JP2003232825A - Detection method of insulation state of non-grounded power source, and insulation detection device using detection method - Google Patents

Detection method of insulation state of non-grounded power source, and insulation detection device using detection method

Info

Publication number
JP2003232825A
JP2003232825A JP2002029617A JP2002029617A JP2003232825A JP 2003232825 A JP2003232825 A JP 2003232825A JP 2002029617 A JP2002029617 A JP 2002029617A JP 2002029617 A JP2002029617 A JP 2002029617A JP 2003232825 A JP2003232825 A JP 2003232825A
Authority
JP
Japan
Prior art keywords
data table
resistance value
insulation
power source
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002029617A
Other languages
Japanese (ja)
Inventor
Masashi Taniguchi
誠志 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002029617A priority Critical patent/JP2003232825A/en
Publication of JP2003232825A publication Critical patent/JP2003232825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection method of the insulation state of a non- grounded power source capable of reducing the capacity of a data table used for determining a ground resistance value. <P>SOLUTION: In this detection method of the insulation state of the non- grounded power source, an address for referring to the data table of an insulation resistance value is calculated based on the number of data on the data table where data of a voltage value of a direct-current power source, a voltage value between both terminals of a capacitor when connecting the capacitor in series between the power source and a ground potential part during a time set beforehand, and the insulation resistance value of the power source to the ground potential part, and the insulation resistance value of the power source to the ground potential part is determined from the calculated address. Hereby, the ground resistance value RL can be determined by a single data table without requiring use of a plurality of data tables such as a threshold data table and a ground resistance value data table as before, to thereby reduce the capacity of the data table used for determining the ground resistance value. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非接地電源の絶縁
状態の検出技術に係り、特に、電気による推進力を利用
する車両に搭載された非接地の直流電源に好適な絶縁状
態の検出技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for detecting an insulation state of a non-grounded power source, and more particularly to a technique for detecting an insulation state suitable for a non-grounded DC power source mounted on a vehicle that uses electric propulsion. Regarding

【0002】[0002]

【従来の技術】非接地の直流電源の絶縁状態を検出する
技術として、電源の正及び負端子に接続され、接地電位
部からは絶縁された正側及び負側の主回路配線の接地電
位部に対する絶縁抵抗つまり地絡抵抗を検出すること
で、接地電位部に対する絶縁状態を検出する技術が特開
平8−226950号公報などに提案されている。この
ような絶縁状態の検出技術では、非接地の直流電源の正
端子と接地電位部との間にコンデンサを直列に予め設定
した時間の間接続したときに検出したコンデンサの両端
子間電圧と電源電圧とに基づいて電源の接地電位部に対
する絶縁抵抗つまり地絡抵抗を求めている。
2. Description of the Related Art As a technique for detecting the insulation state of a non-grounded DC power source, the ground potential portion of the main circuit wiring on the positive and negative sides connected to the positive and negative terminals of the power source and insulated from the ground potential portion. Japanese Patent Application Laid-Open No. 8-226950 proposes a technique for detecting the insulation state with respect to the ground potential portion by detecting the insulation resistance to the ground, that is, the ground resistance. In such insulation state detection technology, the voltage between both terminals of the capacitor and the power source detected when the capacitor is connected in series between the positive terminal of the ungrounded DC power supply and the ground potential section for a preset time The insulation resistance to the ground potential portion of the power supply, that is, the ground fault resistance is calculated based on the voltage.

【0003】ここで、地絡抵抗の値RLは、コンデンサ
の両端子間電圧VCと電源電圧V0とに基づいて次式
(1)のような対数計算を含む式から求められる。 RL=−R−T/(C・ln(1−VC/V0)) …(1) なお、式(1)において、Rは、電源と接地電位部との
間にコンデンサを直列に接続可能な回路の電源とコンデ
ンサの間に設けられた抵抗の値、Tは、電源と接地電位
部との間にコンデンサを直列に接続した時間、Cは、コ
ンデンサの容量を示し、これらの抵抗値R、時間T、コ
ンデンサ容量Cは、絶縁検出装置の構成によって決まる
定数である。
Here, the value RL of the ground fault resistance is obtained from an equation including logarithmic calculation such as the following equation (1) based on the voltage VC between both terminals of the capacitor and the power supply voltage V0. RL = −R−T / (C · ln (1−VC / V0)) (1) In the formula (1), R can connect a capacitor in series between the power supply and the ground potential portion. The value of the resistance provided between the power supply and the capacitor of the circuit, T is the time when the capacitor is connected in series between the power supply and the ground potential portion, C is the capacitance of the capacitor, and these resistance values R, The time T and the capacitance C of the capacitor are constants determined by the configuration of the insulation detecting device.

【0004】しかし、式(1)のような対数計算を含む
式では演算に時間がかかり、この演算時間が地絡抵抗の
値の検出サイクルに要する時間を制限してしまうため、
地絡抵抗値の検出サイクルに要する時間を所望の時間に
短縮できない場合がある。そこで、式(1)において地
絡抵抗値によって変わる変数であるコンデンサの両端子
間電圧の値を電源電圧の値で割った計算値、つまりVC
/V0の計算値のみを算出し、VC/V0の値に対応し
て式(1)から算出される地絡抵抗値を配置したデータ
テーブルから、VC/V0の計算値に対応する地絡抵抗
値を求めることで、対数計算を行わないようにし、地絡
抵抗値を求めるのに要する時間を短縮することが考えら
れる。
However, the equation including the logarithmic calculation such as the equation (1) takes a long time to perform the arithmetic operation, and this arithmetic operation time limits the time required for the detection cycle of the value of the ground fault resistance.
In some cases, the time required for the ground fault resistance detection cycle cannot be shortened to a desired time. Therefore, in equation (1), the value calculated by dividing the value of the voltage between both terminals of the capacitor, which is a variable that changes depending on the ground fault resistance value, by the value of the power supply voltage,
From the data table in which only the calculated value of / V0 is calculated and the ground fault resistance value calculated from equation (1) is arranged corresponding to the value of VC / V0, the ground fault resistance corresponding to the calculated value of VC / V0 is calculated. By calculating the value, it is possible to prevent logarithmic calculation and reduce the time required to calculate the ground fault resistance value.

