JP2007240300A - Insulation detection method and device - Google Patents

Insulation detection method and device Download PDF

Info

Publication number
JP2007240300A
JP2007240300A JP2006062388A JP2006062388A JP2007240300A JP 2007240300 A JP2007240300 A JP 2007240300A JP 2006062388 A JP2006062388 A JP 2006062388A JP 2006062388 A JP2006062388 A JP 2006062388A JP 2007240300 A JP2007240300 A JP 2007240300A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
switch
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006062388A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawamura
佳浩 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006062388A priority Critical patent/JP2007240300A/en
Priority to US11/713,720 priority patent/US20070210805A1/en
Publication of JP2007240300A publication Critical patent/JP2007240300A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation detection method and a device capable of detecting insulation in all vehicle traveling conditions. <P>SOLUTION: In a first voltage measuring means 10, ground fault resistance of a DC power supply V is calculated on the basis of a first voltage measurement value V<SB>RL-</SB>obtained by measuring a both end voltage of a capacitor C charged by closing control of first and fourth switches SW1, SW4 by a control means 10, a second voltage measurement value V<SB>RL+</SB>obtained by measuring a both end voltage of the capacitor C charged by closing control of second and third switches SW2, SW3, and a both end voltage V<SB>0</SB>' of the DC power supply V obtained by measurement by a second voltage measuring means 30 connected to both ends of the DC power supply V. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁検出方法および装置に係り、特に、直流電源の地絡抵抗を検出する絶縁検出方法および装置に関するものである。   The present invention relates to an insulation detection method and apparatus, and more particularly to an insulation detection method and apparatus for detecting a ground fault resistance of a DC power supply.

上述した従来の絶縁検出装置として、例えば、フライングキャパシタ方式の絶縁検出装置が提案されている。この絶縁検出装置は、直流の高圧電源の絶縁状態を検出する際に、接地から浮かせた状態のコンデンサ(すなわち、フライングキャパシタ)に高圧電源の電圧を充電してその両端電圧を計測した計測値と、コンデンサの一方を抵抗を介して接地した状態において、同様に高圧電源の電圧をコンデンサに充電してその両端電圧を計測した計測値とに基づいて地絡抵抗を算出することにより高圧電源の絶縁状態を検出している(たとえば、特許文献1および2参照)。   For example, a flying capacitor type insulation detection device has been proposed as the above-described conventional insulation detection device. When detecting the insulation state of a DC high-voltage power supply, this insulation detection device charges the voltage of the high-voltage power supply to a capacitor (that is, a flying capacitor) floating from the ground, and measures the voltage at both ends. In the state where one of the capacitors is grounded via a resistor, the voltage of the high voltage power supply is similarly charged to the capacitor, and the ground fault resistance is calculated based on the measured value of the voltage across the capacitor, thereby isolating the high voltage power supply. The state is detected (see, for example, Patent Documents 1 and 2).

図6は、従来の絶縁検出装置の構成例を示す回路図である。図中、VはN個のバッテリが直列接続された高圧電源(=直流電源)であり、この高圧電源Vは、マイクロコンピュータ(以下、マイコンという)10など低圧系の接地電位Gとは絶縁されている。   FIG. 6 is a circuit diagram showing a configuration example of a conventional insulation detection device. In the figure, V is a high-voltage power supply (= DC power supply) in which N batteries are connected in series. This high-voltage power supply V is insulated from a ground potential G of a low-voltage system such as a microcomputer (hereinafter referred to as a microcomputer) 10. ing.

同図に示すように絶縁検出装置は、両極性のコンデンサCと、接地電位Gとは絶縁された高圧電源Vの正極をコンデンサCの一端に接続するための第1スイッチSW1と、高圧電源Vの負極をコンデンサCの他端に接続するための第2スイッチSW2とを備えている。第1スイッチSW1および第2スイッチSW2は、それぞれ、請求項における第1スイッチ手段および第2スイッチ手段として働く。   As shown in the figure, the insulation detection apparatus includes a bipolar capacitor C, a first switch SW1 for connecting the positive electrode of the high voltage power source V insulated from the ground potential G to one end of the capacitor C, and the high voltage power source V. And a second switch SW2 for connecting the other negative electrode to the other end of the capacitor C. The first switch SW1 and the second switch SW2 function as first switch means and second switch means in the claims, respectively.

マイコン10は、入力ポートA/D(=入力端子)に供給された電圧をA/D変換して計測する電圧計測機能を有する。また、絶縁検出装置は、コンデンサCの一端を入力ポートA/Dに接続するための第3スイッチSW3と、コンデンサCの他端を接地電位Gに接続するための第4スイッチSW4とを備えている。   The microcomputer 10 has a voltage measurement function for A / D converting and measuring the voltage supplied to the input port A / D (= input terminal). The insulation detection apparatus also includes a third switch SW3 for connecting one end of the capacitor C to the input port A / D, and a fourth switch SW4 for connecting the other end of the capacitor C to the ground potential G. Yes.

また、絶縁検出装置は、第3スイッチSW3の入力ポートA/D側−接地電位G間に設けられた第1抵抗R1と、第4スイッチSW4の接地電位G側−接地電位G間に設けられた第2抵抗R2とを備えている。   The insulation detection device is provided between the first resistor R1 provided between the input port A / D side of the third switch SW3 and the ground potential G and between the ground potential G side of the fourth switch SW4 and the ground potential G. And a second resistor R2.

また、入力ポートA/Dには、保護回路11を介して電圧が供給される。この保護回路11は、第1抵抗R1の第3スイッチSW3側−入力ポートA/D側間に設けられた保護抵抗Rp1と、この保護抵抗Rp1の入力ポートA/D側−接地電位G間に設けられたクランプダイオードDcとから構成される。   Further, a voltage is supplied to the input port A / D via the protection circuit 11. The protection circuit 11 includes a protection resistor Rp1 provided between the third switch SW3 side of the first resistor R1 and the input port A / D side, and an input port A / D side of the protection resistor Rp1 and the ground potential G. The clamp diode Dc is provided.

保護抵抗Rp1は、電流制限抵抗として働き、マイコン10の入力ポートA/Dに過電流が流れることを防ぐ。また、クランプダイオードDcによって、マイコン10の入力ポートA/Dにマイコン10に損傷を与えるような過剰な正電位や負電位が印加されるのを防ぐことができる。   The protective resistor Rp1 functions as a current limiting resistor and prevents an overcurrent from flowing through the input port A / D of the microcomputer 10. The clamp diode Dc can prevent an excessive positive potential or negative potential from being applied to the input port A / D of the microcomputer 10 so as to damage the microcomputer 10.

また、絶縁検出装置は、第1スイッチSW1および第3スイッチSW3の接続ライン−コンデンサC間に設けられた抵抗切替回路12を備えている。抵抗切替回路12は、第1スイッチSW1および第3スイッチSW3の接続ラインからコンデンサCに向かって順方向となるように接続された第1ダイオードD1および第1切替抵抗Rc1から構成される直列回路と、第1ダイオードD1とは逆方向となるように接続された第2ダイオードD2および第2切替抵抗Rc2から構成される直列回路とが、並列に接続されて構成されている。   In addition, the insulation detection device includes a resistance switching circuit 12 provided between the connection line of the first switch SW1 and the third switch SW3 and the capacitor C. The resistance switching circuit 12 includes a series circuit including a first diode D1 and a first switching resistor Rc1 connected in a forward direction from the connection line of the first switch SW1 and the third switch SW3 toward the capacitor C. A series circuit composed of a second diode D2 and a second switching resistor Rc2 connected to be opposite to the first diode D1 is connected in parallel.

また、上述した第1〜第4スイッチSW1〜SW4は例えば光MOSFETが用いられ、高圧電源Vと絶縁しつつマイコン10によって制御できるようになっている。なお、13はリセット回路であり、リセットスイッチSWrを閉制御すると、コンデンサCに蓄積された電荷が放電抵抗Rdcによって速やかに放電することができる。   The first to fourth switches SW1 to SW4 described above are, for example, optical MOSFETs, and can be controlled by the microcomputer 10 while being insulated from the high-voltage power supply V. Reference numeral 13 denotes a reset circuit. When the reset switch SWr is controlled to be closed, the charge accumulated in the capacitor C can be discharged quickly by the discharge resistor Rdc.

上述の構成を有する絶縁検出装置の動作を図7のフローチャートを参照して説明する。まず、マイコン10は、高圧電源の高圧電圧V0 を計測する(ステップS11)。この計測は、具体的には次のように行われる。まず、マイコン10は、全てのスイッチが開いている初期状態から第1スイッチSW1および第2スイッチSW2を閉制御し、高圧電源Vの電圧がコンデンサCに充電される。 The operation of the insulation detection apparatus having the above-described configuration will be described with reference to the flowchart of FIG. First, the microcomputer 10 measures the high voltage V 0 of the high voltage power supply (step S11). Specifically, this measurement is performed as follows. First, the microcomputer 10 controls the first switch SW1 and the second switch SW2 to be closed from the initial state where all the switches are open, and the voltage of the high-voltage power supply V is charged in the capacitor C.

次に、第1および第2のスイッチSW1,SW2を開制御した後、第3および第4スイッチSW3、SW4を閉制御することにより、コンデンサCの両端電圧、すなわち高圧電源Vの両端電圧V0 がマイコン10の入力ポートA/Dに供給される。それにより、両端電圧V0 が高圧電源Vの電圧としてマイコン10で読み込まれる。 Next, after the first and second switches SW1 and SW2 are controlled to open, the third and fourth switches SW3 and SW4 are controlled to close so that the voltage across the capacitor C, that is, the voltage V 0 across the high-voltage power supply V. Is supplied to the input port A / D of the microcomputer 10. Thereby, the both-ends voltage V 0 is read by the microcomputer 10 as the voltage of the high voltage power source V.

次に、マイコン10は、負極側地絡抵抗RL−の値に応じた電圧VRL- を計測する(ステップS12)。この計測は、具体的には次のように行われる。すなわち、マイコン10は、リセット回路13によるリセット後、第1スイッチおよび第4スイッチSW1、SW4を閉制御する。それにより、負極側地絡抵抗RL−の値に応じた電圧がコンデンサCに充電される。 Next, the microcomputer 10 measures the voltage V RL− according to the value of the negative side ground fault resistance RL− (step S12). Specifically, this measurement is performed as follows. That is, the microcomputer 10 closes the first switch and the fourth switches SW1 and SW4 after resetting by the reset circuit 13. As a result, a voltage corresponding to the value of the negative side ground fault resistance RL− is charged in the capacitor C.

