影響をなくすためには計測時間を長くする必要があるという問題がある。   However, in the voltage measuring device having the above-described configuration, the resistance Rf and the capacitor Cf of the filter circuit 8 affect the detection accuracy of the measurement voltage (the voltage charged in the capacitor 3). That is, the capacitor 3 is not directly charged with the voltages of the individual voltage sources V1 to V4, but once charged to the capacitor Cf of the filter circuit 8, the charge charged in the capacitor Cf is transferred to the capacitor 3 side. The capacitor 3 is charged by being discharged. Therefore, in order to eliminate the influence of the filter circuit 8, there is a problem that it is necessary to lengthen the measurement time.

つまり、各電圧源V1〜V4からのコンデンサCfへの充電は、2個の抵抗Rfの抵抗値とコンデンサCfの容量で決定される時定数τ=2Rf*Cfにより制限されるので、図4に示すように、コンデンサCfのフル充電までに時間を要してしまう。たとえば、電圧源V1の計測時、時間t1において電圧サンプルスイッチS1およびS2が閉じられると、電圧源V1の電圧で充電されていたコンデンサCfの電荷がコンデンサ3へ放電されコンデンサ3が充電されるため、コンデンサCfの両端電圧は電圧V1から一度若干下がり、そこから時定数τで上昇するように充電される。次に、時間t2でスイッチS1およびS2を開いて、サンプル電圧計測スイッチ4を閉じることにより、コンデンサ3の両端電圧が電圧計測回路5で計測される。   That is, the charging of the capacitor Cf from each of the voltage sources V1 to V4 is limited by the time constant τ = 2Rf * Cf determined by the resistance value of the two resistors Rf and the capacitance of the capacitor Cf. As shown, it takes time to fully charge the capacitor Cf. For example, when voltage sample switches S1 and S2 are closed at time t1 when measuring voltage source V1, the charge of capacitor Cf charged with the voltage of voltage source V1 is discharged to capacitor 3 and capacitor 3 is charged. The voltage across the capacitor Cf is charged so that it once drops slightly from the voltage V1 and then increases with the time constant τ. Next, the switches S1 and S2 are opened at time t2 and the sample voltage measurement switch 4 is closed, whereby the voltage across the capacitor 3 is measured by the voltage measurement circuit 5.

このとき、ノイズ除去のために、フィルタ回路8の抵抗Rfの抵抗値は、たとえば、数10〜数百Hzのノイズを除去するために10kΩオーダーに設定(具体例として、コンデンサCfの容量値は4.7μF、抵抗Rfの抵抗値は10kΩに設定)されているので、コンデンサCfをフル充電するのに要する時間は、時定数τの何倍もの長い時間を要してしまう。   At this time, in order to remove noise, the resistance value of the resistor Rf of the filter circuit 8 is set to, for example, the order of 10 kΩ to remove noise of several tens to several hundreds of Hz (as a specific example, the capacitance value of the capacitor Cf is 4.7 μF, and the resistance value of the resistor Rf is set to 10 kΩ), the time required to fully charge the capacitor Cf takes many times as long as the time constant τ.

したがって、時間t1からt2までの期間P1に対して、時間t2からコンデンサCfがフル充電(飽和状態)される時間t3までの期間P2は、期間P1の何倍もの時間を要してしまい、電圧計測に要する時間が長くなる。コンデンサCfが飽和状態に戻りきらないうちに次回の計測を開始すると、正確な電圧計測ができない。   Therefore, the period P2 from the time t2 to the time t3 when the capacitor Cf is fully charged (saturated) with respect to the period P1 from the time t1 to the time t2 requires many times as long as the period P1. The time required for measurement becomes longer. If the next measurement is started before the capacitor Cf completely returns to the saturated state, accurate voltage measurement cannot be performed.

抵抗Rfの抵抗値を小さくして、コンデンサCfの容量値をコンデンサ3の容量値に対して充分大きな値とすれば、上述の問題は軽減されるが、フィルタ定数(カットオフ周波数)を変更したくない場合、コンデンサCfの容量値を大にすると、コンデンサCfの形状が大きくなり、部品形状が大きくなってしまう。   If the resistance value of the resistor Rf is reduced so that the capacitance value of the capacitor Cf is sufficiently larger than the capacitance value of the capacitor 3, the above problem is reduced, but the filter constant (cutoff frequency) is changed. If not, if the capacitance value of the capacitor Cf is increased, the shape of the capacitor Cf increases and the component shape increases.

また、高圧電源Vの中ほどの電圧源(すなわち、V2およびV3)の計測時、その電圧検出端子間(すなわち、T2−T3間およびT3−T4間)に接続されたコンデンサCfは、コンデンサ3への放電後に当該電圧源(すなわち、V2またはV3)から充電される際に、その上下2つの電圧源(すなわち、電圧源V1およびV3、または電圧源V2およびV4)からの回り込み電流が流れるために充電電流が多くなり、短い時間で充電される。   Further, when measuring the middle voltage source (that is, V2 and V3) of the high-voltage power supply V, the capacitor Cf connected between the voltage detection terminals (that is, between T2 and T3 and between T3 and T4) is the capacitor 3 When charging from the voltage source (i.e., V2 or V3) after discharging, a sneak current from the two upper and lower voltage sources (i.e., voltage sources V1 and V3 or voltage sources V2 and V4) flows. The charging current increases and the battery is charged in a short time.

たとえば、電圧源V2の計測時、その電圧検出端子間T2−T3間に接続されたコンデンサCfの両端電圧は、コンデンサ3への放電後に電圧V2より低くなるため、この低くなった分だけ電圧検出端子T1−T2間およびT3−T4間に接続されたコンデンサCfの両端電圧が、それぞれ電圧V3およびV4より高くなる。それにより、電圧検出端子間T2−T3間に接続されたコンデンサCfは、放電後再び充電される際、電圧源V2から抵抗Rfを介して充電される以外に、電圧検出端子T1−T2間およびT3−T4間に接続されたコンデンサCfからも電荷の移動が行われて充電される。   For example, when the voltage source V2 is measured, the voltage across the capacitor Cf connected between the voltage detection terminals T2 and T3 becomes lower than the voltage V2 after discharging to the capacitor 3, so that the voltage is detected by this lower amount. The voltage across the capacitor Cf connected between the terminals T1-T2 and between T3-T4 becomes higher than the voltages V3 and V4, respectively. Accordingly, when the capacitor Cf connected between the voltage detection terminals T2 and T3 is charged again after discharging, the capacitor Cf is charged from the voltage source V2 via the resistor Rf, and between the voltage detection terminals T1 and T2 and Charge is also transferred from the capacitor Cf connected between T3 and T4.

一方、高圧電源Vの両端の電圧源(すなわち、V1およびV4)の計測時、その電圧検出端子間(すなわち、T1−T2間およびT4−T5間)に接続されたコンデンサCfは、コンデンサ3への放電後に当該電圧源(すなわち、V1またはV4)から充電される際に、片側から1つの電圧源のみ(すなわち、電圧源V2、または電圧源V3)からの回り込み電流が流れるだけなので、充電電流は、上述の高圧電源Vの中ほどの電圧源(すなわち、V2およびV3)の計測時の充電電流に比べて少なくなる。   On the other hand, when measuring the voltage sources at both ends of the high-voltage power supply V (that is, V1 and V4), the capacitor Cf connected between the voltage detection terminals (that is, between T1 and T2 and between T4 and T5) is connected to the capacitor 3. Since charging current from only one voltage source (ie, voltage source V2 or voltage source V3) flows from only one side when charging from the voltage source (ie, V1 or V4) after discharging of Is smaller than the charging current at the time of measurement of the middle voltage source (that is, V2 and V3) of the high-voltage power supply V described above.

たとえば、電圧源V1の計測時、その電圧検出端子間T1−T2間に接続されたコンデンサCfの両端電圧は、コンデンサ3への放電後に電圧V1より低くなるため、この低くなった分だけ電圧検出端子T2−T3間に接続されたコンデンサCfの両端電圧が、電圧V2より高くなる。それにより、電圧検出端子間T1−T2間に接続されたコンデンサCfは、放電後再び充電される際、電圧源V1から抵抗Rfを介して充電される以外に、電圧検出端子T2−T3間に接続されたコンデンサCfからも電荷の移動が行われて充電される。   For example, when the voltage source V1 is measured, the voltage across the capacitor Cf connected between the voltage detection terminals T1 and T2 becomes lower than the voltage V1 after discharging to the capacitor 3, so that the voltage detection is performed by this lower amount. The voltage across the capacitor Cf connected between the terminals T2 and T3 becomes higher than the voltage V2. Thereby, when the capacitor Cf connected between the voltage detection terminals T1 and T2 is charged again after discharging, the capacitor Cf is charged between the voltage detection terminals T2 and T3 in addition to being charged from the voltage source V1 via the resistor Rf. Charge is also transferred from the connected capacitor Cf for charging.