【0005】このようなデータテーブルを用いて地絡抵
抗値を求める従来の非接地電源の絶縁状態の検出技術で
は、記憶手段に保存されたしきい値データテーブルと地
絡抵抗値データテーブルとを用いている。そして、ま
ず、VC/V0の計算値としきい値との比較から、しき
い値データテーブルを参照するためのアドレスであるし
きい値用アドレスを決める。次に、この決定されたしき
い値用アドレスによってしきい値データテーブルから求
められたしきい値から、地絡抵抗値データテーブルを参
照するための地絡抵抗値用アドレスを決め、この地絡抵
抗値用アドレスによって地絡抵抗値データテーブルから
地絡抵抗値を求めている。
In the conventional technique for detecting the insulation state of a non-grounded power source for obtaining the ground fault resistance value using such a data table, the threshold data table and the ground fault resistance value data table stored in the storage means are used. I am using. Then, first, by comparing the calculated value of VC / V0 with the threshold value, the threshold address which is an address for referring to the threshold data table is determined. Next, the ground fault resistance value address for referring to the ground fault resistance value data table is determined from the threshold value obtained from the threshold value data table by the determined threshold address, and the ground fault resistance value address is determined. The ground fault resistance value is obtained from the ground fault resistance value data table using the resistance value address.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記のよう
な従来の非接地電源の絶縁状態の検出技術におけるデー
タテーブルを用いて地絡抵抗値を求める方法では、しき
い値データテーブルと地絡抵抗値データテーブルという
複数のデータテーブルが必要である。このため、絶縁状
態の検出精度を向上するために、地絡抵抗値の検出の分
解能を上げようとすると、その分解能に応じてしきい値
データテーブルと地絡抵抗値データテーブルのデータ数
を増やす必要がある。したがって、しきい値データテー
ブルと地絡抵抗値データテーブルのデータ数の増加に応
じて、しきい値データテーブルと地絡抵抗値データテー
ブルが保存された記憶手段に必要とされる容量が増大し
てしまう。記憶手段の容量の増大は、記憶手段のコスト
の増大などを招くため、地絡抵抗値を求めるために用い
るデータテーブルの容量を低減することが望まれてい
る。
By the way, in the method for obtaining the ground fault resistance value using the data table in the conventional insulation state detection technique of the non-grounded power source as described above, the threshold data table and the ground fault resistance are used. You need multiple data tables, called value data tables. Therefore, in order to improve the detection accuracy of the insulation state, if the resolution of the detection of the ground fault resistance value is increased, the number of data in the threshold value data table and the ground fault resistance value data table is increased according to the resolution. There is a need. Therefore, as the number of data in the threshold value data table and the ground fault resistance value data table increases, the capacity required for the storage unit storing the threshold value data table and the ground fault resistance value data table increases. Will end up. Since the increase in the capacity of the storage means causes an increase in the cost of the storage means, it is desired to reduce the capacity of the data table used for obtaining the ground fault resistance value.

【0007】本発明の課題は、地絡抵抗値を求めるため
に用いるデータテーブルの容量を低減することにある。
An object of the present invention is to reduce the capacity of the data table used for obtaining the ground fault resistance value.

【0008】[0008]

【課題を解決するための手段】本発明の非接地電源の絶
縁状態の検出方法は、非接地の直流電源の電圧値、電源
と接地電位部の間に予め設定された時間の間コンデンサ
を直列に接続したときのこのコンデンサの両端子間電圧
値、及び電源の接地電位部に対する絶縁抵抗値のデータ
を配置したデータテーブル上のデータ数に基づいて絶縁
抵抗値のデータテーブルを参照するためのアドレスを算
出し、この算出されたアドレスから電源の接地電位部に
対する絶縁抵抗値を求めることにより上記課題を解決す
る。
A method for detecting an insulation state of a non-grounded power supply according to the present invention is a method in which a capacitor is connected in series between a voltage value of a non-grounded DC power supply and a preset time between the power supply and a ground potential portion. Address for referencing the insulation resistance data table based on the voltage value between both terminals of this capacitor when connected to and the number of data on the data table in which the insulation resistance data for the ground potential part of the power supply is placed. Is solved and the insulation resistance value with respect to the ground potential portion of the power supply is calculated from the calculated address, thereby solving the above-mentioned problem.

【0009】また、本発明の絶縁検出装置は、非接地の
直流電源と接地電位部との間に予め設定された時間の間
コンデンサを直列に接続可能な回路を有するセンサ部
と、電源の接地電位部に対する絶縁抵抗値のデータを配
置したデータテーブルを保存する記憶手段と、データテ
ーブルを参照するためのアドレスを算出する演算手段と
を備え、センサ部は、予め設定された時間の間、電源と
接地電位部との間にコンデンサを直列に接続したときの
このコンデンサの両端子間電圧を検出し、演算手段は、
センサ部で検出したコンデンサの両端子間電圧の値と、
電源の電圧値と、メモリに保存されたデータテーブル上
のデータ数とに基づいてアドレスを算出し、この演算手
段で算出されたアドレスによってメモリに保存されたデ
ータテーブルから電源の接地電位部に対する絶縁抵抗値
を求める構成とすることにより上記課題を解決する。
Further, the insulation detecting apparatus of the present invention comprises a sensor unit having a circuit capable of connecting a capacitor in series between a non-grounded DC power source and a ground potential unit for a preset time, and a power source grounded. The sensor unit includes a storage unit that stores a data table in which data of insulation resistance values for the potential unit is stored, and a calculation unit that calculates an address for referring to the data table, and the sensor unit has a power supply for a preset time. When a capacitor is connected in series between the capacitor and the ground potential part, the voltage between both terminals of this capacitor is detected, and the calculation means is
The value of the voltage between both terminals of the capacitor detected by the sensor,
An address is calculated based on the voltage value of the power supply and the number of pieces of data in the data table stored in the memory, and the address calculated by the calculating means isolates the data table stored in the memory from the ground potential portion of the power supply. The above problem is solved by adopting a configuration for obtaining a resistance value.