次に、マイコン10は、第1のスイッチSW1を開制御した後、第3および第4スイッチ手段SW3、SW4を閉制御する。それにより、コンデンサCの両端電圧、すなわち負極側地絡抵抗RL−の値に応じた電圧VRL- は、マイコン10で読み込まれる。 Next, the microcomputer 10 controls the opening of the first switch SW1, and then controls the third and fourth switch means SW3 and SW4 to close. Thereby, the voltage V RL− corresponding to the voltage across the capacitor C, that is, the value of the negative side ground fault resistance RL− is read by the microcomputer 10.

次に、マイコン10は、正極側地絡抵抗RL+の値に応じた電圧VRL+ を計測する(ステップS13)。この計測は、具体的には次のように行われる。すなわち、マイコン10は、リセット回路13によるリセット後、第2スイッチおよび第3スイッチSW2、SW3を閉制御する。それにより、正極側地絡抵抗RL+の値に応じた電圧がコンデンサCに充電される。 Next, the microcomputer 10 measures the voltage V RL + according to the value of the positive side ground fault resistance RL + (step S13). Specifically, this measurement is performed as follows. That is, after reset by the reset circuit 13, the microcomputer 10 controls the second switch and the third switches SW2 and SW3 to be closed. As a result, a voltage corresponding to the value of the positive side ground fault resistance RL + is charged in the capacitor C.

次に、マイコン10は、第2スイッチSW2を開制御した後、第3および第4スイッチ手段SW3、SW4を閉制御する。それにより、コンデンサCの両端電圧、すなわち正極側地絡抵抗RL+の値に応じた電圧VRL+ は、マイコン10で読み込まれる。
なる。
Next, the microcomputer 10 controls the opening of the second switch SW2, and then controls the third and fourth switch means SW3 and SW4 to close. As a result, the voltage across the capacitor C, that is, the voltage V RL + corresponding to the value of the positive-side ground fault resistance RL + is read by the microcomputer 10.
Become.

次に、マイコン10は、負極側地絡抵抗RL−に応じた計測電圧VRL- と正極側地絡抵抗RL+に応じた計測電圧VRL+ の和を高圧電源Vの両端電圧に応じた計測電圧V0 で除する演算(VRL- +VRL+ /V0 )を行う(ステップS14)。次に、マイコン10は、その演算値により、予め内部メモリに記憶されている演算値対地絡抵抗の換算テーブルを参照して高圧電源Vの地絡抵抗を算出する(ステップS15)。 Then, microcomputer 10 measures a voltage corresponding measurement voltage V RL + the sum of the corresponding to the measurement voltage V RL- and the positive electrode side grounding resistor RL + corresponding to the negative electrode side grounding resistor RL- the voltage across the high-voltage power source V An operation of dividing by V 0 (V RL− + V RL + / V 0 ) is performed (step S14). Next, the microcomputer 10 calculates the ground fault resistance of the high-voltage power supply V with reference to the calculation value / ground fault resistance conversion table stored in advance in the internal memory based on the calculated value (step S15).

このように、マイコン10は第1〜第4スイッチSW1〜SW4を各々制御して、高圧電源Vの両端電圧V0 、正極側地絡抵抗RL+に応じた電圧VRL+ 、負極側地絡抵抗RL−に応じた電圧VRL- でキャパシタCを充電する毎に、そのときのキャパシタCの両端電圧をマイコン10によって読み取ることで、高圧電源Vの絶縁状態を検出することができる。
特開2004−170103号公報 特開2004−245632号公報
Thus, the microcomputer 10 are respectively controlling the first to fourth switches SW1 to SW4, the voltage across V 0 which high voltage source V, the voltage V RL +, the negative electrode side grounding resistor RL corresponding to the positive electrode side grounding resistor RL + Each time the capacitor C is charged with the voltage V RL− according to −, the voltage across the capacitor C at that time is read by the microcomputer 10, whereby the insulation state of the high-voltage power supply V can be detected.
JP 2004-170103 A JP 2004-245632 A

ところで、EV車等の高圧直流電源を有する車両において、安全性の面から、高圧直流電源−接地間の絶縁検出を、車両の走行状況に影響されないあらゆる状況下において行いたいという要求がある。しかしながら、EV車等の高圧直流電源を有する車両では、走行状況によって高圧電圧が変動する。   By the way, in a vehicle having a high-voltage DC power source such as an EV vehicle, there is a demand for performing insulation detection between the high-voltage DC power source and the ground in all situations that are not affected by the traveling state of the vehicle from the viewpoint of safety. However, in a vehicle having a high-voltage DC power source such as an EV vehicle, the high-voltage voltage fluctuates depending on traveling conditions.

図8は、車両の高圧電源における高圧電圧の変動イメージを示す図である。図に示すように、停止状態にある車両のエンジンをオンにし、走行を開始するまでの期間は、高圧電圧は一定を保っているので、この期間が絶縁検出を行うための計測に適する領域である。走行開始後は、負荷大の時(アクセルオンの時)電圧が下降し、回生時(ブレーキング時)電圧が上昇する。また、慣性走行時(安定走行時)には、電圧変動がなく一定となる。   FIG. 8 is a diagram showing a fluctuation image of the high voltage in the high voltage power source of the vehicle. As shown in the figure, the high voltage remains constant during the period from when the engine of the vehicle in the stopped state is turned on to the start of traveling, so this period is an area suitable for measurement for insulation detection. is there. After the start of traveling, the voltage decreases when the load is large (when the accelerator is on), and the voltage increases during regeneration (when braking). Further, during inertial traveling (during stable traveling), there is no voltage fluctuation and it is constant.

図9は、絶縁検出サイクル中のコンデンサCの両端電圧の変化を示す図である。図に示すように、コンデンサCの両端電圧は、高圧電圧の変動がある場合、1回の絶縁検出サイクル中、時間t1から始まる高圧電源Vの両端電圧V0 計測時の充電波形と、時間t2から始まる負極側地絡抵抗RL−の値に応じた電圧VRL- 計測時の充電波形と、時間t3から始まる正極側地絡抵抗RL+の値に応じた電圧VRL+ 計測時の充電波形において、それぞれ異なる高圧電源Vの高圧電圧により充電される場合がある。このように高圧電圧の変動がある状況下で絶縁検出しようとしても、時間t1、t2、t3でそれぞれ始まる電圧計測時点での高圧電源Vの両端電圧V0 が異なる電圧となってしまうため、(VRL- +VRL+ /V0 )の算出式で演算した結果が正しい値とならず、精度の良い絶縁検出を行うことはできない。そこで、高圧電源Vの両端電圧の変動中は、絶縁検出を停止させる対策を取るしかないが、その場合、走行中はほとんど絶縁検出をできない状態となってしまう。 FIG. 9 is a diagram illustrating a change in the voltage across the capacitor C during the insulation detection cycle. As shown in the figure, when the voltage across the capacitor C has a high voltage fluctuation, during one insulation detection cycle, the charging waveform at the time of measuring the voltage V 0 across the high voltage power source V starting at time t1 and the time t2 In the charging waveform at the time of measurement of the voltage V RL− according to the value of the negative side ground fault resistance RL− starting from the time V 3 and the charging waveform at the time of measuring the voltage V RL + according to the value of the positive side ground fault resistance RL + starting from the time t 3 There are cases where charging is performed by high voltage of different high voltage power sources V. Even if an attempt is made to detect insulation in a situation where there is a fluctuation of the high voltage in this way, the voltage V 0 across the high voltage power supply V at the time of voltage measurement starting at each of the times t1, t2, and t3 becomes a different voltage. The calculation result of V RL− + V RL + / V 0 ) is not a correct value, and accurate insulation detection cannot be performed. Therefore, while the voltage across the high-voltage power supply V is fluctuating, there is no choice but to stop the insulation detection. However, in this case, the insulation detection can hardly be performed.

このように、絶縁検出は、高圧電圧変動がないときでないと正確な絶縁抵抗検出が行えないため、実際には、停車から走行開始までの期間や安定走行時の限られた時しか行うことができない。   In this way, insulation detection can only be performed when there is no high voltage fluctuation, so in practice it can only be performed during the period from when the vehicle is stopped to when it starts running or when it is stable. Can not.

しかし、絶縁抵抗低下による感電の可能性がある状態は、車両走行中常に発生し得るので、これでは安全性に問題があり、絶縁検出装置における高圧電圧の変動対策が従来より懸案事項となっていた。   However, a state where there is a possibility of electric shock due to a decrease in insulation resistance can always occur while the vehicle is running, so this is a safety problem, and countermeasures against fluctuations in high voltage in insulation detection devices have been a concern. It was.

そこで、本発明は、上記の課題に鑑み、全ての車両走行状態において絶縁検出が可能な絶縁検出方法および装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide an insulation detection method and apparatus capable of detecting insulation in all vehicle traveling states.

上記課題を解決するためになされた請求項1記載の発明は、接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出方法であって、前記直流電源の正極と接地電位間にコンデンサを接続して、その両端電圧を第1の電圧計測手段で計測することにより第1の電圧計測値VRL- を求める第1の計測ステップと、前記直流電源の負極と接地電位間に前記コンデンサを接続して、その両端電圧を前記第1の電圧計測手段で計測することにより第2の電圧計測値VRL+ を求める第2の計測ステップと、前記直流電源の両端に第2の電圧計測手段を接続して、前記第1および第2計測ステップの計測期間中に前記直流電源の両端電圧V0 ′を求める第3の計測ステップと、前記第1の計測ステップで求めた第1の電圧計測値VRL- および前記第2の計測ステップで求めた第2の電圧計測値VRL+ と、前記第3の計測ステップで求めた前記直流電源の両端電圧V0 ′とに基づいて、前記直流電源の地絡抵抗を算出する算出ステップとを含むことを特徴とする絶縁検出方法に存する。 In order to solve the above-mentioned problem, the invention according to claim 1 is an insulation detection method for detecting a ground fault resistance of a DC power source insulated from a ground potential, wherein a capacitor is connected between the positive electrode of the DC power source and the ground potential. And measuring the voltage between both ends with a first voltage measuring means to obtain a first voltage measurement value V RL− , and the capacitor between the negative electrode of the DC power source and the ground potential And a second measurement step for obtaining a second measured voltage value V RL + by measuring the voltage at both ends by the first voltage measuring means, and a second voltage measuring means at both ends of the DC power supply. And a third measurement step for obtaining a voltage V 0 ′ across the DC power source during the measurement period of the first and second measurement steps, and a first voltage measurement obtained in the first measurement step the value V RL- and the second Calculating step and the second voltage measurement values obtained by measuring the step V RL +, the third measured based on the voltage across V 0 'of the DC power source obtained step, to calculate the ground-fault resistance of the DC power supply Insulation detection method characterized by including.

