JPH06153303A - Leak detector - Google Patents
Leak detectorInfo
- Publication number
- JPH06153303A JPH06153303A JP4298620A JP29862092A JPH06153303A JP H06153303 A JPH06153303 A JP H06153303A JP 4298620 A JP4298620 A JP 4298620A JP 29862092 A JP29862092 A JP 29862092A JP H06153303 A JPH06153303 A JP H06153303A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- leakage
- power supply
- detection
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measurement Of Current Or Voltage (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電気自動車、電車、ト
ロリーバス等の直流を動力とする車両に利用されて、そ
の電気系統における漏電を検出するための漏電検出装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric leakage detecting device for use in electric vehicles, electric trains, trolleybuses, and other vehicles driven by direct current to detect electric leakage in the electric system.
【0002】[0002]
【従来の技術】図5は従来のこの種の漏電検出装置の構
成を示している。図5において、1は車両のボデーグラ
ンドから分離されている複数のバッテリー等で構成され
た高圧直流電源、2、3および4はそれぞれ抵抗値
R1 、R2 、RS を有する抵抗であり、5は抵抗4の両
端に生じる検出電圧である。2. Description of the Related Art FIG. 5 shows the structure of a conventional leakage detecting device of this type. In FIG. 5, 1 is a high-voltage DC power supply composed of a plurality of batteries or the like separated from the body ground of the vehicle, 2 and 3 and 4 are resistors having resistance values R 1 , R 2 and R S , respectively, Reference numeral 5 is a detection voltage generated across the resistor 4.
【0003】次に上記従来例の動作について説明する。
一般に、電気自動車等に使用される200Vから300
V程度の高圧直流電源は、人が高圧電源に触れても感電
しないように、車両のボデーグランドから分離されたフ
ローティング状態に保持されているが、絶縁破壊が起き
ている場合には、人が高電圧系に触れると、電流が流れ
るパスができるため感電する。しかしながら、高電圧系
とグランド間に絶縁破壊が発生しても、人が高圧系に触
れない限り高電圧系がグランドと分離されているため、
絶縁破壊を起こした抵抗には電流も電圧も発生せず、漏
電の検出ができないことになる。このため、人が触れな
くても漏電の検出ができるように、高圧直流電源1に対
し抵抗2、3および4で中性点をとる構成が採用されて
いる。Next, the operation of the above conventional example will be described.
Generally, 200V to 300 used for electric vehicles
The high-voltage DC power supply of about V is held in a floating state separated from the body ground of the vehicle so that a person does not get an electric shock even if he / she touches the high-voltage power supply. If you touch a high-voltage system, you will get an electric shock because a path for current flow is created. However, even if a dielectric breakdown occurs between the high-voltage system and the ground, the high-voltage system is separated from the ground unless a person touches the high-voltage system.
No current or voltage is generated in the resistance that has caused the dielectric breakdown, and the leakage cannot be detected. For this reason, a configuration is adopted in which the resistors 2, 3, and 4 have a neutral point with respect to the high-voltage DC power supply 1 so that leakage can be detected without human touch.
【0004】以下、この抵抗中性点にグランドをとるこ
とにより漏電を検出できる理由について説明する。図6
において、6は絶縁破壊抵抗(r)、7は人体抵抗
(Z)である。高圧直流電源1の電圧を+Bボルト、抵
抗2および3の抵抗値R1 、R2を絶縁破壊抵抗6の抵
抗値rに比べ十分大きくとれば、抵抗値Zを有する人体
に流れる漏電電流I1 は、 I1 =+B/(r+Z) ・・・(1) となる。したがって、漏電電流I1 および人体抵抗7の
値Zを設定することにより、絶縁破壊抵抗6の値rを求
めることができる。The reason why the ground leakage can be detected by setting the ground at the resistance neutral point will be described below. Figure 6
In, 6 is a dielectric breakdown resistance (r) and 7 is a human body resistance (Z). If the voltage of the high-voltage DC power supply 1 is + B volt, and the resistance values R 1 and R 2 of the resistors 2 and 3 are sufficiently larger than the resistance value r of the dielectric breakdown resistance 6, the leakage current I 1 flowing through the human body having the resistance value Z 1 Is I 1 = + B / (r + Z) (1) Therefore, by setting the leakage current I 1 and the value Z of the human body resistance 7, the value r of the dielectric breakdown resistance 6 can be obtained.