【0010】このようにすれば、絶縁状態の検出精度に
応じて必要とされる分解能に対応したデータ数を有する
1つのデータテーブルにより、非接地電源の接地電位部
に対する絶縁抵抗値、つまり地絡抵抗値を求めることが
できる。したがって、地絡抵抗値を求めるために用いる
データテーブルの容量を低減できる。
With this configuration, one data table having the number of data corresponding to the resolution required according to the detection accuracy of the insulation state can be used to provide the insulation resistance value to the ground potential portion of the non-ground power source, that is, the ground fault. The resistance value can be calculated. Therefore, the capacity of the data table used to obtain the ground fault resistance value can be reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明を適用してなる絶縁
検出装置の一実施形態について図1乃至図6を参照して
説明する。図1は、本発明を適用してなる絶縁検出装置
の概略構成と動作を示すブロック図である。図2は、本
発明を適用してなる絶縁検出装置のセンサ部のコンデン
サ接続回路の一例を示す図である。図3は、本発明を適
用してなる絶縁検出装置のセンサ部における各スイッチ
部の動作に対するコンデンサの充放電状態と電圧の読み
込みタイミングを示すタイムチャートである。図4は、
本発明を適用してなる絶縁検出装置の動作を示すフロー
図である。図5は、本発明を適用してなる絶縁検出装置
の絶縁抵抗値の検出過程を示すフロー図である。図6
は、本発明を適用してなる絶縁検出装置のデータテーブ
ルの一例のを示す概略図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an insulation detecting device to which the present invention is applied will be described below with reference to FIGS. FIG. 1 is a block diagram showing a schematic configuration and operation of an insulation detection device to which the present invention is applied. FIG. 2 is a diagram showing an example of a capacitor connection circuit of the sensor unit of the insulation detection device to which the present invention is applied. FIG. 3 is a time chart showing the charging / discharging state of the capacitor and the voltage reading timing with respect to the operation of each switch section in the sensor section of the insulation detecting device to which the present invention is applied. Figure 4
It is a flowchart which shows operation | movement of the insulation detection apparatus which applies this invention. FIG. 5 is a flow chart showing the process of detecting the insulation resistance value of the insulation detecting device to which the present invention is applied. Figure 6
FIG. 3 is a schematic diagram showing an example of a data table of an insulation detecting device to which the present invention is applied.

【0012】本実施形態の絶縁検出装置1は、図1に示
すように、例えば電力を利用して推進力を得る電気推進
車両などの電力源となる直流電源3に対して適用したも
のである。電源3は、複数の蓄電池などを直列接続した
ものであり、車体などの接地電位部から絶縁された非接
地電源となっている。絶縁検出装置1は、コンデンサ接
続回路5とA/D検出手段7などを有するセンサ部9、
センサ部9で検出した値を記録すると共に、電源3の接
地電位部に対する絶縁抵抗値つまり地絡抵抗値のデータ
が配置されたテーブルデータを保存するメモリ11、メ
モリ11に記録された値などに基づいてメモリ11に保
存されたテーブルデータを参照するためのアドレスを算
出する演算手段13、そして演算手段13で算出された
アドレスによってテーブルデータから求められた地絡抵
抗値によって地絡の発生、すなわち絶縁状態を検出する
地絡検出手段15などで構成されている。
As shown in FIG. 1, the insulation detecting apparatus 1 of the present embodiment is applied to a DC power source 3 which is a power source of an electric propulsion vehicle or the like which uses electric power to obtain propulsive force. . The power source 3 is formed by connecting a plurality of storage batteries in series and is a non-grounded power source that is insulated from a ground potential portion such as a vehicle body. The insulation detection device 1 includes a sensor unit 9 having a capacitor connection circuit 5, A / D detection means 7, and the like,
The value detected by the sensor unit 9 is recorded, and the memory 11 for storing the table data in which the data of the insulation resistance value with respect to the ground potential part of the power supply 3, that is, the data of the ground fault resistance value is stored, the value recorded in the memory 11, etc. Based on the calculation means 13 for calculating an address for referring to the table data stored in the memory 11 based on the ground, and the occurrence of the ground fault by the ground fault resistance value obtained from the table data by the address calculated by the calculation means 13, that is, The ground fault detecting means 15 for detecting the insulation state is included.

【0013】電源3は、図2に示すように、電源3の正
端子側の正側主回路配線17aと負端子側の負側主回路
配線17bが、各々、接地電位部19、例えば車体など
から絶縁されて非接地電源となっている。センサ部9の
コンデンサ接続回路5は、電源3の正端子側及び電源3
の負端子側に接続され、例えば、電源3の正側端子から
第1スイッチS1、そして第2スイッチS2などが順次
直列に接続されている。第1スイッチS1と第2スイッ
チS2との間に位置する端子と、接地電位部19との間
には、この端子側から抵抗R1及びコンデンサ21が順
次直列に接続されている。さらに、センサ部9は、第1
スイッチS1と第2スイッチS2とを予め設定された時
間の間、予め設定されたタイミングで閉じるための図示
していないスイッチング制御回路を含んでいる。
As shown in FIG. 2, the power source 3 has a positive main circuit wiring 17a on the positive terminal side and a negative main circuit wiring 17b on the negative terminal side of the power source 3, each of which is at a ground potential portion 19, such as a vehicle body. It is insulated from and is a non-grounded power supply. The capacitor connection circuit 5 of the sensor unit 9 is connected to the positive terminal side of the power source 3 and the power source 3
, The first switch S1, the second switch S2, and the like are sequentially connected in series. Between the terminal located between the first switch S1 and the second switch S2 and the ground potential portion 19, the resistor R1 and the capacitor 21 are sequentially connected in series from this terminal side. Further, the sensor unit 9 has a first
It includes a switching control circuit (not shown) for closing the switch S1 and the second switch S2 at a preset timing for a preset time.