請求項1記載の発明においては、直流電源の正極と接地電位間にコンデンサを接続して、その両端電圧を第1の電圧計測手段で計測することにより第1の電圧計測値VRL- を求め、直流電源の負極と接地電位間にコンデンサを接続して、その両端電圧を第1の電圧計測手段で計測することにより第2の電圧計測値VRL+ を求める。また、直流電源の両端に第2の電圧計測手段を接続して、第1の電圧計測手段による第1および第2の電圧計測値の計測期間中の直流電源の両端電圧V0 ′を求める。そして、第1の電圧計測手段で求めた第1の電圧計測値VRL- および第2の電圧計測値VRL+ と、第2の電圧計測手段30で求めた直流電源の両端電圧V0 ′とに基づいて、直流電源の地絡抵抗を算出する。 In the first aspect of the present invention, a first voltage measurement value V RL− is obtained by connecting a capacitor between the positive electrode of the DC power source and the ground potential, and measuring the voltage between both ends by the first voltage measuring means. The second voltage measurement value V RL + is obtained by connecting a capacitor between the negative electrode of the DC power source and the ground potential and measuring the voltage across the capacitor with the first voltage measuring means. Further, the second voltage measuring means is connected to both ends of the DC power supply, and the both-ends voltage V 0 ′ of the DC power supply during the measurement period of the first and second voltage measurement values by the first voltage measuring means is obtained. Then, the first voltage measurement value V RL− and the second voltage measurement value V RL + obtained by the first voltage measurement means, the both-ends voltage V 0 ′ of the DC power source obtained by the second voltage measurement means 30, and Based on the above, the ground fault resistance of the DC power supply is calculated.

上記課題を解決するためになされた請求項2記載の発明は、接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出装置であって、コンデンサと、前記コンデンサの両端電圧を計測する第1の電圧計測手段と、前記直流電源の正極と前記コンデンサの一端間に接続された第1スイッチと、前記直流電源の負極と前記コンデンサの他端間に接続された第2スイッチと、前記コンデンサの一端と前記第1の電圧計測手段間に接続された第3スイッチと、前記コンデンサの他端と前記接地電位間に接続された第4スイッチと、前記第1〜第4スイッチを選択的に閉制御する制御手段と、前記直流電源の両端に接続され、前記直流電源の両端電圧V0 ′を計測する第2の電圧計測手段と、前記第1の電圧計測手段において、前記制御手段による前記第1スイッチおよび第4スイッチの閉制御により充電された前記コンデンサの両端電圧を計測して得た第1の電圧計測値VRL- 、および前記第2スイッチおよび第3スイッチの閉制御により充電された前記コンデンサの両端電圧を計測して得た第2の電圧計測値VRL+ と、前記第2の電圧計測手段において計測して得た前記直流電源の両端電圧V0 とに基づいて、前記直流電源の地絡抵抗を算出する算出手段とを備え、前記第2の電圧計測手段は、前記第1の電圧計測手段における前記第1の電圧計測値VRL- および第2の電圧計測値VRL+ の計測期間中に、前記直流電源Vの両端電圧V0 ′を計測することを特徴とする絶縁検出装置に存する。 The invention according to claim 2, which has been made in order to solve the above problem, is an insulation detection device for detecting a ground fault resistance of a DC power source insulated from a ground potential, and measures a capacitor and a voltage across the capacitor. A first voltage measuring means; a first switch connected between the positive electrode of the DC power supply and one end of the capacitor; a second switch connected between the negative electrode of the DC power supply and the other end of the capacitor; A third switch connected between one end of a capacitor and the first voltage measuring means, a fourth switch connected between the other end of the capacitor and the ground potential, and the first to fourth switches are selectively used. In the control means for closing control, the second voltage measuring means connected to both ends of the DC power supply and measuring the voltage V 0 ′ across the DC power supply, and the first voltage measuring means, the control means Yo Charged by the first switch and the fourth first voltage measurement value V obtained by measuring the voltage across the capacitor charged by closing control of the switch RL-, and closing control of the second switch and the third switch Based on the second voltage measurement value V RL + obtained by measuring the voltage across the capacitor, and the voltage V 0 across the DC power source obtained by measurement in the second voltage measurement means, Calculation means for calculating a ground fault resistance of a DC power supply, wherein the second voltage measurement means includes the first voltage measurement value V RL− and the second voltage measurement value V in the first voltage measurement means. In the insulation detection device, the voltage V 0 ′ of the DC power supply V is measured during the measurement period of RL + .

請求項2記載の発明においては、接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出装置は、コンデンサと、コンデンサの両端電圧を計測する第1の電圧計測手段と、直流電源の正極とコンデンサの一端間に接続された第1スイッチと、直流電源の負極とコンデンサの他端間に接続された第2スイッチと、コンデンサの一端と第1の電圧計測手段間に接続された第3スイッチと、コンデンサの他端と接地電位間に接続された第4スイッチと、第1〜第4スイッチを選択的に閉制御する制御手段と、直流電源の両端に接続され、直流電源の両端電圧V0 ′を計測する第2の電圧計測手段と、第1の電圧計測手段10において、制御手段10による第1スイッチSW1および第4スイッチSW4の閉制御により充電されたコンデンサの両端電圧を計測して得た第1の電圧計測値VRL- 、および第2スイッチおよび第3スイッチの閉制御により充電されたコンデンサの両端電圧を計測して得た第2の電圧計測値VRL+ と、第2の電圧計測手段30において計測して得た直流電源の両端電圧V0 ′とに基づいて、直流電源の地絡抵抗を算出する算出手段とを備えている。第2の電圧計測手段は、第1の電圧計測手段における第1の電圧計測値VRL- および第2の電圧計測値VRL+ の計測期間中に、直流電源の両端電圧V0 ′を計測する。 According to a second aspect of the present invention, an insulation detection device for detecting a ground fault resistance of a DC power source insulated from a ground potential includes a capacitor, first voltage measuring means for measuring a voltage across the capacitor, and a DC power source. A first switch connected between the positive electrode and one end of the capacitor; a second switch connected between the negative electrode of the DC power supply and the other end of the capacitor; and a first switch connected between one end of the capacitor and the first voltage measuring means. 3 switches, a fourth switch connected between the other end of the capacitor and the ground potential, a control means for selectively closing and controlling the first to fourth switches, and both ends of the DC power supply. a second voltage measuring means for measuring the voltage V 0 ', the first in the voltage measuring means 10, a capacitor which is charged by closing control of the first switch SW1 and the fourth switch SW4 by the control unit 10 The first voltage measurement value V obtained by measuring the voltage across RL-, and the second switch and the third second voltage measurement values V obtained by measuring the voltage across the capacitor which is charged by closing the control switch Calculation means for calculating the ground fault resistance of the DC power supply based on RL + and the voltage V 0 ′ across the DC power supply obtained by the measurement by the second voltage measurement means 30 is provided. The second voltage measurement means measures the voltage V 0 ′ across the DC power supply during the measurement period of the first voltage measurement value V RL− and the second voltage measurement value V RL + in the first voltage measurement means. .

上記課題を解決するためになされた請求項3記載の発明は、請求項2記載の絶縁検出装置において、前記第3スイッチと前記第1の電圧計測手段の接続点と前記接地電位間に接続された第1抵抗と、前記第4スイッチと前記接地電位間に接続された第2抵抗と、前記第1および第3のスイッチの接続点と前記コンデンサの一端間に接続された第1および第2切替抵抗と、前記第1および第2切替抵抗のうち前記コンデンサの極性方向に対応する一つを選択し、当該選択した一つを前記第1スイッチおよび前記第3スイッチの接続点と前記コンデンサの一端間に選択的に接続させる選択手段とをさらに備えていることを特徴とする絶縁検出装置に存する。   According to a third aspect of the present invention, there is provided an insulation detection device according to the second aspect, wherein the third switch and the first voltage measuring means are connected between a connection point and the ground potential. A first resistor, a second resistor connected between the fourth switch and the ground potential, and a first and second connected between a connection point of the first and third switches and one end of the capacitor. A switching resistor and one of the first and second switching resistors corresponding to the polarity direction of the capacitor are selected, and the selected one is connected to a connection point between the first switch and the third switch and the capacitor. The insulation detection apparatus further includes selection means for selectively connecting the one end.

請求項3記載の発明においては、絶縁検出装置は、第3スイッチと第1の電圧計測手段の接続点と接地電位間に接続された第1抵抗と、第4スイッチと接地電位間に接続された第2抵抗と、第1および第3のスイッチの接続点とコンデンサの一端間に接続された第1および第2切替抵抗と、第1および第2切替抵抗のうちコンデンサの極性方向に対応する一つを選択し、当該選択した一つを第1スイッチおよび第3スイッチの接続点とコンデンサの一端間に選択的に接続させる選択手段とをさらに備えている。   In the invention according to claim 3, the insulation detecting device is connected between the connection point of the third switch and the first voltage measuring means and the ground potential, and connected between the fourth switch and the ground potential. The second resistor, the first and second switching resistors connected between the connection point of the first and third switches and one end of the capacitor, and the polarity direction of the capacitor among the first and second switching resistors And selecting means for selecting one and selectively connecting the selected one between the connection point of the first switch and the third switch and one end of the capacitor.