【0005】次に、人体が高圧系に触れていない時、す
なわち人体抵抗7の値Zが無限大の時の絶縁破壊によっ
て生じる抵抗4の検出電圧5(V1 )の値を求める。絶
縁破壊が起こっていない時の抵抗6の値rは無限大なの
で、検出電圧5には電圧が発生しないが、絶縁破壊が発
生している時は、抵抗2および3の値R1 、R2 を抵抗
4、6の値RS 、rより十分大きく設定すると、抵抗
2、4および6を流れる電流iは、 i=+B/(R1 +RS +r) ・・・(2) となる。したがって、抵抗4に生じる検出電圧5の値V
1 は、 V1 =+B*RS /(R1 +RS +r) ・・・(3) となり、感電電流に対応した検出電圧V1 が求められ
る。Next, when the human body is not in contact with the high voltage system, that is, when the value Z of the human body resistance 7 is infinite, the value of the detection voltage 5 (V 1 ) of the resistance 4 generated by the dielectric breakdown is obtained. Since the value r of the resistor 6 is infinite when no dielectric breakdown occurs, no voltage is generated in the detection voltage 5, but when dielectric breakdown occurs, the values R 1 and R 2 of the resistors 2 and 3 are generated. Is set to be sufficiently larger than the values R S and r of the resistors 4 and 6, the current i flowing through the resistors 2, 4 and 6 is i = + B / (R 1 + R S + r) (2) Therefore, the value V of the detection voltage 5 generated in the resistor 4
1 becomes V 1 = + B * R S / (R 1 + R S + r) (3), and the detection voltage V 1 corresponding to the electric shock current is obtained.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来の漏電検出装置では、フローティングされた高圧直流
電源1の中性点を抵抗2、3および4でとっているた
め、例えば図7に示すように、複数個のバッテリーで構
成された高圧直流電源1の中間で絶縁破壊を生じた場合
には、漏電検出ができない不感帯が発生し、また検出感
度が低くなるという問題があった。すなわち、図7にお
いて、抵抗8は高圧直流電源1の中点で漏電破壊が起こ
ったことを示しており、漏電検出用抵抗4に流れる電流
をi1 およびi2 とすると、もし、抵抗2と抵抗3の値
が等しい(R1 =R2 )とすれば、電流i1 とi2 は大
きさが等しく、方向が逆であるため、検出電圧5
(V1 )は漏電しているにもかかわらず0となる。仮
に、抵抗2と抵抗3の値が異なったとしても、高圧直流
電源1のいずれかの位置で漏電すれば、必ず不感帯を生
じる。また、電流i1 とi2 とは互いに打ち消す方向で
あるため、検出電圧5の値V1 は小さな値となり、感度
が低下して検出しにくくなる。さらに、高圧直流電源1
の電圧+Bが変動した場合には、上記式(3)から分か
るように、電圧+Bによって漏電の検出値が変化するの
で、正確な漏電検出ができないという問題点も有してい
た。However, in the above-mentioned conventional leakage detecting device, since the neutral point of the floating high-voltage DC power supply 1 is taken by the resistors 2, 3 and 4, for example, as shown in FIG. When dielectric breakdown occurs in the middle of the high-voltage DC power supply 1 composed of a plurality of batteries, there is a problem that a dead zone in which the leakage cannot be detected occurs and the detection sensitivity becomes low. That is, in FIG. 7, the resistor 8 indicates that the leakage breakdown has occurred at the midpoint of the high-voltage DC power supply 1, and assuming that the currents flowing in the leakage detection resistor 4 are i 1 and i 2 , the resistor 8 is If the resistors 3 have the same value (R 1 = R 2 ), the currents i 1 and i 2 have the same magnitude and opposite directions, so that the detection voltage 5
(V 1 ) becomes 0 in spite of the leakage. Even if the values of the resistance 2 and the resistance 3 are different from each other, a dead zone is always generated if the electric leakage occurs at any position of the high-voltage DC power supply 1. In addition, since the currents i 1 and i 2 cancel each other out, the value V 1 of the detection voltage 5 becomes a small value, and the sensitivity decreases, making it difficult to detect. Furthermore, high voltage DC power supply 1
When the voltage + B of No. 2 fluctuates, the detected value of the electric leakage changes depending on the voltage + B, as can be seen from the above formula (3), so that there is also a problem that the electric leakage cannot be accurately detected.