そのため、高圧電源Vの両端の電圧源(すなわち、V1およびV4)の計測時のコンデンサCfの充電時間は、高圧電源Vの中ほどの電圧源(すなわち、V2およびV3)の計測時のコンデンサCfの充電時間より遅くなる。   Therefore, the charging time of the capacitor Cf when measuring the voltage sources (that is, V1 and V4) at both ends of the high-voltage power supply V is equal to the capacitor Cf when measuring the middle voltage source (that is, V2 and V3) of the high-voltage power supply V. Will be slower than the charging time.

それにより、計測サイクルが短く(電圧計測によるコンデンサCfの放電後、コンデンサCfのフル充電前に次の電圧計測が開始される場合、かつ、計測サイクルが、電圧源V1、V2、V3およびV4の同一順で繰り返される場合は、上述の高圧電源Vの中ほどの電圧源(すなわち、V2およびV3)の計測に比べて、高圧電源Vの両端の電圧源(すなわち、V1およびV4)の計測の方が検出精度が低下してしまうという問題がある。   As a result, the measurement cycle is short (when the next voltage measurement is started after the capacitor Cf is discharged by voltage measurement and before the capacitor Cf is fully charged, and the measurement cycle includes the voltage sources V1, V2, V3 and V4. When it is repeated in the same order, the measurement of the voltage sources (that is, V1 and V4) at both ends of the high-voltage power supply V is compared with the measurement of the middle voltage source (that is, V2 and V3) of the high-voltage power supply V described above. However, there is a problem that the detection accuracy is lowered.

さらに、計測サイクルが、電圧源V1、V2、V3およびV4の同一順で繰り返される場合、電圧源V1の電圧計測後、電圧源V1用のコンデンサCfがフル充電状態に戻る前に、電圧源V2の計測を開始すると、電圧源V2用のコンデンサCfの両端電圧は、電圧源V1用のコンデンサCfのフル充電が戻りきらない分を補う値だけ高くなり、その状態のまま、コンデンサ3の充電電圧を電圧計測回路5で計測すると、電圧源V2の計測値が真の値よりも高めに計測されてしまう。次に、電圧源V2の電圧計測後、電圧源V2用のコンデンサCfがフル充電状態に戻る前に、電圧源V3の計測を開始すると、電圧源V3用のコンデンサCfの両端電圧は、電圧源V2用のコンデンサCfの両端電圧が高くなった分を補う値だけ低くなり、その状態のまま、コンデンサ3の充電電圧を電圧計測回路5で計測すると、電圧源V3の計測値が真の値よりも低めに計測されてしまう。次に、電圧源V3の電圧計測後、電圧源V3用のコンデンサCfがフル充電状態に戻る前に、電圧源V4の計測を開始すると、上述の電圧源V2の計測時と同様に、電圧源V4の計測値が真の値よりも高めに計測されてしまう。   Furthermore, when the measurement cycle is repeated in the same order of the voltage sources V1, V2, V3, and V4, after measuring the voltage of the voltage source V1, before the capacitor Cf for the voltage source V1 returns to the fully charged state, the voltage source V2 Is started, the voltage across the capacitor Cf for the voltage source V2 is increased by a value that compensates for the fact that the full charge of the capacitor Cf for the voltage source V1 cannot be fully restored. Is measured by the voltage measuring circuit 5, the measured value of the voltage source V2 is measured higher than the true value. Next, when the measurement of the voltage source V3 is started after the voltage measurement of the voltage source V2 and before the capacitor Cf for the voltage source V2 returns to the fully charged state, the voltage across the capacitor Cf for the voltage source V3 is When the voltage across the capacitor 3 is measured by the voltage measuring circuit 5 in this state, the measured value of the voltage source V3 is less than the true value. Will be measured lower. Next, when the measurement of the voltage source V4 is started after the voltage measurement of the voltage source V3 and before the capacitor Cf for the voltage source V3 returns to the fully charged state, the voltage source V4 is measured in the same manner as in the measurement of the voltage source V2. The measured value of V4 is measured higher than the true value.

このように、計測サイクルが、電圧源V1、V2、V3およびV4の同一順で繰り返される場合は、計測順により、交互に計測値が真の値よりも低め、高めとずれてしまうという問題がある。   As described above, when the measurement cycle is repeated in the same order of the voltage sources V1, V2, V3, and V4, there is a problem that the measurement value is alternately lower than the true value and shifted higher depending on the measurement order. is there.

さらに、電圧源からフィルタ回路に至る接続ラインに断線が発生した場合、コンデンサCfの影響で断線時もコンデンサ3に電荷が現れてしまい、故障と判別できないという問題もある。たとえば、電圧検出端子と抵抗Rfの接続ラインのうちの1つが断線しても、他のラインからの回り込みにより計測対象のコンデンサCfが充電されてしまうため、断線が検知できないだけでなく、断線時は、計測対象の電圧源の電圧ではなく、上記のコンデンサCfに充電された電荷、すなわち電圧源電圧でない偽りの電圧が計測されてしまう。   Furthermore, when a disconnection occurs in the connection line from the voltage source to the filter circuit, there is a problem that electric charges appear in the capacitor 3 even when the disconnection occurs due to the influence of the capacitor Cf, and it cannot be determined as a failure. For example, even if one of the connection lines of the voltage detection terminal and the resistor Rf is disconnected, the capacitor Cf to be measured is charged due to the wraparound from the other line, so that not only the disconnection cannot be detected but also when the disconnection occurs Is not the voltage of the voltage source to be measured, but the charge charged in the capacitor Cf, that is, a false voltage that is not the voltage source voltage is measured.

そこで本発明は、上述した従来の問題点に鑑み、計測時間を遅くすることなく、耐ノイズ性を向上できる電圧測定装置を提供することを目的としている。   Therefore, in view of the above-described conventional problems, an object of the present invention is to provide a voltage measuring device that can improve noise resistance without delaying measurement time.

上記課題を解決するためになされた請求項1記載の発明は、コンデンサと、直列接続されたN(ただし、Nは偶数)個の電圧源に接続された(N+1)個の電圧検出端子のうちの奇数番目の電圧検出端子を前記コンデンサに選択的に接続する第1のマルチプレクサと、前記(N+1)個の電圧検出端子のうちの偶数番目の電圧検出端子を前記コンデンサに選択的に接続する第2のマルチプレクサと、電圧計測手段と、前記コンデンサの両端電圧を電圧計測手段に供給するサンプル電圧計測スイッチと、前記第1および第2のマルチプレクサおよび前記サンプル電圧計測スイッチの動作を制御する制御手段と、前記各電圧源の両端にそれぞれ接続される電圧検出端子および前記マルチプレクサ間に接続された一対の抵抗と前記抵抗および前記マルチプレクサの接続点間に接続されたコンデンサからなる複数のフィルタとを備えたフライングキャパシタ方式電圧測定装置であって、前記(N+1)個の電圧検出端子のうちの1番目および(N+1)番目の電圧検出端子に接続される前記一対の抵抗のうちの一方の抵抗の抵抗値を、前記一対の抵抗のうちの他方の抵抗の抵抗値より小さく設定すると共に、前記一対の抵抗の合計抵抗値を前記複数のフィルタの全部において等しく設定したことを特徴とするフライングキャパシタ方式電圧測定装置に存する。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that among the (N + 1) voltage detection terminals connected to a capacitor and N (N is an even number) voltage sources connected in series. A first multiplexer that selectively connects the odd-numbered voltage detection terminals to the capacitor, and a first multiplexer that selectively connects the even-numbered voltage detection terminals of the (N + 1) voltage detection terminals to the capacitor. Two multiplexers, voltage measuring means, a sample voltage measuring switch for supplying a voltage across the capacitor to the voltage measuring means, and control means for controlling the operations of the first and second multiplexers and the sample voltage measuring switch. A pair of resistors connected between the voltage detection terminals connected to both ends of each voltage source and the multiplexer, the resistors and the resistors. A flying capacitor type voltage measuring apparatus including a plurality of filters including capacitors connected between connection points of a chipplexer, wherein the first and (N + 1) th voltages of the (N + 1) voltage detection terminals The resistance value of one of the pair of resistors connected to the detection terminal is set to be smaller than the resistance value of the other resistor of the pair of resistors, and the total resistance value of the pair of resistors is set to the The present invention resides in a flying capacitor type voltage measuring apparatus characterized in that all of a plurality of filters are set equal.