請求項1記載の発明によれば、接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出方法であって、直流電源の正極と接地電位間にコンデンサを接続して、その両端電圧を第1の電圧計測手段で計測することにより第1の電圧計測値VRL- を求める第1の計測ステップと、直流電源の負極と接地電位間に前記コンデンサを接続して、その両端電圧を前記第1の電圧計測手段で計測することにより第2の電圧計測値VRL+ を求める第2の計測ステップと、直流電源Vの両端に第2の電圧計測手段を接続して、第1および第2計測ステップの計測期間中に直流電源の両端電圧V0 ′を求める第3の計測ステップと、第1の計測ステップで求めた第1の電圧計測値VRL- および第2の計測ステップで求めた第2の電圧計測値VRL+ と、第3の計測ステップで求めた直流電源Vの両端電圧V0 ′とに基づいて、直流電源の地絡抵抗を算出する算出ステップとを含むので、従来計測不可能であった高圧電源の電圧変動状態時も含め、全ての車両走行状態において絶縁検出が可能となる。また、高圧電圧変動分を地絡抵抗算出に反映できるため、地絡抵抗の検出精度が向上する。また、従来、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測前に行っていた高圧電源Vの両端電圧の計測を、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測期間中に行っているので、従来より絶縁検出サイクルを短くすることができ、応答性が向上する。 According to the first aspect of the present invention, there is provided an insulation detection method for detecting a ground fault resistance of a DC power source insulated from a ground potential, wherein a capacitor is connected between the positive electrode of the DC power source and the ground potential, Is measured by the first voltage measuring means to obtain a first voltage measurement value V RL− , and the capacitor is connected between the negative electrode of the DC power source and the ground potential, and the voltage across the capacitor is measured. A second measurement step of obtaining a second voltage measurement value V RL + by measuring with the first voltage measurement means; and a second voltage measurement means connected to both ends of the DC power supply V to The third measurement step for obtaining the voltage V 0 ′ across the DC power supply during the measurement period of the two measurement steps, the first voltage measurement value V RL− obtained in the first measurement step, and the second measurement step The second measured voltage value V RL + and the third meter And a calculation step for calculating the ground fault resistance of the DC power source based on the both-ends voltage V 0 ′ of the DC power source V obtained in the measurement step. Insulation can be detected in all vehicle running conditions. In addition, since the high voltage fluctuation can be reflected in the calculation of the ground fault resistance, the detection accuracy of the ground fault resistance is improved. Moreover, the measurement of the both-ends voltage of the high voltage power supply V which was performed before measuring the voltage according to the negative electrode side ground fault resistance RL− and the voltage according to the positive electrode side ground fault resistance RL + is conventionally performed. Since the measurement is performed during the measurement period of the voltage according to the voltage and the voltage according to the positive side ground fault resistance RL +, the insulation detection cycle can be shortened compared to the conventional case, and the responsiveness is improved.

請求項2記載の発明によれば、接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出装置であって、コンデンサと、前記コンデンサの両端電圧を計測する第1の電圧計測手段と、直流電源の正極とコンデンサの一端間に接続された第1スイッチと、直流電源の負極とコンデンサの他端間に接続された第2スイッチと、コンデンサの一端と第1の電圧計測手段間に接続された第3スイッチと、コンデンサの他端と接地電位間に接続された第4スイッチと、第1〜第4スイッチを選択的に閉制御する制御手段と、直流電源の両端に接続され、直流電源の両端電圧V0 ′を計測する第2の電圧計測手段と、第1の電圧計測手段において、制御手段による第1スイッチおよび第4スイッチの閉制御により充電されたコンデンサの両端電圧を計測して得た第1の電圧計測値VRL- 、および第2スイッチおよび第3スイッチの閉制御により充電されたコンデンサの両端電圧を計測して得た第2の電圧計測値VRL+ と、第2の電圧計測手段において計測して得た直流電源の両端電圧V0 ′とに基づいて、直流電源の地絡抵抗を算出する算出手段とを備え、第2の電圧計測手段は、第1の電圧計測手段における第1の電圧計測値VRL- および第2の電圧計測値VRL+ の計測期間中に、直流電源の両端電圧V0 ′を計測するので、従来計測不可能であった高圧電源の電圧変動状態時も含め、全ての車両走行状態において絶縁検出が可能となる。また、高圧電圧変動分を地絡抵抗算出に反映できるため、地絡抵抗の検出精度が向上する。また、従来、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測前に行っていた高圧電源Vの両端電圧の計測を、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測期間中に行っているので、従来より絶縁検出サイクルを短くすることができ、応答性が向上する。 According to a second aspect of the present invention, there is provided an insulation detection device for detecting a ground fault resistance of a DC power source insulated from a ground potential, the capacitor, and a first voltage measuring means for measuring a voltage across the capacitor. A first switch connected between the positive electrode of the DC power supply and one end of the capacitor; a second switch connected between the negative electrode of the DC power supply and the other end of the capacitor; and between the one end of the capacitor and the first voltage measuring means. A third switch connected, a fourth switch connected between the other end of the capacitor and the ground potential, a control means for selectively closing and controlling the first to fourth switches, and both ends of the DC power supply; a second voltage measuring means for measuring the voltage across V 0 'of the DC power supply, the first voltage measuring means, the voltage across the capacitor which is charged by closing control of the first switch and the fourth switch by the control means The first voltage measurement V RL-, and the second voltage measurement value V RL + of the voltage across the second switch and the third capacitor is charged by closing the control switch obtained by measurement obtained by measuring, Calculation means for calculating a ground fault resistance of the DC power supply based on the both-ends voltage V 0 ′ of the DC power supply measured by the second voltage measurement means, and the second voltage measurement means includes: high pressure in the first voltage measurement V RL- and the second voltage measurements V RL + the measurement period in the voltage measuring means, so measuring the voltage across V 0 'of the DC power supply and a conventional measurement impossible Insulation can be detected in all vehicle running states, including when the power supply voltage fluctuates. In addition, since the high voltage fluctuation can be reflected in the calculation of the ground fault resistance, the detection accuracy of the ground fault resistance is improved. Moreover, the measurement of the both-ends voltage of the high voltage power supply V which was performed before measuring the voltage according to the negative electrode side ground fault resistance RL− and the voltage according to the positive electrode side ground fault resistance RL + is conventionally performed. Since the measurement is performed during the measurement period of the voltage according to the voltage and the voltage according to the positive side ground fault resistance RL +, the insulation detection cycle can be shortened compared to the conventional case, and the responsiveness is improved.

請求項3記載の発明によれば、第3スイッチと第1の電圧計測手段の接続点と接地電位間に接続された第1抵抗と、第4スイッチと接地電位間に接続された第2抵抗と、第1および第3のスイッチの接続点とコンデンサの一端間に接続された第1および第2切替抵抗と、第1および第2切替抵抗のうちコンデンサの極性方向に対応する一つを選択し、当該選択した一つを第1スイッチおよび第3スイッチの接続点とコンデンサの一端間に選択的に接続させる選択手段とをさらに備えているので、負極側地絡抵抗RL−に応じた計測電圧VRL- と、正極側地絡抵抗RL+に応じた計測電圧VRL+ と、高圧電源Vの両端電圧に応じた計測電圧V0 ′とに基づいて高圧電源Vの地絡抵抗を算出することができる。 According to the invention described in claim 3, the first resistor connected between the connection point of the third switch and the first voltage measuring means and the ground potential, and the second resistor connected between the fourth switch and the ground potential. And first and second switching resistors connected between the connection point of the first and third switches and one end of the capacitor, and one of the first and second switching resistors corresponding to the polarity direction of the capacitor is selected. And selecting means for selectively connecting the selected one between the connection point of the first switch and the third switch and one end of the capacitor, so that the measurement according to the negative side ground fault resistance RL− is provided. The ground fault resistance of the high voltage power source V is calculated based on the voltage V RL− , the measured voltage V RL + corresponding to the positive side ground fault resistance RL +, and the measured voltage V 0 ′ corresponding to the voltage across the high voltage power source V. Can do.

以下、本発明の絶縁検出方法および装置について図面を参照して説明する。   The insulation detection method and apparatus of the present invention will be described below with reference to the drawings.

図1は、本発明に係る絶縁検出方法を実施する絶縁検出装置の一実施の形態を示す回路図である。N個のバッテリが直列接続された高圧電源(=直流電源)Vは、マイコン10など低圧系の接地電位Gとは絶縁されている。マイコン10は、請求項における第1の電圧計測手段、算出手段および制御手段として働く。   FIG. 1 is a circuit diagram showing an embodiment of an insulation detection apparatus for carrying out an insulation detection method according to the present invention. A high-voltage power source (= DC power source) V in which N batteries are connected in series is insulated from a low-voltage ground potential G such as the microcomputer 10. The microcomputer 10 functions as a first voltage measurement unit, a calculation unit, and a control unit in the claims.

同図に示すように絶縁検出装置は、両極性のコンデンサCと、接地電位Gとは絶縁された高圧電源Vの正極をコンデンサCの一端に接続するための第1スイッチSW1と、高圧電源Vの負極をコンデンサCの他端に接続するための第2スイッチSW2とを備えている。   As shown in the figure, the insulation detection apparatus includes a bipolar capacitor C, a first switch SW1 for connecting the positive electrode of the high voltage power source V insulated from the ground potential G to one end of the capacitor C, and the high voltage power source V. And a second switch SW2 for connecting the other negative electrode to the other end of the capacitor C.

マイコン10は、入力ポート(=入力端子)A/D1およびA/D2に供給された電圧をA/D変換して計測する電圧計測機能を有する。また、マイコン10は、絶縁不良を検出した場合に警報部20を駆動して警報する警報機能を有する。絶縁検出装置は、コンデンサCの一端を入力ポートA/D1に接続するための第3スイッチSW3と、コンデンサCの他端を接地電位Gに接続するための第4スイッチSW4とを備えている。   The microcomputer 10 has a voltage measurement function for A / D converting and measuring the voltage supplied to the input ports (= input terminals) A / D1 and A / D2. Further, the microcomputer 10 has an alarm function for driving and alarming the alarm unit 20 when an insulation failure is detected. The insulation detection device includes a third switch SW3 for connecting one end of the capacitor C to the input port A / D1, and a fourth switch SW4 for connecting the other end of the capacitor C to the ground potential G.

また、絶縁検出装置は、第3スイッチSW3の入力ポートA/D1側−接地電位G間に設けられた第1抵抗R1と、第4スイッチSW4の接地電位G側−接地電位G間に設けられた第2抵抗R2とを備えている。   The insulation detection device is provided between the first resistor R1 provided between the input port A / D1 side of the third switch SW3 and the ground potential G and between the ground potential G side of the fourth switch SW4 and the ground potential G. And a second resistor R2.

また、入力ポートA/Dには、保護回路11を介して電圧が供給される。この保護回路11は、第1抵抗R1の第3スイッチSW3側−入力ポートA/D1間に設けられた保護抵抗Rp1と、この保護抵抗Rp1の入力ポートA/D1側−接地電位G間に設けられたクランプダイオードDcとから構成される。   Further, a voltage is supplied to the input port A / D via the protection circuit 11. The protection circuit 11 is provided between the protection resistor Rp1 provided between the third switch SW3 side of the first resistor R1 and the input port A / D1, and between the input port A / D1 side of the protection resistor Rp1 and the ground potential G. And a clamp diode Dc.