【0007】本発明は、このような従来の問題を解決す
るものであり、漏電検出を精度良く行なえるとともに、
漏電部位の推定が可能な漏電検出装置を提供することを
目的とする。The present invention solves the above-mentioned conventional problems, and is capable of detecting leaks with high accuracy, and
An object of the present invention is to provide a leakage detection device capable of estimating a leakage site.
【0008】[0008]
【課題を解決するための手段】本発明は、上記目的を達
成するために、車両に搭載されてその車両のボデーグラ
ンドから分離された高圧直流電源のプラス側およびマイ
ナス側のそれぞれに直列に接続された一組の保護抵抗お
よび漏電検出抵抗と、各漏電検出抵抗の一端をそれぞれ
車両のボデーグランドに選択的に接地するスイッチと、
高圧直流電源の電圧を車両のボデーグランドと分離した
状態で計測する電圧測定器と、各漏電検出抵抗の両端部
における電圧値または電流値から漏電を判定する漏電判
定部とを備えたものである。In order to achieve the above object, the present invention is connected in series to each of the positive side and the negative side of a high voltage DC power source mounted on a vehicle and separated from the body ground of the vehicle. A set of protection resistance and leakage detection resistance, and a switch that selectively grounds one end of each leakage detection resistance to the vehicle body ground,
It is provided with a voltage measuring device for measuring the voltage of the high-voltage DC power supply in a state where it is separated from the body ground of the vehicle, and a leakage determining unit for determining leakage from the voltage value or current value at both ends of each leakage detection resistor. .
【0009】[0009]
【作用】したがって、本発明によれば、高圧直流電源の
プラス側およびマイナス側にそれぞれ接続された漏電検
出抵抗の一端をスイッチによりボデーグランドに選択的
に接地し、その時の各漏電検出抵抗に生じる電圧または
電流をそれぞれ計測することにより、、高圧直流電源の
中間位置で漏電破壊が起こったとしても、漏電検出の不
感帯が生じることがなく、それぞれの測定値から漏電の
検出および漏電部位の推測を行なうことができる。ま
た、高圧直流電源の電圧値を測定して、これを漏電判定
に加えることにより、電源電圧の変動による検出のばら
つきを抑えることができる。Therefore, according to the present invention, one end of each of the leakage detection resistors connected to the plus side and the minus side of the high voltage DC power supply is selectively grounded to the body ground by the switch, and each leakage detection resistor at that time is generated. By measuring the voltage or current respectively, even if the leakage breakdown occurs at the intermediate position of the high voltage DC power supply, the dead zone of the leakage detection does not occur, and it is possible to detect the leakage and estimate the leakage site from each measured value. Can be done. Further, by measuring the voltage value of the high-voltage DC power supply and adding this to the leakage determination, it is possible to suppress variations in detection due to fluctuations in the power supply voltage.