請求項1記載の発明においては、コンデンサと、直列接続されたN(ただし、Nは偶数)個の電圧源に接続された(N+1)個の電圧検出端子のうちの奇数番目の電圧検出端子をコンデンサに選択的に接続する第1のマルチプレクサと、(N+1)個の電圧検出端子のうちの偶数番目の電圧検出端子をコンデンサに選択的に接続する第2のマルチプレクサと、電圧計測手段と、コンデンサの両端電圧を電圧計測手段に供給するサンプル電圧計測スイッチと、第1および第2のマルチプレクサおよびサンプル電圧計測スイッチの動作を制御する制御手段と、各電圧源の両端にそれぞれ接続される電圧検出端子およびマルチプレクサ間に接続された一対の抵抗と前記抵抗およびマルチプレクサの接続点間に接続されたコンデンサからなる複数のフィルタとを備えたフライングキャパシタ方式電圧測定装置であって、(N+1)個の電圧検出端子のうちの1番目および(N+1)番目の電圧検出端子に接続される一対の抵抗のうちの一方の抵抗の抵抗値を、一対の抵抗のうちの他方の抵抗の抵抗値より小さく設定すると共に、一対の抵抗の合計抵抗値を複数のフィルタの全部において等しく設定している。   According to the first aspect of the present invention, an odd-numbered voltage detection terminal among (N + 1) voltage detection terminals connected to a capacitor and N (where N is an even number) voltage source connected in series is provided. A first multiplexer selectively connected to the capacitor; a second multiplexer selectively connecting an even-numbered voltage detection terminal of the (N + 1) voltage detection terminals to the capacitor; a voltage measuring means; a capacitor A sample voltage measurement switch for supplying a voltage measurement means to the voltage measurement means, a control means for controlling the operations of the first and second multiplexers and the sample voltage measurement switch, and a voltage detection terminal connected to both ends of each voltage source. And a pair of resistors connected between the multiplexers and a capacitor connected between the connection points of the resistors and the multiplexers. A flying capacitor type voltage measuring device including a filter, wherein one of a pair of resistors connected to the first and (N + 1) th voltage detection terminals of (N + 1) voltage detection terminals Is set to be smaller than the resistance value of the other resistance of the pair of resistors, and the total resistance value of the pair of resistors is set to be equal in all of the plurality of filters.

上記課題を解決するためになされた請求項2記載の発明は、請求項1記載のフライングキャパシタ方式電圧測定装置において、前記制御手段は、前記直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測し続いてN番目から一番目まで逆順に計測するように、前記第1および第2のマルチプレクサおよび前記サンプル電圧計測スイッチの動作を制御し、前記電圧計測手段は、前記制御手段の制御により、前記直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測した1回目の前記各電圧源の計測値と、続いてN番目から一番目まで逆順に計測した2回目の前記各電圧源の計測値を平均する演算を行い、その結果の平均値を各電圧源の最終計測値として決定することを特徴とするフライングキャパシタ方式電圧測定装置に存する。   In order to solve the above-mentioned problem, the invention according to claim 2 is the flying capacitor type voltage measuring device according to claim 1, wherein the control means serially connects the N voltage sources connected in series one by one. The voltage measurement is performed by controlling the operations of the first and second multiplexers and the sample voltage measuring switch so as to measure in order from the first to the Nth connection, and in reverse order from the Nth to the first. The means is configured to measure the first voltage source of each voltage source measured in order from the first to the Nth serial connection of the N voltage sources connected in series one by one under the control of the control means. And calculating the average of the second measured values of each voltage source measured in reverse order from the Nth to the first, and determining the average value of the results as the final measured value of each voltage source. It consists in viewing capacitor method voltage measuring device.

請求項2記載の発明においては、制御手段は、直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測し続いてN番目から一番目まで逆順に計測するように、第1および第2のマルチプレクサおよびサンプル電圧計測スイッチの動作を制御する。電圧計測手段は、制御手段の制御により、直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測した1回目の前記各電圧源の計測値と、続いてN番目から一番目まで逆順に計測した2回目の各電圧源の計測値を平均する演算を行い、その結果の平均値を各電圧源の最終計測値として決定する。   In the invention according to claim 2, the control means measures the N voltage sources connected in series one by one in order from the first to the Nth serial connection, and then measures in reverse order from the Nth to the first. In this manner, the operations of the first and second multiplexers and the sample voltage measurement switch are controlled. The voltage measuring means is controlled by the control means, and the first measured value of each voltage source measured in order from the first to the Nth serially connected N voltage sources one by one, Then, the second measurement value of each voltage source measured in reverse order from the Nth to the first is calculated, and the average value of the result is determined as the final measurement value of each voltage source.

上記課題を解決するためになされた請求項3記載の発明は、請求項1または2記載のフライングキャパシタ方式電圧測定装置において、前記奇数番目の電圧検出端子および前記抵抗Rf1の接続点と前記偶数番目の電圧検出端子および前記抵抗Rf2の接続点の間に接続された第1の短絡抵抗Raと、該第1の短絡抵抗Raが接続されていない、前記偶数番目の電圧検出端子および抵抗Rf2の接続点と前記奇数番目の電圧検出端子および前記抵抗Rf1の接続点の間に接続され、前記第1の短絡抵抗Raより大きい抵抗値を有する第2の短絡抵抗Rbと、隣接する前記電圧源の最終計測値の差分が予め設定された断線判定しきい値以上の場合に、断線故障と判定する判定手段とをさらに備えたことを特徴とするフライングキャパシタ方式電圧測定装置に存する。   In order to solve the above-mentioned problems, a third aspect of the present invention is the flying capacitor type voltage measuring device according to the first or second aspect, wherein the odd-numbered voltage detection terminal and the connection point of the resistor Rf1 are connected to the even-numbered number. The first short-circuit resistor Ra connected between the voltage detection terminal and the connection point of the resistor Rf2, and the even-numbered voltage detection terminal and the resistor Rf2 that are not connected to the first short-circuit resistor Ra A second short-circuit resistor Rb having a resistance value greater than that of the first short-circuit resistor Ra, and a terminal of the voltage source adjacent to the odd-numbered voltage detection terminal and the connection point of the resistor Rf1. A flying capacitor system power supply, further comprising: a determination means for determining a disconnection failure when the difference between the measured values is equal to or greater than a preset disconnection determination threshold value. It resides in the measurement device.

請求項3記載の発明においては、フライングキャパシタ方式電圧測定装置は、奇数番目の電圧検出端子および抵抗Rf1の接続点と偶数番目の電圧検出端子および抵抗Rf2の接続点の間に接続された第1の短絡抵抗Raと、第1の短絡抵抗Raが接続されていない、偶数番目の電圧検出端子および抵抗Rf2の接続点と奇数番目の電圧検出端子および抵抗Rf1の接続点の間に接続され、第1の短絡抵抗Raより大きい抵抗値を有する第2の短絡抵抗Rbと、隣接する電圧源の最終計測値の差分が予め設定された断線判定しきい値以上の場合に、断線故障と判定する判定手段とをさらに備えている。   According to a third aspect of the present invention, the flying capacitor type voltage measuring device is connected between the connection point of the odd-numbered voltage detection terminal and the resistor Rf1 and the connection point of the even-numbered voltage detection terminal and the resistor Rf2. Are connected between the connection point of the even-numbered voltage detection terminal and the resistor Rf2, and the connection point of the odd-numbered voltage detection terminal and the resistor Rf1, to which the first short-circuit resistance Ra is not connected. Determination that a disconnection failure is determined when the difference between the second short-circuit resistance Rb having a resistance value greater than one short-circuit resistance Ra and the final measured value of the adjacent voltage source is equal to or greater than a preset disconnection determination threshold value. And means.

請求項1記載の発明によれば、コンデンサと、直列接続されたN(ただし、Nは偶数)個の電圧源に接続された(N+1)個の電圧検出端子のうちの奇数番目の電圧検出端子をコンデンサに選択的に接続する第1のマルチプレクサと、(N+1)個の電圧検出端子のうちの偶数番目の電圧検出端子をコンデンサに選択的に接続する第2のマルチプレクサと、電圧計測手段と、コンデンサの両端電圧を電圧計測手段に供給するサンプル電圧計測スイッチと、第1および第2のマルチプレクサおよびサンプル電圧計測スイッチの動作を制御する制御手段と、各電圧源の両端にそれぞれ接続される電圧検出端子およびマルチプレクサ間に接続された一対の抵抗と前記抵抗およびマルチプレクサの接続点間に接続されたコンデンサからなる複数のフィルタとを備えたフライングキャパシタ方式電圧測定装置であって、(N+1)個の電圧検出端子のうちの1番目および(N+1)番目の電圧検出端子に接続される一対の抵抗のうちの一方の抵抗の抵抗値を、一対の抵抗のうちの他方の抵抗値より小さく設定すると共に、一対の抵抗の合計抵抗値を前記複数のフィルタの全部において等しく設定したので、コンデンサへのフル充電を待つことなく、したがって計測時間を遅くすることなく、耐ノイズ性の良い正確な電圧源の計測を可能とすることができる。また、高圧電源Vの両端の電圧源の計測時も、高圧電源Vの中ほどの電圧源の計測時もほぼ同じ検出精度での計測が可能となる。   According to the first aspect of the present invention, an odd-numbered voltage detection terminal among (N + 1) voltage detection terminals connected to a capacitor and N (where N is an even number) voltage sources connected in series. A first multiplexer that selectively connects the capacitor to the capacitor, a second multiplexer that selectively connects the even-numbered voltage detection terminal of the (N + 1) voltage detection terminals to the capacitor, voltage measurement means, Sample voltage measurement switch for supplying voltage across the capacitor to the voltage measurement means, control means for controlling the operation of the first and second multiplexers and the sample voltage measurement switch, and voltage detection connected to both ends of each voltage source A plurality of resistors comprising a pair of resistors connected between the terminal and the multiplexer and a capacitor connected between the connection points of the resistors and the multiplexer. And a resistance of one of a pair of resistors connected to the first and (N + 1) th voltage detection terminals of the (N + 1) voltage detection terminals. Is set to be smaller than the other resistance value of the pair of resistors, and the total resistance value of the pair of resistors is set to be equal in all of the plurality of filters, without waiting for the capacitor to be fully charged. Therefore, it is possible to measure an accurate voltage source with good noise resistance without delaying the measurement time. Also, measurement with almost the same detection accuracy is possible when measuring the voltage source at both ends of the high-voltage power supply V and when measuring the voltage source in the middle of the high-voltage power supply V.