保護抵抗Rp1は、電流制限抵抗として働き、マイコン10の入力ポートA/D1に過電流が流れることを防ぐ。また、クランプダイオードDcによって、マイコン10の入力ポートA/D1にマイコン10に損傷を与えるような過剰な正電位や負電位が印加されるのを防ぐことができる。   The protective resistor Rp1 functions as a current limiting resistor and prevents an overcurrent from flowing through the input port A / D1 of the microcomputer 10. Further, the clamp diode Dc can prevent an excessive positive potential or negative potential from being applied to the input port A / D1 of the microcomputer 10 so as to damage the microcomputer 10.

また、絶縁検出装置は、第1スイッチSW1および第3スイッチSW3の接続ライン−コンデンサC間に設けられた抵抗切替回路12を備えている。抵抗切替回路12は、第1スイッチSW1および第3スイッチSW3の接続ラインからコンデンサCに向かって順方向となるように接続された第1ダイオードD1および第1切替抵抗Rc1から構成される直列回路と、第1ダイオードD1とは逆方向となるように接続された第2ダイオードD2および第2切替抵抗Rc2から構成される直列回路とが、並列に接続されて構成されている。   In addition, the insulation detection device includes a resistance switching circuit 12 provided between the connection line of the first switch SW1 and the third switch SW3 and the capacitor C. The resistance switching circuit 12 includes a series circuit including a first diode D1 and a first switching resistor Rc1 connected in a forward direction from the connection line of the first switch SW1 and the third switch SW3 toward the capacitor C. A series circuit composed of a second diode D2 and a second switching resistor Rc2 connected to be opposite to the first diode D1 is connected in parallel.

つまり、第1および第2ダイオードD1およびD2は、選択手段として働き、第1および第2切替抵抗Rc1およびRc2のうちコンデンサCの極性方向に対応する一つを選択し、選択した一つを第1スイッチSW1および第3スイッチSW3の接続ライン−コンデンサC間に電気的に接続させる。また、上述した第1〜第4スイッチSW1〜SW4は例えば光MOSFETが用いられ、高圧電源Vと絶縁しつつマイコン10によって制御できるようになっている。なお、13はリセット回路であり、リセットスイッチSWrを閉制御すると、コンデンサCに蓄積された電荷が放電抵抗Rdcによって速やかに放電することができる。   That is, the first and second diodes D1 and D2 function as a selection unit, select one of the first and second switching resistors Rc1 and Rc2 corresponding to the polarity direction of the capacitor C, and select the selected one as the first. The connection line between the 1 switch SW1 and the third switch SW3 and the capacitor C are electrically connected. The first to fourth switches SW1 to SW4 described above are, for example, optical MOSFETs, and can be controlled by the microcomputer 10 while being insulated from the high-voltage power supply V. Reference numeral 13 denotes a reset circuit. When the reset switch SWr is controlled to be closed, the charge accumulated in the capacitor C can be discharged quickly by the discharge resistor Rdc.

さらに、絶縁検出装置は、高圧電源Vの正極および負極に入力側が接続され、出力側がマイコン10の入力ポートA/D2に接続された高圧電圧計測回路30を備えている。この高圧電圧計測回路30は、高圧電源Vの両端電圧をリアルタイムでモニタするためのものである。高圧電圧計測回路30は、請求項における第2の電圧計測手段として働く。   Further, the insulation detection device includes a high voltage measuring circuit 30 whose input side is connected to the positive and negative electrodes of the high voltage power supply V and whose output side is connected to the input port A / D2 of the microcomputer 10. The high voltage measuring circuit 30 is for monitoring the voltage across the high voltage power supply V in real time. The high voltage measuring circuit 30 functions as a second voltage measuring means in the claims.

図2は、高圧電圧計測回路30の構成の一例を示すブロック図である。高圧電圧計測回路30は、分圧回路31、絶縁アンプ32およびバッファ・フィルタ33を含む直接計測方式の回路構成を有する。分圧回路31は、高圧電源Vの両端に接続され、高圧電圧を所定の電圧に分圧する。絶縁アンプ32は、分圧回路31で分圧された分圧電圧を入力側と出力側を絶縁して増幅する。バッファ・フィルタ33は、絶縁アンプ32の出力をそれに含まれるノイズを遮断してマイコン10の入力ポートA/D2に供給する。   FIG. 2 is a block diagram showing an example of the configuration of the high voltage measurement circuit 30. As shown in FIG. The high voltage measurement circuit 30 has a circuit configuration of a direct measurement system including a voltage dividing circuit 31, an insulation amplifier 32, and a buffer filter 33. The voltage dividing circuit 31 is connected to both ends of the high voltage power source V and divides the high voltage into a predetermined voltage. The insulation amplifier 32 amplifies the divided voltage divided by the voltage dividing circuit 31 by insulating the input side and the output side. The buffer filter 33 blocks the noise contained in the output of the insulation amplifier 32 and supplies it to the input port A / D2 of the microcomputer 10.

次に、上述の構成を有する本発明の絶縁検出装置の絶縁検出動作について、図3のフローチャートを参照しながら説明する。まず、マイコン10は、負極側地絡抵抗RL−の値に応じた電圧VRL- を計測する(ステップS1)。この計測は、具体的には次のように行われる。すなわち、マイコン10は、全てのスイッチが開いている初期状態から第1スイッチSW1および第4スイッチSW4を充電時間T1の間閉制御する。なお、充電時間T1は、コンデンサCをフル充電するのに必要な時間よりも短い時間(たとえば、フル充電時間の数分の1)に設定されている。それにより、高圧電源Vの正極、第1スイッチSW1、第1ダイオードD1、第1切替抵抗Rc1、コンデンサC、第4スイッチSW4、第2の抵抗R2、接地電位G、高圧電源Vの負極側地絡抵抗RL− 、および高圧電源Vの負極により閉回路が形成され、負極側地絡抵抗RL−の値に応じた電圧がコンデンサCに充電される。 Next, the insulation detection operation of the insulation detection apparatus of the present invention having the above-described configuration will be described with reference to the flowchart of FIG. First, the microcomputer 10 measures the voltage V RL− according to the value of the negative side ground fault resistance RL− (step S1). Specifically, this measurement is performed as follows. That is, the microcomputer 10 controls the first switch SW1 and the fourth switch SW4 to be closed during the charging time T1 from the initial state where all the switches are open. The charging time T1 is set to a time shorter than the time required to fully charge the capacitor C (for example, a fraction of the full charging time). Accordingly, the positive electrode of the high-voltage power source V, the first switch SW1, the first diode D1, the first switching resistor Rc1, the capacitor C, the fourth switch SW4, the second resistor R2, the ground potential G, and the negative electrode side ground of the high-voltage power source V. Tangle resistance RL- A closed circuit is formed by the negative electrode of the high-voltage power supply V, and the capacitor C is charged with a voltage corresponding to the value of the negative-side ground fault resistance RL−.

次に、マイコン10は、第1スイッチSW1を開制御した後、第3および第4スイッチSW3、SW4を閉制御する。それにより、コンデンサC、第2ダイオードD2、第2切替抵抗Rc2、第3スイッチSW3、第1抵抗R1、第2抵抗R2および第4スイッチSW4により閉回路が形成される。それにより、コンデンサCの両端電圧Vcは、第2切替抵抗Rc2、第1抵抗R1、第2抵抗R2で決定される分圧比で分圧されてマイコン10の入力ポートA/D1に供給される。供給された分圧電圧(∵Vc・R1/(Rc2+R1+R2))は、A/D(アナログ/デジタル)変換してデジタル値とされ、その値が、負極側地絡抵抗RL−の値に応じた電圧VRL-(第1の電圧計測値)としてマイコン10で読み込まれる。 Next, after opening the first switch SW1, the microcomputer 10 controls the third and fourth switches SW3 and SW4 to close. Accordingly, a closed circuit is formed by the capacitor C, the second diode D2, the second switching resistor Rc2, the third switch SW3, the first resistor R1, the second resistor R2, and the fourth switch SW4. As a result, the voltage Vc across the capacitor C is divided by a voltage dividing ratio determined by the second switching resistor Rc2, the first resistor R1, and the second resistor R2, and supplied to the input port A / D1 of the microcomputer 10. The supplied divided voltage (∵Vc · R1 / (Rc2 + R1 + R2)) is converted into a digital value by A / D (analog / digital) conversion, and the value corresponds to the value of the negative side ground fault resistance RL−. The voltage V RL− (first voltage measurement value) is read by the microcomputer 10.

次に、マイコン10は、正極側地絡抵抗RL+の値に応じた電圧VRL+ を計測する(ステップS2)。この計測は、具体的には次のように行われる。すなわち、マイコン10は、リセット回路13のリセットスイッチSWrを閉制御してコンデンサCに充電された電圧を充分に放電させる。次に、マイコン10は、リセットスイッチSWrおよび第4スイッチSW4を開制御した後、第2スイッチおよび第3スイッチSW2、SW3を充電時間T1の間閉制御する。それにより、高圧電源Vの正極、正極側地絡抵抗RL+、接地電位G、第1抵抗R1、第3スイッチSW3、第1ダイオードD1、第1切替抵抗Rc1、コンデンサC、第2スイッチSW2および高圧電源Vの負極により閉回路が形成され、正極側地絡抵抗RL+の値に応じた電圧がコンデンサCに充電される。 Next, the microcomputer 10 measures the voltage V RL + corresponding to the value of the positive side ground fault resistance RL + (step S2). Specifically, this measurement is performed as follows. That is, the microcomputer 10 closes the reset switch SWr of the reset circuit 13 to sufficiently discharge the voltage charged in the capacitor C. Next, after opening the reset switch SWr and the fourth switch SW4, the microcomputer 10 controls the second switch and the third switches SW2 and SW3 to close during the charging time T1. Accordingly, the positive electrode of the high-voltage power supply V, the positive-side ground fault resistor RL +, the ground potential G, the first resistor R1, the third switch SW3, the first diode D1, the first switching resistor Rc1, the capacitor C, the second switch SW2, and the high voltage A closed circuit is formed by the negative electrode of the power supply V, and the capacitor C is charged with a voltage corresponding to the value of the positive side ground fault resistance RL +.