【0014】センサ部9のA/D検出手段7は、電源3
の電圧と、コンデンサ接続回路5のコンデンサ21の両
端子間の電圧とをアナログ/デジタル変換して検出する
ものであり、例えばA/Dポートを有するマイコンなど
で形成されている。A/D検出手段7がA/Dポートを
有するマイコンなどで形成されている場合、図示してい
ないが、このマイコンのA/Dポートが、電源3の電圧
と、コンデンサ接続回路5のコンデンサ21の両端子間
の電圧とを検出可能にするスイッチなどを含んだ回路な
どを介してコンデンサ接続回路5に適宜接続される。ま
た、例えば、電源3の電圧を検出する電圧検出器と、コ
ンデンサ21の両端子間の電圧を検出する電圧検出器と
をA/D検出手段7として電源3やコンデンサ接続回路
5に別々に接続した構成とすることもできる。
The A / D detecting means 7 of the sensor unit 9 is the power source 3
And the voltage between both terminals of the capacitor 21 of the capacitor connection circuit 5 are detected by analog / digital conversion, and are formed by, for example, a microcomputer having an A / D port. When the A / D detection means 7 is formed of a microcomputer having an A / D port, etc., the A / D port of this microcomputer is connected to the voltage of the power supply 3 and the capacitor 21 of the capacitor connection circuit 5 although not shown. Is appropriately connected to the capacitor connection circuit 5 via a circuit including a switch or the like that can detect the voltage between both terminals. Further, for example, a voltage detector that detects the voltage of the power supply 3 and a voltage detector that detects the voltage between both terminals of the capacitor 21 are separately connected to the power supply 3 and the capacitor connection circuit 5 as A / D detection means 7. It can also be configured.

【0015】なお、A/D検出手段7をマイコンで形成
した場合、図1に示すような、演算手段13、地絡検出
手段15、そして図示していないスイッチング制御回路
などを、A/D検出手段7を形成したマイコンに一体に
含めて形成することもできる。このように、A/D検出
手段7、演算手段13、地絡検出手段15、そして図示
していないスイッチング制御回路などは、マイコンやそ
の他の回路などを利用して、別体または一体に適宜形成
できる。
When the A / D detecting means 7 is formed by a microcomputer, the calculating means 13, the ground fault detecting means 15, and a switching control circuit (not shown) as shown in FIG. The means 7 may be integrally formed in the formed microcomputer. In this way, the A / D detecting means 7, the calculating means 13, the ground fault detecting means 15, and the switching control circuit (not shown) are appropriately formed separately or integrally using a microcomputer or other circuits. it can.

【0016】このような構成の絶縁検出装置の動作と本
発明の特徴部について説明する。絶縁検出装置1のセン
サ部9は、図3及び図4に示すように、絶縁状態の検出
を開始すると、第1スイッチS1と第2スイッチS2と
がオフつまり開路状態で、A/D検出手段7による電源
3の電圧値V0の検出が行われる(ステップ101)。
ステップ101は、例えば、A/D検出手段7がA/D
ポートを有するマイコンの場合、このマイコンでA/D
変換データを読み込むことで行われる。
The operation of the insulation detecting device having such a configuration and the characteristic part of the present invention will be described. As shown in FIGS. 3 and 4, the sensor unit 9 of the insulation detecting device 1 starts A / D detecting means when the first switch S1 and the second switch S2 are off, that is, when the insulation state is detected. The voltage value V0 of the power supply 3 is detected by 7 (step 101).
In step 101, for example, the A / D detection means 7 performs A / D
In the case of a microcomputer with a port, this microcomputer can be used for A / D
This is done by reading the conversion data.

【0017】ステップ101の後、図示していないスイ
ッチング制御回路が第1スイッチS1を予め設定された
閉路時間Tの間、オンつまり閉路することにより、電源
3と接地電位部19との間ににコンデンサ21を直列に
接続する回路が形成される。すなわち、図2に示すよう
に、正側主回路配線17a、第1スイッチS1、抵抗R
1、コンデンサ21、接地電位部19、図2において点
線で示すような位置に仮定される負端子側の接地電位部
19に対する絶縁抵抗つまり地絡抵抗Rn、そして負側
主回路配線17bを順次直列に電源3に接続した回路が
形成される。これにより、閉路時間Tの間、コンデンサ
21への充電が行われ、図3に示すように、地絡抵抗R
nの値に応じてコンデンサ21の両端子間の電圧が上昇
する。閉路時間Tが経過すると、第1スイッチS1がオ
フつまり遮断され、このときのコンデンサ21の両端子
間の電圧VC(−)がA/D検出手段7によって読み込
まれて検出される(ステップ102)。
After step 101, a switching control circuit (not shown) turns on or closes the first switch S1 for a preset closing time T, so that the power supply 3 and the ground potential part 19 are connected to each other. A circuit for connecting the capacitors 21 in series is formed. That is, as shown in FIG. 2, the positive side main circuit wiring 17a, the first switch S1, the resistor R
1, a capacitor 21, a ground potential portion 19, an insulation resistance, that is, a ground fault resistance Rn to the ground potential portion 19 on the negative terminal side, which is assumed to be at a position shown by a dotted line in FIG. 2, and a negative side main circuit wiring 17b are sequentially connected in series. A circuit connected to the power supply 3 is formed. As a result, the capacitor 21 is charged during the closing time T, and as shown in FIG.
The voltage between both terminals of the capacitor 21 increases according to the value of n. When the closing time T has elapsed, the first switch S1 is turned off, that is, cut off, and the voltage VC (−) between both terminals of the capacitor 21 at this time is read and detected by the A / D detection means 7 (step 102). .

【0018】ステップ102の後、今度は、図示してい
ないスイッチング制御回路が第2スイッチS2を予め設
定された閉路時間Tの間、オンつまり閉路することによ
り、電源3と接地電位部19との間ににコンデンサ21
を直列に接続する回路が形成される。すなわち、図1に
示すように、正側主回路配線17a、図1において点線
で示すような位置に仮定される正端子側の接地電位部1
9に対する絶縁抵抗つまり地絡抵抗Rp、接地電位部1
9、コンデンサ21、抵抗R1、第2スイッチS2、そ
して負側主回路配線17bを順次直列に電源3に接続し
た回路が形成される。これにより、閉路時間Tの間、コ
ンデンサ21への充電が行われ、図3に示すように、地
絡抵抗Rpの値に応じてコンデンサ21の両端子間の電
圧が上昇する。閉路時間Tが経過すると、第2スイッチ
S2がオフつまり遮断され、このときのコンデンサ21
の両端子間の電圧VC(+)がA/D検出手段7によっ
て読み込まれて検出される(ステップ103)。
After step 102, a switching control circuit (not shown) turns on or closes the second switch S2 for a preset closing time T, so that the power supply 3 and the ground potential portion 19 are connected. Capacitor 21 in between
A circuit for connecting the two in series is formed. That is, as shown in FIG. 1, the positive side main circuit wiring 17a, the ground potential portion 1 on the positive terminal side assumed at the position shown by the dotted line in FIG.
9. Insulation resistance to 9, that is, ground resistance Rp, ground potential section 1
A circuit is formed by sequentially connecting the capacitor 9, the resistor 21, the resistor R1, the second switch S2, and the negative side main circuit wiring 17b to the power supply 3 in series. As a result, the capacitor 21 is charged during the closing time T, and the voltage between both terminals of the capacitor 21 rises according to the value of the ground fault resistance Rp, as shown in FIG. After the closing time T has passed, the second switch S2 is turned off, that is, cut off, and the capacitor 21 at this time is turned off.
The voltage VC (+) between the two terminals is read and detected by the A / D detection means 7 (step 103).