請求項2記載の発明によれば、制御手段は、前記直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測し続いてN番目から一番目まで逆順に計測するように、第1および第2のマルチプレクサおよびサンプル電圧計測スイッチの動作を制御し、電圧計測手段は、制御手段の制御により、直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測した1回目の前記各電圧源の計測値と、続いてN番目から一番目まで逆順に計測した2回目の各電圧源の計測値を平均する演算を行い、その結果の平均値を各電圧源の最終計測値として決定するので、精度の良い電圧計測が可能となる。   According to a second aspect of the present invention, the control means measures the N voltage sources connected in series one by one in order from the first to the Nth in the series connection, and then in reverse order from the Nth to the first. The voltage measurement means controls the operation of the first and second multiplexers and the sample voltage measurement switch so that the N voltage sources connected in series are connected in series one by one under the control of the control means. The first measurement value of each voltage source measured in order from the first to the Nth and the second measurement value of each voltage source measured in the reverse order from the Nth to the first are calculated. Since the average value of the results is determined as the final measurement value of each voltage source, accurate voltage measurement is possible.

請求項3記載の発明によれば、奇数番目の電圧検出端子および抵抗Rf1の接続点と偶数番目の電圧検出端子および抵抗Rf2の接続点の間に接続された第1の短絡抵抗Raと、第1の短絡抵抗Raが接続されていない、偶数番目の電圧検出端子および抵抗Rf2の接続点と奇数番目の電圧検出端子および抵抗Rf1の接続点の間に接続され、第1の短絡抵抗より大きい抵抗値を有する第2の短絡抵抗Rbと、隣接する電圧源の最終計測値の差分が予め設定された断線判定しきい値以上の場合に、断線故障と判定する判定手段とをさらに備えているので、耐ノイズ性の向上のためのフィルタが存在しても断線検知が可能となる。   According to the third aspect of the present invention, the first short-circuit resistor Ra connected between the connection point of the odd-numbered voltage detection terminal and the resistor Rf1 and the connection point of the even-numbered voltage detection terminal and the resistor Rf2, and 1 is connected between the connection point of the even-numbered voltage detection terminal and the resistor Rf2 and the connection point of the odd-numbered voltage detection terminal and the resistor Rf1, and is larger than the first short-circuit resistance Ra. Since there is further provided a second short-circuit resistance Rb having a value and a determination means for determining a disconnection failure when the difference between the final measured values of adjacent voltage sources is equal to or greater than a preset disconnection determination threshold value. Even if there is a filter for improving noise resistance, disconnection can be detected.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)図1は、本発明の第1の実施形態に係る電圧測定装置の構成を示す回路図である。図1において、電圧測定装置は、フライングキャパシタ方式電圧測定装置として構成され、高圧電源Vの電圧検出端子T1〜T5に接続された第1のマルチプレクサ1および第2のマルチプレクサ2、両極性のコンデンサ3、サンプル電圧計測スイッチ4、電圧計測手段としてのマイクロコンピュータ(以下、マイコンという)7およびフィルタ回路8を含む。   (First Embodiment) FIG. 1 is a circuit diagram showing a configuration of a voltage measuring apparatus according to a first embodiment of the present invention. In FIG. 1, the voltage measuring device is configured as a flying capacitor type voltage measuring device, and includes a first multiplexer 1 and a second multiplexer 2 connected to voltage detection terminals T1 to T5 of a high-voltage power supply V, and a bipolar capacitor 3. , A sample voltage measuring switch 4, a microcomputer (hereinafter referred to as a microcomputer) 7 as a voltage measuring means, and a filter circuit 8.

高圧電源Vは、直列接続されたN個(ただし、Nは偶数であり、この形態では、たとえばN=4)の電圧源(たとえば、バッテリ)V1〜V4を含む。各電圧源V1〜V4は、同一の電圧を有し、(N+1)個(この形態では、たとえば5個)の電圧検出端子T1〜T5にそれぞれ接続されている。   High-voltage power supply V includes N voltage sources (for example, batteries) V1 to V4 connected in series (where N is an even number, for example, N = 4 in this embodiment). Each of the voltage sources V1 to V4 has the same voltage and is connected to (N + 1) (in this embodiment, for example, 5) voltage detection terminals T1 to T5.

フィルタ回路8は、奇数番目の電圧検出端子、すなわちT1,T3,T5と第1のマルチプレクサ1の電圧サンプルスイッチS1,S3,S5の間にそれぞれ接続された抵抗Rf1と、偶数番目の電圧検出端子、すなわち、T2,T4と第2のマルチプレクサ2の電圧サンプルスイッチS2,S4の間にそれぞれ接続された抵抗Rf2と、抵抗Rf1および第1のマルチプレクサ1の接続点と抵抗Rf2および第2のマルチプレクサ2の接続点との間にそれぞれ接続されたコンデンサCfとからなる複数のフィルタから構成される。各フィルタの抵抗Rf1,Rf2とコンデンサCfは、ローパスフィルタの作用を行い、充電ラインに乗るノイズを除去し、第1および第2のマルチプレクサ1,2以降の計測系への影響をなくしている。   The filter circuit 8 includes an odd-numbered voltage detection terminal, that is, a resistor Rf1 connected between T1, T3, T5 and the voltage sample switches S1, S3, S5 of the first multiplexer 1, and an even-numbered voltage detection terminal. That is, the resistor Rf2 connected between T2 and T4 and the voltage sample switches S2 and S4 of the second multiplexer 2, the connection point of the resistor Rf1 and the first multiplexer 1, the resistor Rf2 and the second multiplexer 2, respectively. It is comprised from the some filter which consists of the capacitor | condenser Cf each connected between these connection points. The resistors Rf1 and Rf2 and the capacitor Cf of each filter perform the action of a low-pass filter, remove the noise on the charging line, and eliminate the influence on the measurement system after the first and second multiplexers 1 and 2.

抵抗Rf1と抵抗Rf2の抵抗値は、Rf1+Rf2=2RfおよびRf1≪Rf2の関係を持つように設定されている。たとえば、Rf=10kΩ、Rf1=1kΩ、Rf2=19kΩに設定されている。またこのとき、コンデンサ3は0.1μF、コンデンサCfは4.7μFに設定されている。コンデンサ3とコンデンサCfは、同一特性品(同シリーズ品、同一耐圧品)のチップ形状のセラミックコンデンサが用いられる。   The resistance values of the resistors Rf1 and Rf2 are set to have a relationship of Rf1 + Rf2 = 2Rf and Rf1 << Rf2. For example, Rf = 10 kΩ, Rf1 = 1 kΩ, and Rf2 = 19 kΩ are set. At this time, the capacitor 3 is set to 0.1 μF, and the capacitor Cf is set to 4.7 μF. As the capacitor 3 and the capacitor Cf, chip-shaped ceramic capacitors having the same characteristics (the same series and the same breakdown voltage) are used.

第1のマルチプレクサ1の電圧サンプルスイッチS1,S3,S5は、コンデンサ3の一方の端子に接続され、第2のマルチプレクサ2の電圧サンプルスイッチS2,S4は、コンデンサ3の他方の端子に接続されている。   The voltage sample switches S1, S3, S5 of the first multiplexer 1 are connected to one terminal of the capacitor 3, and the voltage sample switches S2, S4 of the second multiplexer 2 are connected to the other terminal of the capacitor 3. Yes.

サンプル電圧計測スイッチ4は、コンデンサ3の一方の端子に接続されたスイッチ4aと、コンデンサ3の他方の端子に接続されたスイッチ4bを含む。   The sample voltage measurement switch 4 includes a switch 4 a connected to one terminal of the capacitor 3 and a switch 4 b connected to the other terminal of the capacitor 3.