次に、マイコン10は、第2スイッチSW2を開制御した後、第3および第4スイッチ手段SW3、SW4を閉制御する。それにより、コンデンサCの両端電圧Vcは、第2切替抵抗Rc2、第1抵抗R1、第2抵抗R2で決定される分圧比で分圧されて、マイコン10の入力ポートA/D1に供給される。供給された分圧電圧は、A/D変換してデジタル値とされ、その値が、正極側地絡抵抗RL+の値に応じた電圧VRL+ (第2の電圧計測値)としてマイコン10で読み込まれる。 Next, the microcomputer 10 controls the opening of the second switch SW2, and then controls the third and fourth switch means SW3 and SW4 to close. As a result, the voltage Vc across the capacitor C is divided by a voltage division ratio determined by the second switching resistor Rc2, the first resistor R1, and the second resistor R2, and supplied to the input port A / D1 of the microcomputer 10. . The supplied divided voltage is converted into a digital value by A / D conversion, and the value is read by the microcomputer 10 as a voltage V RL + (second voltage measurement value) corresponding to the value of the positive side ground fault resistance RL +. It is.

なお、上述した第1抵抗R1、第2抵抗R2とは同じ値に設定される(R1=R2)。これにより、第1および第4スイッチSW1およびSW4を閉制御して、負極側地絡抵抗RL−に応じた電圧でコンデンサCを充電するときの充電抵抗(Rc1+R2)と、第2および第3スイッチSW2およびSW3を閉制御して、正極側地絡抵抗RL+に応じた電圧でコンデンサCを充電するときの充電抵抗(Rc1+R1)とが等しくなる。つまり、負極側地絡抵抗RL−と正極側地絡抵抗RL+とが同じ値であれば、コンデンサCを充電する負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧とが等しくなる。   The first resistor R1 and the second resistor R2 described above are set to the same value (R1 = R2). As a result, the first and fourth switches SW1 and SW4 are closed and the charging resistance (Rc1 + R2) for charging the capacitor C with a voltage corresponding to the negative-side ground fault resistance RL−, and the second and third switches SW2 and SW3 are closed and the charging resistance (Rc1 + R1) when charging the capacitor C with a voltage corresponding to the positive side ground fault resistance RL + becomes equal. That is, if the negative side ground fault resistance RL− and the positive side ground fault resistance RL + have the same value, the voltage corresponding to the negative side ground fault resistance RL− charging the capacitor C and the positive side ground fault resistance RL + The voltage becomes equal.

一方、マイコン10は、図4に示すように上述の負極側地絡抵抗RL−に応じた電圧VRL- の計測期間TRL- 中、高圧電圧計測回路30の出力を、所定のサンプリングタイミング(たとえば、数10ミリ秒毎)で複数回(たとえば、十数回)入力ポートA/D2で取り込み、取り込んだ複数のデータを平均化する演算を行い、得られた平均値を、負極側地絡抵抗RL−に応じた電圧VRL- の計測期間TRL- 中の高圧電源Vの両端電圧V0-として読み込む(ステップS3)。 On the other hand, as shown in FIG. 4, the microcomputer 10 outputs the output of the high-voltage measuring circuit 30 at a predetermined sampling timing (during a measurement period T RL− of the voltage V RL− according to the negative-side ground fault resistance RL−. For example, every several tens of milliseconds) (for example, dozens of times) are taken in the input port A / D2 and an operation is performed to average the obtained data, and the obtained average value is used as the negative side ground fault. The voltage V RL− corresponding to the resistance RL− is read as the both-ends voltage V 0− of the high voltage power source V during the measurement period T RL− (step S3).

次に、マイコン10は、図4に示すように上述の正極側地絡抵抗RL+に応じた電圧VRL+ の計測期間TRL+ 中、高圧電圧計測回路30の出力を、所定のサンプリングタイミング(たとえば、数10ミリ秒毎)で複数回(たとえば、十数回)入力ポートA/D2で取り込み、取り込んだ複数のデータを平均化する演算を行い、得られた平均値を、正極側地絡抵抗RL+に応じた電圧VRL+ の計測期間TRL+ 中の高圧電源Vの両端電圧V0+ として読み込む(ステップS4)。 Next, as shown in FIG. 4, the microcomputer 10 outputs the output of the high voltage measurement circuit 30 to a predetermined sampling timing (for example, for example) during the measurement period T RL + of the voltage V RL + according to the above-described positive side ground fault resistance RL +. (Several tens of milliseconds) multiple times (for example, dozens of times) at the input port A / D2, and performs an arithmetic operation to average the multiple data, and the obtained average value is used as the positive side ground fault resistance RL + read as a voltage across V 0+ voltage V RL + the measurement period T RL + high-voltage power supply V medium corresponding to (step S4).

次に、マイコン10は、ステップS3およびS4で計測された高圧電源Vの両端電圧V0- とおよびV0+ を処理(たとえば、平均化処理)して、高圧電源Vの両端電圧V0 ′として読み込む(ステップS5)。 Next, the microcomputer 10 processes the voltage across V 0- capital and V 0+ of the high-voltage power source V which is measured in step S3 and S4 (e.g., averaging processing) to the voltage across V 0 which the high-voltage power source V ' (Step S5).

次に、マイコン10は、負極側地絡抵抗RL−に応じた計測電圧VRL- (第1の電圧計測値)と正極側地絡抵抗RL+に応じた計測電圧VRL+ (第2の電圧計測値)の和を、高圧電源Vの両端電圧に応じた計測電圧V0 ′で除する演算(VRL- +VRL+ 0 ′)を行う(ステップS6)。次に、マイコン10は、その演算値により、予め内部メモリに記憶されている演算値対地絡抵抗の換算テーブルを参照して高圧電源Vの地絡抵抗を算出する(ステップS7)。 Next, the microcomputer 10 measures the measurement voltage V RL− (first voltage measurement value) corresponding to the negative side ground fault resistance RL− and the measurement voltage V RL + (second voltage measurement) corresponding to the positive side ground fault resistance RL +. Value) is divided by the measurement voltage V 0 ′ according to the voltage across the high-voltage power supply V (V RL− + V RL + / V 0 ') is performed (step S6). Next, the microcomputer 10 calculates the ground fault resistance of the high-voltage power supply V based on the calculated value with reference to a calculation value / ground fault resistance conversion table stored in the internal memory in advance (step S7).

このようにして、高圧電源Vの地絡抵抗を算出することができる。地絡抵抗の算出後、マイコン10は、算出した地絡抵抗の値を、予め内部メモリに記憶されているしきい値と比較判定し、算出した地絡抵抗値がしきい値より小さくなっていれば、警報部20より絶縁不良が生じていることを警報することができる。   In this way, the ground fault resistance of the high voltage power supply V can be calculated. After calculating the ground fault resistance, the microcomputer 10 compares the calculated ground fault resistance value with a threshold value stored in advance in the internal memory, and the calculated ground fault resistance value is smaller than the threshold value. If so, the alarm unit 20 can warn that an insulation failure has occurred.

以上述べたように、本発明によれば、高圧電源Vの両端電圧をリアルタイムで計測する高圧電圧計測回路30を備えているので、従来計測不可能であった高圧電源の電圧変動状態時も含め、全ての車両走行状態において絶縁検出が可能となる。   As described above, according to the present invention, since the high voltage measuring circuit 30 for measuring the voltage across the high voltage power supply V in real time is provided, the voltage fluctuation state of the high voltage power supply that has been impossible to measure in the past is included. Insulation detection is possible in all vehicle travel states.

また、従来、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測前に行っていた高圧電源Vの両端電圧の計測を、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測期間中に平行して行っているので、高圧電圧変動分を常に算出値に反映させることができ、従来計測が不可能であった高圧電圧電圧変動中でも地絡抵抗計測が可能となる。また、高圧電圧変動分を地絡抵抗算出に反映できるため、地絡抵抗の検出精度が向上する。また、従来の高圧計測サイクル分の計測サイクルを短縮できるため、応答性の向上、耐ノイズ性が向上する。さらに、ノイズ対策等の処理手法の選択も広がる。   In addition, the measurement of the voltage at both ends of the high-voltage power supply V, which has been conventionally performed before the measurement of the voltage according to the negative side ground fault resistance RL− and the voltage according to the positive side ground fault resistance RL +, is performed. Since the voltage corresponding to the voltage and the voltage corresponding to the positive side ground fault resistance RL + are performed in parallel, the fluctuation of the high voltage can always be reflected in the calculated value, and the conventional measurement is impossible. The ground fault resistance can be measured even during high voltage fluctuations. In addition, since the high voltage fluctuation can be reflected in the calculation of the ground fault resistance, the detection accuracy of the ground fault resistance is improved. Moreover, since the measurement cycle for the conventional high-pressure measurement cycle can be shortened, the responsiveness is improved and the noise resistance is improved. Furthermore, the selection of processing methods such as noise countermeasures is expanded.

また、従来より装置全体のノイズ耐力を向上させることができる。すなわち、絶縁検出装置(地絡センサ)の外部に取り付ける高圧−接地電位G間のノイズ除去用コンデンサ(Yコン)の容量が大きくなると、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測時間を長くしないと精度の良い計測が行えなくなるという問題点があるが、この計測時間延長分も、本発明では従来の負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測前に行っていた高圧電源Vの両端電圧計測時間を省いたことにより吸収できるため、従来よりもノイズ除去用コンデンサ容量の選択の幅を拡げることができ、装置全体のノイズ耐力の向上にも貢献できる。   Moreover, the noise tolerance of the whole apparatus can be improved conventionally. That is, when the capacitance of the noise removing capacitor (Y capacitor) between the high voltage and the ground potential G attached outside the insulation detection device (ground fault sensor) increases, the voltage corresponding to the negative side ground fault resistance RL− and the positive side ground Although there is a problem that accurate measurement cannot be performed unless the voltage measurement time corresponding to the resistance RL + is lengthened, this measurement time extension also corresponds to the conventional negative side ground fault resistance RL− in the present invention. Since it can be absorbed by omitting the voltage measurement time at both ends of the high-voltage power supply V, which was performed before the measurement of the voltage and the voltage corresponding to the positive side ground fault resistance RL +, the range of selection of the capacitor capacity for noise removal can be expanded more than before. And can contribute to the improvement of the noise tolerance of the entire apparatus.

以上の通り、本発明の実施形態について説明したが、本発明はこれに限らず、種々の変形、応用が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation and application are possible.

たとえば、上述の実施の形態では、高圧電圧計測回路30として絶縁アンプ32を介する直接計測方式の構成のものを使用したが、これに限らず、他の構成のものを使用しても良い。   For example, in the above-described embodiment, the high-voltage measuring circuit 30 has a configuration of a direct measurement method via the insulation amplifier 32. However, the configuration is not limited to this, and another configuration may be used.