【0019】ステップ101、102、103におい
て、A/D検出手段7によって検出された電源3の電圧
V0、コンデンサ21の両端子間の電圧VC(−)、V
C(+)は、図1に示されるように、メモリ11に記録
される。演算手段13は、図1及び図4に示されるよう
に、メモリ11に記録されたコンデンサ21の両端子間
の電圧VC(−)、VC(+)から、次式(2)によ
り、地絡抵抗Rn、Rpを代表する地絡抵抗値RLを求
めるために用いる電圧値VCを算出する(ステップ10
4)。 VC=VC(−)+VC(+) …(2) ステップ104の後、電源3の電圧値V0とステップ1
04で算出した電圧値VCに基づいて地絡抵抗Rn、R
pを代表する地絡抵抗値RLを求める地絡抵抗値RL検
出過程を行う(ステップ105)。
In steps 101, 102 and 103, the voltage V0 of the power source 3 detected by the A / D detection means 7 and the voltages VC (-) and V between both terminals of the capacitor 21 are detected.
C (+) is recorded in the memory 11 as shown in FIG. As shown in FIGS. 1 and 4, the calculating means 13 calculates the ground fault from the voltages VC (−) and VC (+) between both terminals of the capacitor 21 recorded in the memory 11 according to the following equation (2). A voltage value VC used to obtain a ground fault resistance value RL representing the resistors Rn and Rp is calculated (step 10).
4). VC = VC (−) + VC (+) (2) After step 104, the voltage value V0 of the power supply 3 and step 1
Ground resistances Rn and R based on the voltage value VC calculated in 04.
A ground fault resistance value RL detection process for obtaining a ground fault resistance value RL representing p is performed (step 105).

【0020】ステップ105に入ると、図5に示すよう
に、地絡抵抗値データテーブルを参照するためのアドレ
スをa[b]としたとき、演算手段13は、次式(3)
からbを求めることにより、アドレスをa[b]を算出
する(ステップ105a)。 b=INT((VC×n)/V0) …(3) なお、式(3)において、nは、地絡抵抗値データテー
ブル上のデータ数である。
In step 105, as shown in FIG. 5, when the address for referring to the ground fault resistance data table is a [b], the calculating means 13 calculates the following equation (3).
The address a [b] is calculated by obtaining b from (step 105a). b = INT ((VC * n) / V0) ... (3) In addition, in Formula (3), n is the number of data on a ground fault resistance data table.

【0021】ステップ105aの後、ステップ105a
で算出されたアドレスa[b]により、図6に例示する
ような地絡抵抗値データテーブルから地絡抵抗値RLが
求められる(ステップ105b)。すなわち、ステップ
105bにおいて、ステップ105aで算出されたアド
レスa[b]に該当する地絡抵抗値データテーブル上の
地絡抵抗値RLが、その絶縁状態の検出過程において検
出された地絡抵抗値RLとなる。
After step 105a, step 105a
The ground fault resistance value RL is obtained from the ground fault resistance data table as illustrated in FIG. 6 by the address a [b] calculated in (step 105b). That is, in step 105b, the ground fault resistance value RL on the ground fault resistance value data table corresponding to the address a [b] calculated in step 105a is the ground fault resistance value RL detected in the process of detecting the insulation state. Becomes

【0022】ステップ105の後、地絡検出手段15
は、図3及び図4に示すように、ステップ105で求め
られた地絡抵抗値RLが、地絡の発生を検出するために
予め設定した抵抗値以下であるか、それよりも高いかに
より、地絡の発生つまり絶縁状態を判定する(ステップ
106)。ステップ106において、ステップ105で
求められた地絡抵抗値RLが予め設定した抵抗値以下で
あると、地絡の発生を検出したと判定して、例えば、絶
縁不良の報知や、この絶縁状態の検出の停止などの動作
を行う(ステップ107)。一方、ステップ106にお
いて、ステップ105で求められた地絡抵抗値RLが予
め設定した抵抗値よりも高いと、地絡は発生していない
と判定して、再度ステップ101からステップ106に
至る絶縁状態の検出サイクルを繰り返す(ステップ10
8)。
After step 105, the ground fault detecting means 15
Depends on whether the ground fault resistance value RL obtained in step 105 is equal to or less than a preset resistance value for detecting the occurrence of the ground fault or higher than that, as shown in FIGS. 3 and 4. The occurrence of a ground fault, that is, the insulation state is determined (step 106). In step 106, when the ground fault resistance value RL obtained in step 105 is equal to or less than the preset resistance value, it is determined that the occurrence of the ground fault is detected, and, for example, the notification of the insulation failure or the insulation state Operations such as stop of detection are performed (step 107). On the other hand, in step 106, if the ground fault resistance value RL obtained in step 105 is higher than the preset resistance value, it is determined that the ground fault has not occurred, and the insulation state from step 101 to step 106 again. Repeat the detection cycle of (step 10
8).