マイコン7は、電源+Vccからの駆動電圧が供給される電源ポートVccと、サンプル電圧計測スイッチ4のスイッチ4a,4bにそれぞれ接続された入力ポートA/D1,A/D2を含む。マイコン7は、請求項における電圧計測手段、制御手段および判定手段として働く。   The microcomputer 7 includes a power supply port Vcc to which a drive voltage from a power supply + Vcc is supplied, and input ports A / D1 and A / D2 connected to the switches 4a and 4b of the sample voltage measurement switch 4, respectively. The microcomputer 7 functions as voltage measuring means, control means, and determination means in the claims.

次に、上述の構成を有するフライングキャパシタ方式電圧測定装置の動作(測定手順)について説明する。まず、マルチプレクサ1および2の電圧サンプルスイッチS1〜S5およびサンプル電圧計測スイッチ4のスイッチ4a,4bが全て開いている状態では、フィルタ回路8の各コンデンサCfに各電圧源V1〜V4の電圧がそれぞれ充電されている。   Next, the operation (measurement procedure) of the flying capacitor type voltage measuring apparatus having the above-described configuration will be described. First, when the voltage sample switches S1 to S5 of the multiplexers 1 and 2 and the switches 4a and 4b of the sample voltage measuring switch 4 are all open, the voltages of the voltage sources V1 to V4 are applied to the capacitors Cf of the filter circuit 8, respectively. It is charged.

この状態から、マイコン7の開閉制御により、第1のマルチプレクサ1の電圧サンプルスイッチS1と第2のマルチプレクサ2の電圧サンプルスイッチS2を閉じると、コンデンサCf、電圧サンプルスイッチS1、コンデンサ3および電圧サンプルスイッチS2により閉回路が形成される。それにより、コンデンサCfに並列にコンデンサ3が接続された状態となり、コンデンサCfに蓄積されている電荷がコンデンサ3へ放電され、電圧サンプルスイッチS1に接続されているコンデンサ3の端子側がプラスの極性になるように、コンデンサ3が充電される。   From this state, when the voltage sample switch S1 of the first multiplexer 1 and the voltage sample switch S2 of the second multiplexer 2 are closed by the open / close control of the microcomputer 7, the capacitor Cf, the voltage sample switch S1, the capacitor 3, and the voltage sample switch A closed circuit is formed by S2. As a result, the capacitor 3 is connected in parallel to the capacitor Cf, the charge accumulated in the capacitor Cf is discharged to the capacitor 3, and the terminal side of the capacitor 3 connected to the voltage sample switch S1 has a positive polarity. Thus, the capacitor 3 is charged.

次に、電圧サンプルスイッチS1およびS2を開いて、サンプル電圧計測スイッチ4のスイッチ4aおよび4bを所定期間閉じ、コンデンサ3の両端電圧をスイッチ4aおよび4bを介して、マイコン7の第1および第2の入力ポートA/D1,A/D2に供給する。   Next, the voltage sample switches S1 and S2 are opened, the switches 4a and 4b of the sample voltage measuring switch 4 are closed for a predetermined period, and the voltage across the capacitor 3 is connected to the first and second of the microcomputer 7 via the switches 4a and 4b. To the input ports A / D1 and A / D2.

マイコン7は、第1および第2の入力ポートA/D1,A/D2に印加されたコンデンサ3の両端電圧をA/D(アナログ/デジタル)変換してデジタル値として読み込む。そして、マイコン7は、コンデンサCfおよびコンデンサ3の容量値をそれぞれCf、C1とすれば、(読み込んだ値)×(Cf+C1)/Cfの演算を行うことにより、電圧源V1の電圧を算出する。算出された値は、1回目の計測値としてマイコン7の内部メモリに記憶される。   The microcomputer 7 performs A / D (analog / digital) conversion on the voltage across the capacitor 3 applied to the first and second input ports A / D1 and A / D2 and reads it as a digital value. The microcomputer 7 calculates the voltage of the voltage source V1 by calculating (read value) × (Cf + C1) / Cf, assuming that the capacitance values of the capacitor Cf and the capacitor 3 are Cf and C1, respectively. The calculated value is stored in the internal memory of the microcomputer 7 as the first measurement value.

次に、電圧サンプルスイッチS2およびS3を閉じると、コンデンサCf、電圧サンプルスイッチS2、コンデンサ3および電圧サンプルスイッチS3により閉回路が形成される。それにより、同様にコンデンサCfに並列にコンデンサ3が接続された状態となり、コンデンサCfに蓄積されている電荷がコンデンサ3へ放電され、電圧サンプルスイッチS2に接続されているコンデンサ3の端子側がプラスの極性になるように、電圧源V1の測定時と逆極性でコンデンサ3が充電される。   Next, when the voltage sample switches S2 and S3 are closed, a closed circuit is formed by the capacitor Cf, the voltage sample switch S2, the capacitor 3, and the voltage sample switch S3. As a result, similarly, the capacitor 3 is connected in parallel to the capacitor Cf, the charge accumulated in the capacitor Cf is discharged to the capacitor 3, and the terminal side of the capacitor 3 connected to the voltage sample switch S2 is positive. The capacitor 3 is charged with a polarity opposite to that at the time of measurement of the voltage source V1 so as to be polar.

次に、電圧サンプルスイッチS2およびS3を開いて、サンプル電圧計測スイッチ4のスイッチ4aおよび4bを所定期間閉じ、コンデンサ3の両端電圧、すなわち電圧源V2の電圧をサンプル電圧計測スイッチ4を介して、マイコン7の第1および第2の入力ポートA/D1およびA/D2に供給する。   Next, the voltage sample switches S2 and S3 are opened, the switches 4a and 4b of the sample voltage measurement switch 4 are closed for a predetermined period, and the voltage across the capacitor 3, that is, the voltage of the voltage source V2 is passed through the sample voltage measurement switch 4. The first and second input ports A / D1 and A / D2 of the microcomputer 7 are supplied.

マイコン7は、第1および第2の入力ポートA/D1,A/D2に印加されたコンデンサ3の両端電圧をA/D(アナログ/デジタル)変換してデジタル値として読み込む。そして、マイコン7は、コンデンサCfおよびコンデンサ3の容量値をそれぞれCf、C1とすれば、(読み込んだ値)×(Cf+C1)/Cfの演算を行うことにより、電圧源V2の電圧を算出する。算出された値は、1回目の計測値としてマイコン7の内部メモリに記憶される。   The microcomputer 7 performs A / D (analog / digital) conversion on the voltage across the capacitor 3 applied to the first and second input ports A / D1 and A / D2 and reads it as a digital value. The microcomputer 7 calculates the voltage of the voltage source V2 by calculating (read value) × (Cf + C1) / Cf, assuming that the capacitance values of the capacitor Cf and the capacitor 3 are Cf and C1, respectively. The calculated value is stored in the internal memory of the microcomputer 7 as the first measurement value.

以下同様に、電圧サンプルスイッチS3およびS4、S4およびS5の組み合わせにより、それぞれ、電圧源V3およびV4の各電圧を示す値が、マイコン7で計測される。   Similarly, the microcomputer 7 measures the values indicating the voltages of the voltage sources V3 and V4 by the combination of the voltage sample switches S3 and S4, S4 and S5, respectively.

次に、電圧源V1,V2,V3,V4の順番に計測してこれらの電圧を算出した後、続いて、順番を電圧源V4,V3,V2,V1に代えて同様の計測を行ってこれらの電圧を算出する。この時の算出値は、2回目の計測値としてマイコン7の内部メモリに記憶される。   Next, after measuring these voltages in the order of the voltage sources V1, V2, V3, and V4 and calculating these voltages, the same measurement is performed by replacing the order with the voltage sources V4, V3, V2, and V1. Is calculated. The calculated value at this time is stored in the internal memory of the microcomputer 7 as the second measured value.

次に、マイコン7は、2回計測した電圧源V1の1回目の算出値と2回目の算出値を平均する演算を行い、演算結果である平均値を電圧源V1の最終算出値として決定する。以下同様に、2回計測した電圧源V2〜V4の算出値をそれぞれ平均した平均値を、電圧源V2〜V4の最終算出値として決定する。決定されたこれらの最終算出値は、マイコン7の内部メモリに記憶される。   Next, the microcomputer 7 performs an operation of averaging the first calculated value and the second calculated value of the voltage source V1 measured twice, and determines the average value as the operation result as the final calculated value of the voltage source V1. . Similarly, the average value obtained by averaging the calculated values of the voltage sources V2 to V4 measured twice is determined as the final calculated value of the voltage sources V2 to V4. These determined final calculated values are stored in the internal memory of the microcomputer 7.

このように、図1の電圧測定装置では、コンデンサ3の充電電荷を個別電圧源の電圧ということでなく、コンデンサCfに充電された個別電圧源の電圧がCf+C1の容量に変換されたものとして扱うことにより、コンデンサ3へのフル充電を待つことなく、正確な電圧源の計測を可能とすることができる。   As described above, in the voltage measuring apparatus of FIG. 1, the charge of the capacitor 3 is not regarded as the voltage of the individual voltage source, but the voltage of the individual voltage source charged in the capacitor Cf is treated as being converted into the capacitance of Cf + C1. Thus, it is possible to accurately measure the voltage source without waiting for the capacitor 3 to be fully charged.