図5は、高圧電圧計測回路30の構成の他の例を示す回路図である。図5においては、高圧電圧計測回路30は、コンデンサC30、抵抗回路35、マルチプレクサ36、サンプルスイッチ回路37およびインターフェース回路38を含むフライングキャパシタ方式の構成を有する。抵抗回路35は、N(ここでは、N=5)個のバッテリV1〜V5からなる高圧電源Vの各バッテリの極端子にそれぞれ個別接続され、短絡保護のために電流制限する保護抵抗R11〜R16からなる。マルチプレクサ36は、保護抵抗R11〜R16を介してコンデンサC30の両端にそれぞれ接続され、マイコン10の制御により開閉されるスイッチSW11〜SW20からなる。サンプルスイッチ回路37は、コンデンサC30の両端電圧をインターフェース回路38に供給するスイッチSW21およびSW22からなる。インターフェース回路38は、サンプルスイッチ回路37を介して供給されるコンデンサC30の両端電圧を接地電位Gに対する電圧に変換してマイコン10の入力ポートA/D2に供給する。   FIG. 5 is a circuit diagram illustrating another example of the configuration of the high-voltage measuring circuit 30. In FIG. 5, the high voltage measuring circuit 30 has a flying capacitor type configuration including a capacitor C30, a resistor circuit 35, a multiplexer 36, a sample switch circuit 37, and an interface circuit 38. The resistance circuit 35 is individually connected to the pole terminal of each battery of the high-voltage power supply V composed of N (here, N = 5) batteries V1 to V5, and protection resistors R11 to R16 that limit current for short circuit protection. Consists of. The multiplexer 36 includes switches SW11 to SW20 that are connected to both ends of the capacitor C30 via protective resistors R11 to R16, and are opened and closed under the control of the microcomputer 10. The sample switch circuit 37 includes switches SW21 and SW22 that supply a voltage across the capacitor C30 to the interface circuit 38. The interface circuit 38 converts the voltage across the capacitor C30 supplied via the sample switch circuit 37 into a voltage with respect to the ground potential G, and supplies it to the input port A / D2 of the microcomputer 10.

図5の高圧電圧計測回路30は、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測期間中に、個別バッテリV1〜V5の電圧を、順次マルチプレクサ36のスイッチSW11〜SW20の閉制御とそれに続くサンプルスイッチ回路37の閉制御により計測し、個別バッテリV1〜V5の電圧の計測値を合計する演算を行うことにより、高圧電源Vの両端電圧をV0 を所定のサンプリングタイミングで複数回(たとえば、十数回)マイコン10に読み込み、読み込んだ複数のデータを平均化する演算を行い、得られた平均値を高圧電源Vの両端電圧V0 として読み込む。 The high voltage measuring circuit 30 in FIG. 5 sequentially converts the voltages of the individual batteries V1 to V5 into the multiplexer 36 during the measurement period of the voltage corresponding to the negative side ground fault resistance RL− and the voltage corresponding to the positive side ground fault resistance RL +. by measuring the closing control of the closing control and the sampling switch circuit 37 that follows, performs arithmetic summing the measured value of the voltage of the individual battery V1~V5 the switch SW11~SW20, V 0 a voltage across the high-voltage power source V Is read into the microcomputer 10 a plurality of times (for example, dozens of times) at a predetermined sampling timing, and an operation of averaging the plurality of read data is performed, and the obtained average value is read as the voltage V 0 across the high-voltage power supply V.

たとえば、バッテリV1の計測時は、全てのスイッチが開いている初期状態からマルチプレクサ36のスイッチSW11およびSW16を閉制御してバッテリV1の電圧をコンデンサC30に充電させ、続いて、スイッチSW11およびSW16を開制御すると共にサンプルスイッチ回路37のスイッチSW21およびSW22を閉制御することにより、コンデンサC30の両端電圧をインターフェース回路38を介してマイコン10の入力ポートA/D2に供給する。供給されたコンデンサC30の両端電圧はA/D変換してデジタル値とされ、バッテリV1の電圧としてマイコン10で読み込まれる。   For example, when measuring the battery V1, the switches SW11 and SW16 of the multiplexer 36 are closed from the initial state where all the switches are open, and the voltage of the battery V1 is charged in the capacitor C30. Subsequently, the switches SW11 and SW16 are turned on. By controlling the opening and closing the switches SW21 and SW22 of the sample switch circuit 37, the voltage across the capacitor C30 is supplied to the input port A / D2 of the microcomputer 10 via the interface circuit 38. The supplied voltage across the capacitor C30 is A / D converted into a digital value, and is read by the microcomputer 10 as the voltage of the battery V1.

同様に、バッテリV2〜V5の両端電圧が、マルチプレクサ35のスイッチSW12およびSW17、SW13およびSW18、SW14およびSW19、SW15およびSW20の組み合わせの閉制御により順次マイコン10で読み込まれる。   Similarly, both-end voltages of the batteries V2 to V5 are sequentially read by the microcomputer 10 by the closing control of the combinations of the switches SW12 and SW17, SW13 and SW18, SW14 and SW19, SW15 and SW20 of the multiplexer 35.

また、上述の実施の形態では、高圧電源Vの両端電圧V0 が平均値として算出されているが、これに限らず他の算出方法を用いても良い。たとえば、負極側地絡抵抗RL−に応じた電圧と正極側地絡抵抗RL+に応じた電圧の計測期間中にモニタされる高圧電圧変動の最大値と最小値の中間値を算出し、算出した中間値を高圧電源Vの両端電圧V0 と決定しても良い。また、負極側地絡抵抗RL−に応じた電圧の計測期間中にモニタされる高圧電圧の平均値と、正極側地絡抵抗RL+に応じた電圧の計測期間中にモニタされる高圧電圧の平均値にそれぞれ適宜な重み付けを行って算出した重み付け算出値を高圧電源Vの両端電圧V0 と決定しても良い。この重み付け算出値は、たとえば、ある既知の地絡抵抗時であって車両のモデル走行時の実測地絡抵抗データと上記既知の地絡抵抗値の差分を重み付けして算出される。 In the above-described embodiment, the voltage V 0 across the high-voltage power supply V is calculated as an average value. However, the present invention is not limited to this, and other calculation methods may be used. For example, an intermediate value between the maximum value and the minimum value of the high voltage fluctuation monitored during the measurement period of the voltage according to the negative side ground fault resistance RL− and the voltage according to the positive side ground fault resistance RL + was calculated. The intermediate value may be determined as the voltage V 0 across the high-voltage power supply V. The average value of the high voltage monitored during the voltage measurement period according to the negative side ground fault resistance RL− and the average of the high voltage monitored during the voltage measurement period according to the positive side ground fault resistance RL + A weighted value calculated by appropriately weighting each value may be determined as the voltage V 0 across the high-voltage power supply V. This weighted calculation value is calculated, for example, by weighting the difference between the measured ground fault resistance data at the time of a certain known ground fault resistance and when the model of the vehicle is running and the known ground fault resistance value.

本発明に係る絶縁検出方法を実施する絶縁検出装置の一実施の形態を示す回路図である。It is a circuit diagram showing one embodiment of an insulation detection device which carries out an insulation detection method concerning the present invention. 図1の絶縁検出装置における高圧電圧計測回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the high voltage measuring circuit in the insulation detection apparatus of FIG. 図1の絶縁検出装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the insulation detection apparatus of FIG. 図1の絶縁検出装置の動作を説明するための波形図である。It is a wave form diagram for demonstrating operation | movement of the insulation detection apparatus of FIG. 図1の絶縁検出装置における高圧電圧計測回路の他の構成例を示す回路図である。It is a circuit diagram which shows the other structural example of the high voltage measuring circuit in the insulation detection apparatus of FIG. 従来の絶縁検出装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional insulation detection apparatus. 図6の絶縁検出装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the insulation detection apparatus of FIG. 車両の高圧電源における高圧電圧の変動イメージを示す図である。It is a figure which shows the fluctuation image of the high voltage in the high voltage power supply of a vehicle. 図6の絶縁検出装置における絶縁検出サイクル中のコンデンサCの両端電圧の変化を示す図である。It is a figure which shows the change of the both-ends voltage of the capacitor | condenser C in the insulation detection cycle in the insulation detection apparatus of FIG.

符号の説明Explanation of symbols

C コンデンサ
D1 第1ダイオード(選択手段)
D2 第2ダイオード(選択手段)
G 接地電位
R1 第1抵抗
R2 第2抵抗
Rc1 第1切替抵抗
Rc2 第2切替抵抗
SW1 第1スイッチ
SW2 第2スイッチ
SW3 第3スイッチ
SW4 第4スイッチ
V 高圧電源(直流電源)
A/D1 入力ポート(入力端子)
A/D2 入力ポート(入力端子)
10 マイコン(第1の電圧計測手段、制御手段、算出手段)
30 高圧電圧計測回路(第2の電圧計測手段)
C capacitor D1 first diode (selection means)
D2 Second diode (selection means)
G ground potential R1 first resistor R2 second resistor Rc1 first switching resistor Rc2 second switching resistor SW1 first switch SW2 second switch SW3 third switch SW4 fourth switch V high voltage power source (DC power source)
A / D1 input port (input terminal)
A / D2 input port (input terminal)
10 Microcomputer (first voltage measurement means, control means, calculation means)
30 High voltage measurement circuit (second voltage measurement means)

Claims (3)