【0023】ここで、従来のデータテーブルを利用して
地絡抵抗値を求める絶縁検出装置の地絡抵抗値の検出過
程の一例を示す。従来の絶縁検出装置では、図7に示す
ように、しきい値データテーブルと地絡抵抗値データテ
ーブルの2種類のデータテーブルによって地絡抵抗値R
Lを求めている。まず、電源の電圧値V0と、コンデン
サを電源と接地電位部との間に直列に設定時間の間接続
したときの、コンデンサの両端子間電圧の値VC=VC
(−)+VC(+)とから、VC/V0を算出する(ス
テップ201)。しきい値用アドレスs[b]におい
て、b=0のとき(ステップ202)のしきい値用アド
レスs[0]に該当するしきい値をしきい値データテー
ブルから求め(ステップ203)、この求めたしきい値
とステップ201で算出したVC/V0の値との比較を
行う(ステップ204)。
Here, an example of the process of detecting the ground fault resistance value of the insulation detecting apparatus for obtaining the ground fault resistance value using the conventional data table will be shown. In the conventional insulation detecting device, as shown in FIG. 7, the ground fault resistance value R is determined by two kinds of data tables, that is, a threshold data table and a ground fault resistance value data table.
Seeking L. First, the voltage value V0 of the power source and the voltage value VC = VC between both terminals of the capacitor when the capacitor is connected in series between the power source and the ground potential portion for a set time.
VC / V0 is calculated from (−) + VC (+) (step 201). In the threshold address s [b], when b = 0 (step 202), the threshold corresponding to the threshold address s [0] is obtained from the threshold data table (step 203). The calculated threshold value is compared with the value of VC / V0 calculated in step 201 (step 204).

【0024】ステップ204において、VC/V0の値
が求めたしきい値よりも小さい場合には、bの値を1つ
増やし(ステップ205)、b=1として、ステップ2
03からステップ204を行う。VC/V0の値が求め
たしきい値よりも小さい場合には、ステップ205にお
いてbの値を1つずつ増やしながら、ステップ203か
らステップ204を繰り返す。ステップ205において
bの値を1つずつ増やしながら、ステップ203からス
テップ204を繰り返し、ステップ204において、V
C/V0の値が求めたしきい値以上になったときのしき
い値から地絡抵抗値データテーブルを参照する地絡抵抗
値用アドレスa[b]が算出される。すなわち、VC/
V0の値が求めたしきい値以上になったときのしきい値
を地絡抵抗値用アドレスa[b]のbとして地絡抵抗値
用アドレスが算出され、この地絡抵抗値用アドレスに該
当する地絡抵抗値データテーブル上のデータの値がこの
ときの地絡抵抗値RLとなる(ステップ206)。
In step 204, when the value of VC / V0 is smaller than the obtained threshold value, the value of b is incremented by 1 (step 205), b = 1 is set, and step 2
Step 204 is performed from 03. If the value of VC / V0 is smaller than the obtained threshold value, steps 203 to 204 are repeated while increasing the value of b by 1 in step 205. Steps 203 to 204 are repeated while increasing the value of b by 1 in step 205, and in step 204, V
The ground fault resistance value address a [b] referring to the ground fault resistance data table is calculated from the threshold value when the value of C / V0 is equal to or higher than the obtained threshold value. That is, VC /
The ground fault resistance value address is calculated by using the threshold value when the value of V0 is equal to or greater than the obtained threshold value as b of the ground fault resistance value address a [b], and this ground fault resistance value address is calculated. The value of the data on the corresponding ground fault resistance value data table becomes the ground fault resistance value RL at this time (step 206).

【0025】このように従来の絶縁検出装置では、しき
い値データテーブルと地絡抵抗値データテーブルという
2つのデータテーブルを用いている。このため、絶縁状
態の検出精度を向上するために、地絡抵抗値の検出の分
解能を上げようとすると、その分解能に応じて、しきい
値データテーブルと地絡抵抗値データテーブルのそれぞ
れのデータ数が増えることになる。したがって、しきい
値データテーブルと地絡抵抗値データテーブルのデータ
数の増加によって、これらのデータテーブルが保存され
た記憶手段に必要とされる容量が増大してしまい、絶縁
状態の検出精度を向上しようとしたときに、用いる記憶
手段の容量を増大する必要が生じる場合がある。
As described above, the conventional insulation detecting device uses two data tables, that is, the threshold data table and the ground fault resistance data table. Therefore, in order to improve the detection accuracy of the insulation state, when trying to raise the resolution of the detection of the ground fault resistance value, the respective data of the threshold data table and the ground fault resistance value data table are The number will increase. Therefore, an increase in the number of data in the threshold value data table and the ground fault resistance value data table increases the capacity required for the storage means storing these data tables, and improves the detection accuracy of the insulation state. When trying to do so, it may be necessary to increase the capacity of the storage means used.

【0026】これに対して、地絡抵抗値RLの検出精度
を考慮したときに必要とされるVC/V0の計算値の分
解能を1/nとすると、これに対応して地絡抵抗値用デ
ータテーブルに配置される地絡抵抗値RLの数はnとな
り、VC/V0の計算値1/nからn/nに対応するn
個の地絡抵抗値RLがデータテーブル上に配置されるこ
ととなる。このとき、(VC×n)/V0の計算値を超
えない最大の整数を計算すると、その値は1からnとな
る。つまり、式(3)におけるINT((VC×n)/
V0)の計算値は1からnとなるため、この式(3)の
計算値は、地絡抵抗値用データテーブルの1番目に配置
された先頭データからn番目に配置された最終データに
対応させることができる。したがって、本実施形態の絶
縁検出装置1のように、式(3)のINT((VC×
n)/V0)の計算値を用いれば、しきい値データテー
ブルを用いずに、直接、地絡抵抗値データテーブルを参
照するためのアドレスを算出することができる。
On the other hand, when the resolution of the calculated value of VC / V0 required when the detection accuracy of the ground fault resistance value RL is taken into consideration is 1 / n, the ground fault resistance value The number of ground fault resistance values RL arranged in the data table is n, and n corresponding to calculated values 1 / n of VC / V0 to n / n.
The ground fault resistance value RL is arranged on the data table. At this time, when the maximum integer that does not exceed the calculated value of (VC × n) / V0 is calculated, the value becomes 1 to n. That is, INT ((VC × n) /
Since the calculated value of V0) is 1 to n, the calculated value of this formula (3) corresponds to the first data arranged from the first data arranged in the data table for ground resistance value to the last data arranged in the nth data table. Can be made. Therefore, as in the insulation detection device 1 of the present embodiment, INT ((VC ×
By using the calculated value of n) / V0), it is possible to directly calculate the address for referring to the ground fault resistance data table without using the threshold data table.