また、上述の計測動作において、高圧電源Vの両端の電圧源V1(またはV4)の計測時、コンデンサCfは、コンデンサ3への放電後に充電される際に、電圧源V1(またはV4)から充電される以外に、片側から1つの電圧源V2(またはV3)のみからの回り込み電流が流れるのは図2の従来例と変わらないが、フィルタ回路8の抵抗Rf1およびRF2の抵抗値がRf1+Rf2=2RfおよびRf1≪Rf2の関係になるように設定されているので、電圧源V1またはV4から抵抗Rf1を介して流れる充電電流が図2の従来例よりも多くなるため、高圧電源Vの中ほどの電圧源(すなわち、V2およびV3)の計測時とほぼ同じ充電電流を確保することができる。その結果、高圧電源Vの両端の電圧源(すなわち、V1およびV4)の計測時も、高圧電源Vの中ほどの電圧源(すなわち、V2およびV3)の計測時もほぼ同じ検出精度での計測が可能となる。   In the above measurement operation, when measuring the voltage source V1 (or V4) at both ends of the high-voltage power supply V, the capacitor Cf is charged from the voltage source V1 (or V4) when charged after discharging to the capacitor 3. In addition to this, the sneak current from only one voltage source V2 (or V3) flows from one side is the same as in the conventional example of FIG. 2, but the resistance values of the resistors Rf1 and RF2 of the filter circuit 8 are Rf1 + Rf2 = 2Rf And Rf1 << Rf2, the charging current flowing from the voltage source V1 or V4 through the resistor Rf1 is larger than that in the conventional example of FIG. Almost the same charging current can be ensured as when measuring the sources (ie, V2 and V3). As a result, when measuring the voltage source (that is, V1 and V4) at both ends of the high-voltage power supply V and measuring the voltage source in the middle of the high-voltage power supply V (that is, V2 and V3), the measurement with almost the same detection accuracy. Is possible.

また、フィルタ回路8の時定数は、図2の従来例と同じ値となっているため、ローパスフィルタの作用は図2の従来例と変わることなく、コンデンサCfの充電時間を早めることができ、検出精度の低下を防止することができる。   Further, since the time constant of the filter circuit 8 has the same value as that of the conventional example of FIG. 2, the operation of the low-pass filter is not different from that of the conventional example of FIG. A decrease in detection accuracy can be prevented.

さらに、電圧源の計測順をV1→V2→V3→V4→V4→V3→V2→V1とした計測を1サイクルとし、2回計測の平均値を最終算出値とすることにより、上述の計測順における計測値V1(計測値が真の値より低くなる)→V2(計測値が真の値より高くなる)→V3(計測値が真の値より低くなる)→V4(計測値が真の値より高くなる)→V4(計測値が真の値より低くなる)→V3(計測値が真の値より高くなる)→V2(計測値が真の値より低くなる)→V1(計測値が真の値より高くなる)の高い低いのズレが打ち消されて、精度の良い電圧計測が可能となる。   Furthermore, the measurement order of the voltage source is set to V1 → V2 → V3 → V4 → V4 → V3 → V2 → V1, and the average value of the two measurements is set as the final calculated value. Measured value V1 (measured value is lower than true value) → V2 (measured value is higher than true value) → V3 (measured value is lower than true value) → V4 (measured value is true value) → V4 (measurement value is lower than true value) → V3 (measurement value is higher than true value) → V2 (measurement value is lower than true value) → V1 (measurement value is true) The higher and lower deviations are canceled out, and accurate voltage measurement becomes possible.

また、コンデンサ3とコンデンサCfは、同一特性品(同シリーズ品、同一耐圧品)のチップ形状のセラミックコンデンサが用いられているので、装置の小型化に役立っている。一般に、セラミックコンデンサは、容量値がDC印加電圧によって変動するDCバイアス特性を持っているが、コンデンサ3とコンデンサCfに同一特性品(同シリーズ品、同一耐圧品)を用いることによって、上述の(読み込んだ値)×(Cf+C1)/Cfの演算時の容量変動分を打ち消すことができる。また、同一特性品を用意できない場合は、コンデンサ3に用いられるセラミックコンデンサのDCバイアス特性と、コンデンサCfに用いられるセラミックコンデンサのDCバイアス特性を予め把握しておき、打ち消せなかった容量変動分をソフト的に補正することができる。   In addition, the capacitor 3 and the capacitor Cf use chip-shaped ceramic capacitors having the same characteristics (the same series and the same breakdown voltage), which helps to reduce the size of the device. In general, a ceramic capacitor has a DC bias characteristic in which a capacitance value varies depending on a DC applied voltage. However, by using the same characteristic product (the same series product, the same breakdown voltage product) for the capacitor 3 and the capacitor Cf, the above-mentioned ( It is possible to cancel the capacity fluctuation at the time of calculation of (read value) × (Cf + C1) / Cf. If a product with the same characteristics cannot be prepared, the DC bias characteristics of the ceramic capacitor used for the capacitor 3 and the DC bias characteristics of the ceramic capacitor used for the capacitor Cf are grasped in advance, and the capacitance variation that cannot be canceled is obtained. It can be corrected in software.

(第2の実施形態)図2は、本発明の第2の実施形態に係る電圧測定装置の構成を示す回路図である。図2に示す電圧測定装置は、図1の構成に加えて、電圧源からフィルタ回路に至る接続ラインに断線が発生した場合、この断線検知を行うために、電圧検出端子T1およびT2間、電圧検出端子T3およびT4間に抵抗Raを接続し、電圧検出端子T2およびT3間、電圧検出端子T4およびT5間に抵抗Rbを接続している。抵抗Raと抵抗Rbは異なる抵抗値を有する抵抗であり、たとえばこの実施形態では、抵抗Raは1MΩ、抵抗Rbは2MΩに選定されている。   (Second Embodiment) FIG. 2 is a circuit diagram showing a configuration of a voltage measuring apparatus according to a second embodiment of the present invention. In addition to the configuration shown in FIG. 1, the voltage measuring device shown in FIG. 2 has a voltage between the voltage detection terminals T1 and T2 in order to detect this disconnection when a disconnection occurs in the connection line from the voltage source to the filter circuit. A resistor Ra is connected between the detection terminals T3 and T4, and a resistor Rb is connected between the voltage detection terminals T2 and T3 and between the voltage detection terminals T4 and T5. The resistor Ra and the resistor Rb are resistors having different resistance values. For example, in this embodiment, the resistor Ra is selected to be 1 MΩ and the resistor Rb is selected to be 2 MΩ.

上述の構成において、実使用での正常時、隣接する電圧源の計測時、計測した最終計測値の電位差(差分)が断線判定しきい値より小さい場合、下記の判定法により、断線を検知することができる。
(1)両端の接続ライン(電圧源V1から電圧検出端子T1を介して抵抗Raに接続されるまでの電圧源V1のプラス側ラインおよび電圧源V4から電圧検出端子T5を介して抵抗Rbに接続されるまでの電圧源V4のマイナス側ライン)の断線時
電圧源V1またはV4の電圧計測時、計測値が0Vの時、マイコン7は断線と判定する。
(2)中央の接続ライン(上記(1)の接続ライン以外の接続ライン)の断線時(たとえば、図2の×印の部分の断線時)
断線が発生した場合、電圧検出端子T1−T2間およびT2−T3間に接続された2つのコンデンサCfの両端電圧は、電圧源V1と電圧源V2の和となる。また、この2つのコンデンサCfには、全ての抵抗RaおよびRbからの回り込みが発生するため、電圧検出端子T1−T2間に接続された抵抗Raと電圧検出端子T2−T3間に接続された抵抗Rbの分圧比とならず、断線部の電圧を全部の抵抗RaおよびRbで分圧した電圧が、断線部の2つのコンデンサCfの両端電圧の差となって現れる。すなわち、断線部の隣り合う電圧源の最終計測値、たとえば、電圧源V1およびV2の最終計測値には、
|電圧源V1の最終計測値−電圧源V2の最終計測値|/電圧源V1の最終計測値+電圧源V2の最終計測値=|Ra/各抵抗の総和−Rb/各抵抗の総和|
となる電位差(差分)が発生するので(たとえば、抵抗Ra=1MΩ、Rb=2MΩ、V1〜V4の場合、V1とV2の電圧差がV1+V2の1/6の場合に断線)、断線を検知する最低電圧時にこの条件を満たす、断線判定しきい値を予め設定してマイコン7の内部メモリに記憶しておき、マイコン7で、この断線判定しきい値以上の電位差(差分)が検出された場合に断線と判定することにより、断線検知が可能となる。
In the above configuration, when normal in actual use, when measuring adjacent voltage sources, and when the potential difference (difference) of the final measured value is smaller than the disconnection determination threshold, disconnection is detected by the following determination method. be able to.
(1) Connection lines at both ends (positive line of the voltage source V1 from the voltage source V1 to the resistor Ra through the voltage detection terminal T1 and connection from the voltage source V4 to the resistor Rb through the voltage detection terminal T5 When the voltage of the voltage source V1 or V4 is measured and the measured value is 0V, the microcomputer 7 determines that the circuit is disconnected.
(2) When the center connection line (connection line other than the connection line of (1) above) is disconnected (for example, when the portion marked with X in FIG. 2 is disconnected)
When disconnection occurs, the voltage across the two capacitors Cf connected between the voltage detection terminals T1 and T2 and between T2 and T3 is the sum of the voltage source V1 and the voltage source V2. Since the two capacitors Cf are sneak from all the resistors Ra and Rb, the resistor Ra connected between the voltage detection terminals T1 and T2 and the resistor connected between the voltage detection terminals T2 and T3. The voltage obtained by dividing the voltage at the disconnection portion by all the resistors Ra and Rb appears as the difference between the voltages at both ends of the two capacitors Cf at the disconnection portion, not the voltage division ratio of Rb. That is, the final measurement value of the voltage source adjacent to the disconnection portion, for example, the final measurement value of the voltage sources V1 and V2,
| Final measurement value of voltage source V1−Final measurement value of voltage source V2 | / Final measurement value of voltage source V1 + Final measurement value of voltage source V2 = | Ra / total of each resistance−Rb / total of each resistance |
(For example, in the case of resistors Ra = 1 MΩ, Rb = 2 MΩ, and V1 to V4, the voltage difference between V1 and V2 is 1/6 of V1 + V2), and disconnection is detected. When a disconnection judgment threshold value that satisfies this condition at the minimum voltage is preset and stored in the internal memory of the microcomputer 7, and the microcomputer 7 detects a potential difference (difference) that is greater than this disconnection judgment threshold value It is possible to detect disconnection by determining the disconnection.