接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出方法であって、
前記直流電源の正極と接地電位間にコンデンサを接続して、その両端電圧を第1の電圧計測手段で計測することにより第1の電圧計測値VRL- を求める第1の計測ステップと、
前記直流電源の負極と接地電位間に前記コンデンサを接続して、その両端電圧を前記第1の電圧計測手段で計測することにより第2の電圧計測値VRL+ を求める第2の計測ステップと、
前記直流電源の両端に第2の電圧計測手段を接続して、前記第1および第2計測ステップの計測期間中に前記直流電源の両端電圧V0 ′を求める第3の計測ステップと、
前記第1の計測ステップで求めた第1の電圧計測値VRL- および前記第2の計測ステップで求めた第2の電圧計測値VRL+ と、前記第3の計測ステップで求めた前記直流電源の両端電圧V0 ′とに基づいて、前記直流電源の地絡抵抗を算出する算出ステップと
を含むことを特徴とする絶縁検出方法。
An insulation detection method for detecting a ground fault resistance of a DC power source insulated from a ground potential,
A first measurement step of obtaining a first voltage measurement value V RL− by connecting a capacitor between the positive electrode of the DC power source and a ground potential and measuring a voltage across the capacitor with a first voltage measurement means;
A second measuring step of obtaining a second voltage measurement value V RL + by connecting the capacitor between the negative electrode of the DC power source and a ground potential and measuring the voltage across the capacitor with the first voltage measuring means;
A third measuring step of connecting a second voltage measuring means to both ends of the DC power supply to obtain a voltage V 0 ′ of the DC power supply during the measurement period of the first and second measuring steps;
The first voltage measurement value V RL− obtained in the first measurement step, the second voltage measurement value V RL + obtained in the second measurement step, and the DC power source obtained in the third measurement step And a calculation step of calculating a ground fault resistance of the DC power source based on the both-end voltage V 0 ′.
接地電位から絶縁された直流電源の地絡抵抗を検出する絶縁検出装置であって、
コンデンサと、
前記コンデンサの両端電圧を計測する第1の電圧計測手段と、
前記直流電源の正極と前記コンデンサの一端間に接続された第1スイッチと、
前記直流電源の負極と前記コンデンサの他端間に接続された第2スイッチと、
前記コンデンサの一端と前記第1の電圧計測手段間に接続された第3スイッチと、
前記コンデンサの他端と前記接地電位間に接続された第4スイッチと、
前記第1〜第4スイッチを選択的に閉制御する制御手段と、
前記直流電源の両端に接続され、前記直流電源の両端電圧V0 ′を計測する第2の電圧計測手段と、
前記第1の電圧計測手段において、前記制御手段による前記第1スイッチおよび第4スイッチの閉制御により充電された前記コンデンサの両端電圧を計測して得た第1の電圧計測値VRL- 、および前記第2スイッチおよび第3スイッチの閉制御により充電された前記コンデンサの両端電圧を計測して得た第2の電圧計測値VRL+ と、前記第2の電圧計測手段において計測して得た前記直流電源の両端電圧V0 ′とに基づいて、前記直流電源の地絡抵抗を算出する算出手段とを備え、
前記第2の電圧計測手段は、前記第1の電圧計測手段における前記第1の電圧計測値VRL- および第2の電圧計測値VRL+ の計測期間中に、前記直流電源Vの両端電圧V0 ′を計測する
ことを特徴とする絶縁検出装置。
An insulation detection device for detecting a ground fault resistance of a DC power source insulated from a ground potential,
A capacitor,
First voltage measuring means for measuring the voltage across the capacitor;
A first switch connected between a positive electrode of the DC power source and one end of the capacitor;
A second switch connected between the negative electrode of the DC power source and the other end of the capacitor;
A third switch connected between one end of the capacitor and the first voltage measuring means;
A fourth switch connected between the other end of the capacitor and the ground potential;
Control means for selectively closing the first to fourth switches;
A second voltage measuring means connected to both ends of the DC power source and measuring a voltage V 0 ′ across the DC power source;
In the first voltage measurement means, a first voltage measurement value V RL− obtained by measuring a voltage across the capacitor charged by closing control of the first switch and the fourth switch by the control means, and The second voltage measurement value V RL + obtained by measuring the voltage across the capacitor charged by the closing control of the second switch and the third switch, and the second voltage measurement means obtained by the measurement. Calculating means for calculating a ground fault resistance of the DC power supply based on a voltage V 0 ′ across the DC power supply;
The second voltage measurement unit is configured to measure the voltage V across the DC power source V during the measurement period of the first voltage measurement value V RL− and the second voltage measurement value V RL + in the first voltage measurement unit. An insulation detection device characterized by measuring 0 '.
請求項2記載の絶縁検出装置において、
前記第3スイッチと前記第1の電圧計測手段の接続点と前記接地電位間に接続された第1抵抗と、
前記第4スイッチと前記接地電位間に接続された第2抵抗と、
前記第1および第3のスイッチの接続点と前記コンデンサの一端間に接続された第1および第2切替抵抗と、
前記第1および第2切替抵抗のうち前記コンデンサの極性方向に対応する一つを選択し、当該選択した一つを前記第1スイッチおよび前記第3スイッチの接続点と前記コンデンサの一端間に選択的に接続させる選択手段とをさらに備えている
ことを特徴とする絶縁検出装置。
The insulation detection apparatus according to claim 2,
A first resistor connected between a connection point of the third switch and the first voltage measuring means and the ground potential;
A second resistor connected between the fourth switch and the ground potential;
First and second switching resistors connected between a connection point of the first and third switches and one end of the capacitor;
One of the first and second switching resistors corresponding to the polarity direction of the capacitor is selected, and the selected one is selected between a connection point of the first switch and the third switch and one end of the capacitor. Insulation detection apparatus, further comprising selection means for connection to each other.
JP2006062388A 2006-03-08 2006-03-08 Insulation detection method and device Pending JP2007240300A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006062388A JP2007240300A (en) 2006-03-08 2006-03-08 Insulation detection method and device
US11/713,720 US20070210805A1 (en) 2006-03-08 2007-03-05 Insulation detecting method and insulation detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062388A JP2007240300A (en) 2006-03-08 2006-03-08 Insulation detection method and device

Publications (1)

Publication Number Publication Date
JP2007240300A true JP2007240300A (en) 2007-09-20

Family

ID=38585986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062388A Pending JP2007240300A (en) 2006-03-08 2006-03-08 Insulation detection method and device

Country Status (1)

Country Link
JP (1) JP2007240300A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281987A (en) * 2008-05-26 2009-12-03 Yazaki Corp Insulation measurement method and measurement apparatus
WO2010036153A1 (en) * 2008-09-26 2010-04-01 Volvo Lastvagnar Ab Method for monitoring insulation faults in an electric network and vehicle comprising an insulation fault monitor
JP2013511719A (en) * 2009-11-19 2013-04-04 ヴァレンス テクノロジー インコーポレーテッド Battery insulation resistance measurement method, insulation resistance measurement method, insulation resistance measurement device, and product
CN106997007A (en) * 2017-05-25 2017-08-01 上海炙云新能源科技有限公司 Electric automobile direct-current high-voltage system insulating resistance measurement apparatus and its measuring method
CN109100618A (en) * 2017-06-20 2018-12-28 联合汽车电子有限公司 High-tension battery Insulation Inspection System and method
CN112557941A (en) * 2019-09-10 2021-03-26 矢崎总业株式会社 Ground fault detection device
US11150301B2 (en) * 2017-11-29 2021-10-19 Lg Chem, Ltd. Battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153303A (en) * 1992-11-09 1994-05-31 Matsushita Electric Ind Co Ltd Leak detector
JP2003232825A (en) * 2002-02-06 2003-08-22 Yazaki Corp Detection method of insulation state of non-grounded power source, and insulation detection device using detection method
JP2004170131A (en) * 2002-11-18 2004-06-17 Yazaki Corp Apparatus for detecting insulation of non-grounded power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153303A (en) * 1992-11-09 1994-05-31 Matsushita Electric Ind Co Ltd Leak detector
JP2003232825A (en) * 2002-02-06 2003-08-22 Yazaki Corp Detection method of insulation state of non-grounded power source, and insulation detection device using detection method
JP2004170131A (en) * 2002-11-18 2004-06-17 Yazaki Corp Apparatus for detecting insulation of non-grounded power supply

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281987A (en) * 2008-05-26 2009-12-03 Yazaki Corp Insulation measurement method and measurement apparatus
JP4659067B2 (en) * 2008-05-26 2011-03-30 矢崎総業株式会社 Insulation measurement method and insulation measurement apparatus
US8159230B2 (en) 2008-05-26 2012-04-17 Yazaki Corporation Insulation measurement method and insulation measurement apparatus
WO2010036153A1 (en) * 2008-09-26 2010-04-01 Volvo Lastvagnar Ab Method for monitoring insulation faults in an electric network and vehicle comprising an insulation fault monitor
JP2013511719A (en) * 2009-11-19 2013-04-04 ヴァレンス テクノロジー インコーポレーテッド Battery insulation resistance measurement method, insulation resistance measurement method, insulation resistance measurement device, and product
US9581652B2 (en) 2009-11-19 2017-02-28 Valence Technology, Inc. Battery insulation resistance measurement methods, insulation resistance measurement methods, insulation resistance determination apparatuses, and articles of manufacture
CN106997007A (en) * 2017-05-25 2017-08-01 上海炙云新能源科技有限公司 Electric automobile direct-current high-voltage system insulating resistance measurement apparatus and its measuring method
CN106997007B (en) * 2017-05-25 2023-06-02 上海炙云新能源科技有限公司 Insulation resistance measuring device and method for electric automobile direct-current high-voltage system
CN109100618A (en) * 2017-06-20 2018-12-28 联合汽车电子有限公司 High-tension battery Insulation Inspection System and method
CN109100618B (en) * 2017-06-20 2024-05-31 联合汽车电子有限公司 High-voltage battery insulation detection system and method
US11150301B2 (en) * 2017-11-29 2021-10-19 Lg Chem, Ltd. Battery pack
CN112557941A (en) * 2019-09-10 2021-03-26 矢崎总业株式会社 Ground fault detection device
CN112557941B (en) * 2019-09-10 2024-05-07 矢崎总业株式会社 Ground fault detection device

Similar Documents

Publication Publication Date Title
JP5687484B2 (en) Insulation state detection unit flying capacitor fault detection device
KR102259382B1 (en) Method and apparatus for detecting a battery leakage
JP5406614B2 (en) Insulation state detector
JP6491164B2 (en) Voltage detector
JP6697869B2 (en) State determination device and state determination method
JP6625586B2 (en) Ground fault detection device
US8587262B2 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
EP2606367B1 (en) Ground fault detection circuit for ungrounded power source
US20140225444A1 (en) Earth fault detection device, earth fault detection method, solar power generation system, and earth fault detection program
JP2007240300A (en) Insulation detection method and device
US20070210805A1 (en) Insulation detecting method and insulation detecting device
JP4172517B2 (en) Power supply
JP7039541B2 (en) Ground fault detector
JP7005895B2 (en) Internal resistance calculation device, internal resistance calculation method and internal resistance calculation program
JP2007240299A (en) Flying capacitor system voltage measuring device
JP5097365B2 (en) Battery pack and disconnection detection method thereof
KR20140099372A (en) Method for estimating the state of charge of a battery, and battery management system using the method
JP7094918B2 (en) Ground fault detector
WO2015182030A1 (en) Vehicle ground fault detection device
JP4540029B2 (en) Voltage detection method and voltage detection apparatus
JP2007240426A (en) Insulation detection method and insulation detection device
JP2013032947A (en) Device and method for calculating internal resistance value
JPH09274062A (en) Leak detector
CN116953360A (en) Insulation resistance rapid detection method of energy storage equipment
JP7395240B2 (en) Ground fault detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628