【0027】このように、本実施形態の絶縁検出装置1
では、電源の電圧値V0、電源と接地電位部との間に設
定時間の間コンデンサを直列に接続したときのコンデン
サの両端子間電圧VC、そして絶縁状態の検出精度に応
じた分解能に対応する地絡抵抗値RLのデータ数nか
ら、地絡抵抗値データテーブルを参照するためのアドレ
スを算出し、この算出されたアドレスに該当するデータ
テーブル上のデータにより地絡抵抗値RLを求めること
ができる。したがって、1つのデータテーブルで地絡抵
抗値RLを求めることができ、従来のように分解能に対
応するデータ数を有するデータテーブルを複数用いる必
要がないため、地絡抵抗値を求めるために用いるデータ
テーブルの容量を低減できる。
As described above, the insulation detecting device 1 of the present embodiment
Corresponds to the voltage value V0 of the power supply, the voltage VC between both terminals of the capacitor when the capacitor is connected in series between the power supply and the ground potential portion for the set time, and the resolution according to the detection accuracy of the insulation state. It is possible to calculate an address for referencing the ground fault resistance value data table from the data number n of the ground fault resistance value RL, and obtain the ground fault resistance value RL from the data on the data table corresponding to the calculated address. it can. Therefore, it is possible to obtain the ground fault resistance value RL with one data table, and it is not necessary to use a plurality of data tables having the number of data corresponding to the resolution as in the conventional case. Therefore, the data used to obtain the ground fault resistance value can be obtained. The capacity of the table can be reduced.

【0028】さらに、本実施形態の絶縁検出装置1で
は、従来のように2つのデータテーブルを用いないこ
と、さらに、しきい値用データテーブル上のデータとし
きい値を順次比較する過程が無いことなどから、地絡抵
抗値RLの検出に要する処理時間を短縮することができ
る。
Further, the insulation detecting apparatus 1 of the present embodiment does not use two data tables as in the conventional case, and further has no process for sequentially comparing the data on the threshold data table with the threshold. Therefore, the processing time required to detect the ground fault resistance value RL can be shortened.

【0029】また、本発明は、本実施形態において示し
た構成の絶縁検出装置に限らず、電源と接地電位部との
間に予め設定された時間の間コンデンサを直列に接続可
能で、電源の電圧値、電源と接地電位部間に予め設定さ
れた時間の間コンデンサを直列に接続したときのこのコ
ンデンサの両端子間電圧に基づいて地絡抵抗を求める様
々な構成の絶縁検出装置に適用することができる。ま
た、本発明は、本実施形態のように地絡抵抗Rn、Rp
を代表する地絡抵抗値RLを求める場合に限らず、地絡
抵抗Rn、Rpの値を別個に求める場合にも適用でき
る。
Further, the present invention is not limited to the insulation detecting device having the configuration shown in the present embodiment, but a capacitor can be connected in series between the power source and the ground potential portion for a preset time, and the power source It is applied to insulation detection devices of various configurations that obtain the ground fault resistance based on the voltage value and the voltage between both terminals of this capacitor when a capacitor is connected in series between the power supply and the ground potential part for a preset time. be able to. In addition, the present invention provides the ground fault resistors Rn and Rp as in the present embodiment.
The present invention is not limited to the case of obtaining the ground fault resistance value RL representing the above, but can be applied to the case of separately obtaining the values of the ground fault resistances Rn and Rp.

【0030】[0030]

【発明の効果】本発明によれば、地絡抵抗値を求めるた
めに用いるデータテーブルの容量を低減できる。
According to the present invention, the capacity of the data table used for obtaining the ground fault resistance value can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用してなる絶縁検出装置の一実施形
態の概略構成及び動作を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration and operation of an embodiment of an insulation detection device to which the present invention is applied.

【図2】本発明を適用してなる絶縁検出装置の一実施形
態におけるセンサ部のコンデンサ接続回路の一例を示す
図である。
FIG. 2 is a diagram showing an example of a capacitor connection circuit of a sensor section in an embodiment of an insulation detection device to which the present invention is applied.

【図3】本発明を適用してなる絶縁検出装置の一実施形
態のセンサ部における各スイッチ部の動作に対するコン
デンサの充放電状態と電圧の読み込みタイミングを示す
タイムチャートである。
FIG. 3 is a time chart showing a charge / discharge state of a capacitor and a voltage reading timing with respect to an operation of each switch unit in a sensor unit of an embodiment of an insulation detection device to which the present invention is applied.

【図4】本発明を適用してなる絶縁検出装置の一実施形
態の動作を示すフロー図である。
FIG. 4 is a flowchart showing the operation of an embodiment of the insulation detection device to which the present invention is applied.

【図5】本発明を適用してなる絶縁検出装置の一実施形
態における絶縁抵抗値の検出過程を示すフロー図であ
る。
FIG. 5 is a flowchart showing a process of detecting an insulation resistance value in an embodiment of an insulation detection device to which the present invention is applied.

【図6】本発明を適用してなる絶縁検出装置の一実施形
態におけるデータテーブルの一例のを示す概略図であ
る。
FIG. 6 is a schematic view showing an example of a data table in one embodiment of the insulation detection device to which the present invention is applied.

【図7】従来の絶縁検出装置が有するしきい値データテ
ーブルと地絡抵抗値データテーブルの一例を示す図であ
る。
FIG. 7 is a diagram showing an example of a threshold value data table and a ground fault resistance value data table included in a conventional insulation detection device.

【図8】従来の絶縁検出装置における絶縁抵抗値の検出
過程の一例を示すフロー図である。
FIG. 8 is a flowchart showing an example of a process of detecting an insulation resistance value in a conventional insulation detection device.