一例として、電圧検出端子T2を介してフィルタ回路8に接続される電圧源V2のプラス側ラインが断線した場合、断線を検知するV1〜V4最低電圧を7.5Vと予め決めておくと、断線時にV1+V2=15V、各抵抗の総和=6MΩのため、|V1−V2|/V1+V2=1/6となるのは、V1−V2(電圧源V1の電圧計測値−電圧源V2の電圧計測値)が2.5Vの時であるため、(実使用時の正常時、チャンネル間の電位差は2.5Vより大きくならない条件であるなら)隣り合うチャンネルの電位差が、2.5V以上(断線判定電圧しきい値以上)となった場合に、断線と判定することにすれば、V1〜V4が7.5V以上の場合に断線検知が可能となる。   As an example, if the positive side line of the voltage source V2 connected to the filter circuit 8 via the voltage detection terminal T2 is disconnected, the V1 to V4 minimum voltage for detecting the disconnection is predetermined as 7.5V. Since V1 + V2 = 15V and the total sum of resistances = 6MΩ, | V1-V2 | / V1 + V2 = 1/6 is V1-V2 (voltage measurement value of voltage source V1−voltage measurement value of voltage source V2) Is 2.5V, so that the potential difference between adjacent channels is 2.5V or more (if the voltage difference between channels does not become larger than 2.5V when normal in actual use) If it is determined that a disconnection occurs when the threshold value is equal to or higher than the threshold value, the disconnection can be detected when V1 to V4 are 7.5 V or higher.

以上の通り、本発明の実施形態について説明したが、本発明はこれに限らず、種々の変形、応用が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation and application are possible.

本発明の第1の実施形態に係る電圧測定装置の構成を示す回路図である。(第1の実施形態)It is a circuit diagram which shows the structure of the voltage measuring device which concerns on the 1st Embodiment of this invention. (First embodiment) 本発明の第2の実施形態に係る電圧測定装置の構成を示す回路図である。(第2の実施形態)It is a circuit diagram which shows the structure of the voltage measuring device which concerns on the 2nd Embodiment of this invention. (Second Embodiment) 従来のフライングキャパシタ方式電圧測定装置の構成図である。It is a block diagram of the conventional flying capacitor system voltage measuring device. 図3の測定装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the measuring apparatus of FIG.

符号の説明Explanation of symbols

S1〜S6,4a,4b スイッチ
Rf 抵抗
Rf1 抵抗
Rf2 抵抗
Ra 抵抗(第1の短絡抵抗)
Rb 抵抗(第2の短絡抵抗)
T1〜T5 電圧検出端子
V1〜V5 電圧源
1 第1のマルチプレクサ
2 第2のマルチプレクサ
3 コンデンサ
4 サンプル電圧計測スイッチ
7 マイコン(電圧計測手段、制御手段、判定手段)
S1 to S6, 4a, 4b switch Rf resistance Rf1 resistance Rf2 resistance Ra resistance (first short-circuit resistance)
Rb resistance (second short-circuit resistance)
T1 to T5 Voltage detection terminals V1 to V5 Voltage source 1 First multiplexer 2 Second multiplexer 3 Capacitor 4 Sample voltage measurement switch 7 Microcomputer (voltage measurement means, control means, determination means)

Claims (3)

コンデンサと、直列接続されたN(ただし、Nは偶数)個の電圧源に接続された(N+1)個の電圧検出端子のうちの奇数番目の電圧検出端子を前記コンデンサに選択的に接続する第1のマルチプレクサと、前記(N+1)個の電圧検出端子のうちの偶数番目の電圧検出端子を前記コンデンサに選択的に接続する第2のマルチプレクサと、電圧計測手段と、前記コンデンサの両端電圧を電圧計測手段に供給するサンプル電圧計測スイッチと、前記第1および第2のマルチプレクサおよび前記サンプル電圧計測スイッチの動作を制御する制御手段と、前記各電圧源の両端にそれぞれ接続される電圧検出端子および前記マルチプレクサ間に接続された一対の抵抗と前記抵抗および前記マルチプレクサの接続点間に接続されたコンデンサからなる複数のフィルタとを備えたフライングキャパシタ方式電圧測定装置であって、
前記(N+1)個の電圧検出端子のうちの1番目および(N+1)番目の電圧検出端子に接続される前記一対の抵抗のうちの一方の抵抗の抵抗値を、前記一対の抵抗のうちの他方の抵抗の抵抗値より小さく設定すると共に、前記一対の抵抗の合計抵抗値を前記複数のフィルタの全部において等しく設定した
ことを特徴とするフライングキャパシタ方式電圧測定装置。
A capacitor and an odd-numbered voltage detection terminal among (N + 1) voltage detection terminals connected to N (where N is an even number) voltage source connected in series are selectively connected to the capacitor. 1 multiplexer, a second multiplexer that selectively connects an even-numbered voltage detection terminal of the (N + 1) voltage detection terminals to the capacitor, voltage measuring means, and voltage across the capacitor. A sample voltage measurement switch to be supplied to the measurement means, a control means for controlling the operations of the first and second multiplexers and the sample voltage measurement switch, a voltage detection terminal connected to both ends of each voltage source, and the A compound consisting of a pair of resistors connected between multiplexers and a capacitor connected between the resistors and the connection point of the multiplexers. A flying capacitor method voltage measuring device and a filter,
The resistance value of one of the pair of resistors connected to the first and (N + 1) th voltage detection terminals of the (N + 1) voltage detection terminals is set as the other of the pair of resistors. And a total resistance value of the pair of resistors is set to be equal for all of the plurality of filters.
請求項1記載のフライングキャパシタ方式電圧測定装置において、
前記制御手段は、前記直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測し続いてN番目から一番目まで逆順に計測するように、前記第1および第2のマルチプレクサおよび前記サンプル電圧計測スイッチの動作を制御し、
前記電圧計測手段は、前記制御手段の制御により、前記直列接続されたN個の電圧源を1個ずつ直列接続の一番目からN番目まで順番に計測した1回目の前記各電圧源の計測値と、続いてN番目から一番目まで逆順に計測した2回目の前記各電圧源の計測値を平均する演算を行い、その結果の平均値を各電圧源の最終計測値として決定する
ことを特徴とするフライングキャパシタ方式電圧測定装置。
In the flying capacitor type voltage measuring device according to claim 1,
The control means is configured to measure the N voltage sources connected in series one by one in order from the first to the Nth in series, and then measure in reverse order from the Nth to the first. And control the operation of the second multiplexer and the sample voltage measurement switch;
The voltage measurement means is a first measurement value of each voltage source obtained by measuring the N voltage sources connected in series one by one in order from the first to the Nth serial connection under the control of the control means. Then, an arithmetic operation is performed to average the measured values of the second voltage sources measured in reverse order from the Nth to the first, and the average value of the results is determined as the final measured value of each voltage source. Flying capacitor type voltage measuring device.
請求項1または2記載のフライングキャパシタ方式電圧測定装置において、
前記奇数番目の電圧検出端子および前記抵抗の接続点と前記偶数番目の電圧検出端子および前記抵抗の接続点の間に接続された第1の短絡抵抗と、
該第1の短絡抵抗が接続されていない、前記偶数番目の電圧検出端子および抵抗の接続点と前記奇数番目の電圧検出端子および前記抵抗の接続点の間に接続され、前記第1の短絡抵抗より大きい抵抗値を有する第2の短絡抵抗と、
隣接する前記電圧源の最終計測値の差分が予め設定された断線判定しきい値以上の場合に、断線故障と判定する判定手段とをさらに備えた
ことを特徴とするフライングキャパシタ方式電圧測定装置。
In the flying capacitor type voltage measuring device according to claim 1 or 2,
A first short-circuit resistor connected between the connection point of the odd-numbered voltage detection terminal and the resistor and the connection point of the even-numbered voltage detection terminal and the resistor;
The first short-circuit resistor is connected between the even-numbered voltage detection terminal and the connection point of the resistor and the odd-numbered voltage detection terminal and the connection point of the resistor, to which the first short-circuit resistance is not connected. A second short circuit resistor having a greater resistance value;
A flying capacitor type voltage measuring apparatus, further comprising: a determination unit that determines a disconnection failure when a difference between final measurement values of adjacent voltage sources is equal to or greater than a preset disconnection determination threshold value.
JP2006062387A 2006-03-08 2006-03-08 Flying capacitor system voltage measuring device Withdrawn JP2007240299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062387A JP2007240299A (en) 2006-03-08 2006-03-08 Flying capacitor system voltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062387A JP2007240299A (en) 2006-03-08 2006-03-08 Flying capacitor system voltage measuring device

Publications (1)

Publication Number Publication Date
JP2007240299A true JP2007240299A (en) 2007-09-20

Family

ID=38585985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062387A Withdrawn JP2007240299A (en) 2006-03-08 2006-03-08 Flying capacitor system voltage measuring device

Country Status (1)

Country Link
JP (1) JP2007240299A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103546A (en) * 2007-10-23 2009-05-14 Honda Motor Co Ltd Voltage detection device
JP2009150867A (en) * 2007-11-26 2009-07-09 Honda Motor Co Ltd Battery module voltage detector
JP2010110105A (en) * 2008-10-30 2010-05-13 Panasonic Corp Energy storage device
JP2010147944A (en) * 2008-12-19 2010-07-01 Sony Corp Filter circuit and communication device
KR101000872B1 (en) 2008-08-20 2010-12-14 넥스콘 테크놀러지 주식회사 a battery voltage sensing circuit
JP2012149952A (en) * 2011-01-18 2012-08-09 Sanyo Electric Co Ltd Voltage display method, voltage display device, and packed battery
JP2013053939A (en) * 2011-09-05 2013-03-21 Denso Corp Voltage monitoring device
WO2014203822A1 (en) * 2013-06-19 2014-12-24 矢崎総業株式会社 Filter circuit
JP5666712B2 (en) * 2011-09-14 2015-02-12 本田技研工業株式会社 Voltage measuring device
US9065296B2 (en) 2012-04-03 2015-06-23 Samsung Sdi Co., Ltd. Battery pack, method of measuring voltage of the battery pack, and energy storage system including the battery pack
US9231440B2 (en) 2012-04-18 2016-01-05 Samsung Sdi Co., Ltd. Power supply apparatus and controlling method of the same
US9231407B2 (en) 2012-05-07 2016-01-05 Samsung Sdi Co., Ltd. Battery system, method of controlling the same, and energy storage system including the battery system
EP2413152A4 (en) * 2009-03-25 2016-12-28 Toshiba Kk Secondary battery device and vehicle
WO2017056409A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Voltage detection circuit and electricity storage system
WO2019043792A1 (en) * 2017-08-29 2019-03-07 株式会社 東芝 Battery system and vehicle
CN111679216A (en) * 2020-06-24 2020-09-18 重庆长安新能源汽车科技有限公司 Device and method for detecting high-voltage connection reliability of power battery
WO2021111673A1 (en) * 2019-12-06 2021-06-10 東芝インフラシステムズ株式会社 Storage battery device, method, and program

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616875B2 (en) * 2007-10-23 2011-01-19 本田技研工業株式会社 Voltage detector
JP2009103546A (en) * 2007-10-23 2009-05-14 Honda Motor Co Ltd Voltage detection device
JP2009150867A (en) * 2007-11-26 2009-07-09 Honda Motor Co Ltd Battery module voltage detector
KR101000872B1 (en) 2008-08-20 2010-12-14 넥스콘 테크놀러지 주식회사 a battery voltage sensing circuit
JP2010110105A (en) * 2008-10-30 2010-05-13 Panasonic Corp Energy storage device
JP4678054B2 (en) * 2008-12-19 2011-04-27 ソニー株式会社 Filter circuit and communication device
US8018272B2 (en) 2008-12-19 2011-09-13 Sony Corporation Filter circuit and communication device
JP2010147944A (en) * 2008-12-19 2010-07-01 Sony Corp Filter circuit and communication device
EP2413152A4 (en) * 2009-03-25 2016-12-28 Toshiba Kk Secondary battery device and vehicle
JP2012149952A (en) * 2011-01-18 2012-08-09 Sanyo Electric Co Ltd Voltage display method, voltage display device, and packed battery
US9128161B2 (en) 2011-09-05 2015-09-08 Denso Corporation Voltage monitoring device
JP2013053939A (en) * 2011-09-05 2013-03-21 Denso Corp Voltage monitoring device
US9927465B2 (en) 2011-09-14 2018-03-27 Honda Motor Co., Ltd. Voltage measuring device
JP5666712B2 (en) * 2011-09-14 2015-02-12 本田技研工業株式会社 Voltage measuring device
JPWO2013038762A1 (en) * 2011-09-14 2015-03-23 本田技研工業株式会社 Voltage measuring device
US9065296B2 (en) 2012-04-03 2015-06-23 Samsung Sdi Co., Ltd. Battery pack, method of measuring voltage of the battery pack, and energy storage system including the battery pack
US9231440B2 (en) 2012-04-18 2016-01-05 Samsung Sdi Co., Ltd. Power supply apparatus and controlling method of the same
US9231407B2 (en) 2012-05-07 2016-01-05 Samsung Sdi Co., Ltd. Battery system, method of controlling the same, and energy storage system including the battery system
JP2015004542A (en) * 2013-06-19 2015-01-08 矢崎総業株式会社 Filter circuit
WO2014203822A1 (en) * 2013-06-19 2014-12-24 矢崎総業株式会社 Filter circuit
US10197635B2 (en) 2013-06-19 2019-02-05 Yazaki Corporation Filter circuit
WO2017056409A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Voltage detection circuit and electricity storage system
WO2019043792A1 (en) * 2017-08-29 2019-03-07 株式会社 東芝 Battery system and vehicle
JPWO2019043792A1 (en) * 2017-08-29 2020-05-28 株式会社東芝 Battery system and vehicle
WO2021111673A1 (en) * 2019-12-06 2021-06-10 東芝インフラシステムズ株式会社 Storage battery device, method, and program
JP2021092403A (en) * 2019-12-06 2021-06-17 東芝インフラシステムズ株式会社 Storage battery device, method, and program
CN111679216A (en) * 2020-06-24 2020-09-18 重庆长安新能源汽车科技有限公司 Device and method for detecting high-voltage connection reliability of power battery
CN111679216B (en) * 2020-06-24 2022-08-02 重庆长安新能源汽车科技有限公司 Device and method for detecting high-voltage connection reliability of power battery

Similar Documents

Publication Publication Date Title
JP2007240299A (en) Flying capacitor system voltage measuring device
US8587262B2 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
JP4401529B2 (en) Laminate voltage measuring device
KR100844806B1 (en) Apparatus and method for measuring the amount of the current in battery cells using a plurality of sensing resistors
EP1922554B1 (en) Current measurement circuit and method of diagnosing faults in same
JP4569460B2 (en) Battery pack capacity adjustment device
JP6382453B2 (en) Battery monitoring device
WO2007023849A1 (en) Voltage monitor and electric power storage using same
JP2006337130A (en) Flying capacitor type voltage measurement device
JP2014137272A (en) Voltage monitoring device
US20090208822A1 (en) Power supply unit including secondary battery
JP2002156392A (en) Device for detecting voltage of battery assembly
JP4605047B2 (en) Laminate voltage measuring device
JP6386816B2 (en) Battery state monitoring circuit and battery device
JP2007304006A (en) Secondary battery charge/discharge inspection device and method
JP2007240300A (en) Insulation detection method and device
JP2002243771A (en) Battery voltage detecting circuit
JP2005003618A (en) Power supply voltage measuring apparatus
JP2002040064A (en) Battery voltage detector
JP2006220643A (en) Voltage measuring device and its deterioration determination method
JP2017158269A (en) Voltage detection apparatus
CN111123106B (en) Sensor and method for checking a sensor
JP4566964B2 (en) Total battery voltage detector
JP2005265777A (en) Switch control unit, its method, and voltage measuring apparatus
JP2007046917A (en) Device and method for measuring voltage of group battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512