【符号の説明】[Explanation of symbols]

1 絶縁検出装置 3 電源 5 コンデンサ接続回路 7 A/D検出手段 9 センサ部 11 メモリ 13 演算手段 15 地絡検出手段 19 接地電位部 21 コンデンサ 1 Insulation detector 3 power supplies 5 Capacitor connection circuit 7 A / D detection means 9 Sensor section 11 memory 13 Computing means 15 Ground fault detection means 19 Ground potential part 21 capacitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非接地の直流電源の電圧値、前記電源と
接地電位部の間に予め設定された時間の間コンデンサを
直列に接続したときの該コンデンサの両端子間電圧値、
及び前記電源の前記接地電位部に対する絶縁抵抗値のデ
ータを配置したデータテーブル上のデータ数に基づいて
前記絶縁抵抗値のデータテーブルを参照するためのアド
レスを算出し、該算出されたアドレスから前記電源の前
記接地電位部に対する絶縁抵抗値を求める非接地電源の
絶縁状態の検出方法。
1. A voltage value of a non-grounded DC power source, a voltage value between both terminals of the capacitor when the capacitor is connected in series between the power source and a ground potential portion for a preset time,
And an address for referring to the data table of the insulation resistance value based on the number of data on the data table in which the data of the insulation resistance value with respect to the ground potential part of the power source is arranged, and the address is calculated from the calculated address. A method for detecting an insulation state of a non-grounded power supply, which comprises obtaining an insulation resistance value of the power supply from the ground potential portion.
【請求項2】 非接地の直流電源と接地電位部との間に
予め設定された時間の間コンデンサを直列に接続可能な
回路を有するセンサ部と、前記電源の前記接地電位部に
対する絶縁抵抗値のデータを配置したデータテーブルを
保存する記憶手段と、前記データテーブルを参照するた
めのアドレスを算出する演算手段とを備え、 前記センサ部は、予め設定された時間の間、前記電源と
前記接地電位部との間に前記コンデンサを直列に接続し
たときの該コンデンサの両端子間電圧を検出し、前記演
算手段は、前記センサ部で検出した前記コンデンサの両
端子間電圧の値と、前記電源の電圧値と、前記メモリに
保存されたデータテーブル上のデータ数とに基づいて前
記アドレスを算出し、該演算手段で算出されたアドレス
によって前記メモリに保存されたデータテーブルから前
記電源の前記接地電位部に対する絶縁抵抗値を求めてな
る絶縁検出装置。
2. A sensor unit having a circuit capable of connecting a capacitor in series between a non-grounded DC power source and a ground potential unit for a preset time, and an insulation resistance value of the power source with respect to the ground potential unit. Storage means for storing a data table in which the data of (1) are arranged, and a calculation means for calculating an address for referring to the data table, wherein the sensor unit is configured to operate the power supply and the ground for a preset time. The voltage between both terminals of the capacitor when the capacitor is connected in series with the potential part is detected, and the calculating means detects the value of the voltage between both terminals of the capacitor detected by the sensor part and the power supply. The address is calculated on the basis of the voltage value of the data and the number of data on the data table stored in the memory, and the address is stored in the memory by the address calculated by the arithmetic means. Insulation detecting apparatus comprising seeking insulation resistance from the data table for the ground potential portion of the power source.
JP2002029617A 2002-02-06 2002-02-06 Detection method of insulation state of non-grounded power source, and insulation detection device using detection method Pending JP2003232825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029617A JP2003232825A (en) 2002-02-06 2002-02-06 Detection method of insulation state of non-grounded power source, and insulation detection device using detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029617A JP2003232825A (en) 2002-02-06 2002-02-06 Detection method of insulation state of non-grounded power source, and insulation detection device using detection method

Publications (1)

Publication Number Publication Date
JP2003232825A true JP2003232825A (en) 2003-08-22

Family

ID=27773761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029617A Pending JP2003232825A (en) 2002-02-06 2002-02-06 Detection method of insulation state of non-grounded power source, and insulation detection device using detection method

Country Status (1)

Country Link
JP (1) JP2003232825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240300A (en) * 2006-03-08 2007-09-20 Yazaki Corp Insulation detection method and device
JP2012501436A (en) * 2008-09-01 2012-01-19 エルジー・ケム・リミテッド Battery leakage current sensing device and method, and battery driving device and battery pack including the device
CN111880008A (en) * 2020-08-07 2020-11-03 中国南方电网有限责任公司超高压输电公司梧州局 Comprehensive tester for ground net conduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240300A (en) * 2006-03-08 2007-09-20 Yazaki Corp Insulation detection method and device
JP2012501436A (en) * 2008-09-01 2012-01-19 エルジー・ケム・リミテッド Battery leakage current sensing device and method, and battery driving device and battery pack including the device
JP2014112086A (en) * 2008-09-01 2014-06-19 Lg Chem Ltd Device and method for detecting leak current of battery, and battery drive unit and battery pack including the same
CN111880008A (en) * 2020-08-07 2020-11-03 中国南方电网有限责任公司超高压输电公司梧州局 Comprehensive tester for ground net conduction
CN111880008B (en) * 2020-08-07 2021-12-07 中国南方电网有限责任公司超高压输电公司梧州局 Comprehensive tester for ground net conduction

Similar Documents

Publication Publication Date Title
US7075311B1 (en) Insulation detecting device for non-grounded power source
WO2007023849A1 (en) Voltage monitor and electric power storage using same
CN113795763B (en) Leakage detection device, leakage detection method and electric vehicle
JP6247154B2 (en) Ground fault detection device for vehicles
JP4472820B2 (en) Battery voltage detection device and detection method
JP2001289887A (en) Laminated voltage-measuring apparatus
JPH09274062A (en) Leak detector
JP5515530B2 (en) Lithium secondary battery charging system
US11774499B2 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle
JP7395240B2 (en) Ground fault detection device
JP2004170103A (en) Insulation detector for non-grounded power supply
JP2003232825A (en) Detection method of insulation state of non-grounded power source, and insulation detection device using detection method
JP2004170137A (en) Insulation detecting device for non-grounded power source
JP3985158B2 (en) VOLTAGE DETECTION CIRCUIT AND NONGROUND POWER SUPPLY INSULATION DETECTION DEVICE EQUIPPED WITH THE VOLTAGE DETECTION
JP3890503B2 (en) Insulation detector for ungrounded power supply
CN111077472A (en) Electric leakage judging system
JP3962993B2 (en) Insulation detector for ungrounded power supply
CN113874738B (en) Leakage detection device, leakage detection method, and electric vehicle
JP2004325263A (en) Self-discharge amount detection device of battery
JP2568090Y2 (en) Capacitor capacity diagnostic circuit
JP3962991B2 (en) Insulation detector for ungrounded power supply
JP3481315B2 (en) Diagnosis system for occupant protection equipment
JP5405903B2 (en) Control device for vehicle electrical components
JP3488300B2 (en) Charging device
JP3890504B2 (en) Insulation detector for ungrounded power supply