【0010】[0010]
【実施例】図1は本発明の一実施例の構成を示すもので
ある。図1において、11は車両のボデーグランドから
分離された複数のバッテリー等からなる高圧直流電源、
12および15はそれぞれ十分大きい抵抗値Rh1および
Rh2を有する電流制限用の保護抵抗、13および14は
それぞれ抵抗値Rs1およびRs2を有してそれぞれ保護抵
抗12、15に直列に接続された漏電検出用の検出抵
抗、16および17はそれぞれ検出抵抗13および14
の両端検出電圧、18は検出抵抗13および14の一端
を選択的にグランドに接地するための半導体またはリレ
ー等により構成されるスイッチ、19は検出抵抗13ま
たは14の両端検出電圧16または17に基づいて漏電
を判定する漏電判定部、20は漏電検出出力、21およ
び22はそれぞれ高圧直流電源11のプラス端子および
マイナス端子、23は絶縁破壊した時の絶縁抵抗、24
は高圧直流電源11の電圧+Bを検出するための電圧測
定器である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an embodiment of the present invention. In FIG. 1, 11 is a high-voltage DC power supply including a plurality of batteries separated from the vehicle body ground,
12 and 15 are protection resistors for current limiting which have sufficiently large resistance values R h1 and R h2 respectively, and 13 and 14 have resistance values R s1 and R s2 which are respectively connected in series to the protection resistors 12 and 15. Detection resistors for detecting leakage, 16 and 17 are detection resistors 13 and 14, respectively.
Is a switch constituted by a semiconductor or a relay or the like for selectively grounding one end of the detection resistors 13 and 14 to ground, and 19 is based on the detection voltage 16 or 17 of both ends of the detection resistor 13 or 14. 20 is a leakage detection output, 21 and 22 are positive and negative terminals of the high-voltage DC power supply 11, respectively, 23 is an insulation resistance when dielectric breakdown occurs, and 24
Is a voltage measuring device for detecting the voltage + B of the high voltage DC power supply 11.
【0011】次に上記実施例の動作について説明する。
図1において、絶縁破壊が起きて絶縁破壊抵抗23(r
1 )により高圧直流電源11が絶縁破壊を起こしている
時、高圧直流電源11の電圧+Bは、漏電部位の電圧を
Vaとすると、(+B−Va)ボルトとVaボルトに分
けられる。この時、スイッチ18がa側で閉、すなわち
検出抵抗13のみがグランドに接地されているものとす
ると、検出抵抗13に生じる両端検出電圧16(Vs1)
は、次のようになる。 Vs1=Rs1*(+B−Va)/(Rh1+Rs1+r1 ) ・・・(4) この場合、検出抵抗14には電圧、電流は生じない。Next, the operation of the above embodiment will be described.
In FIG. 1, the dielectric breakdown occurs and the dielectric breakdown resistance 23 (r
When the high-voltage DC power supply 11 causes a dielectric breakdown due to 1 ), the voltage + B of the high-voltage DC power supply 11 is divided into (+ B-Va) volt and Va volt, where the voltage at the leakage site is Va. At this time, if the switch 18 is closed on the a side, that is, if only the detection resistor 13 is grounded, the detection voltage 16 (V s1 ) across the detection resistor 13 is generated.
Is as follows: V s1 = R s1 * (+ B−Va) / (R h1 + R s1 + r 1 ) ... (4) In this case, no voltage or current is generated in the detection resistor 14.
【0012】次にスイッチ18がb側で閉、すなわち検
出抵抗14のみがグランドに接地されると、検出抵抗1
4の両端検出電圧17(Vs2)は、次のようになる。 Vs2=−Rs2*Va/(Rh2+Rs2+r1 ) ・・・(5) この式(5)の右辺にマイナス符号をつけたのは、Vs2
を正の値にするためである。この場合、検出抵抗13の
両端には電圧も電流も生じない。絶縁破壊が起きていれ
ば、式(4)または式(5)で示したように、検出抵抗
13または14の両端に電圧が生じるため、漏電を検出
することができる。Next, when the switch 18 is closed on the side b, that is, only the detection resistor 14 is grounded, the detection resistor 1
The detection voltage 17 (V s2 ) at both ends of 4 is as follows. V s2 = −R s2 * Va / (R h2 + R s2 + r 1 ) ... (5) The minus sign on the right side of this equation (5) is V s2.
This is for making a positive value. In this case, neither voltage nor current is generated across the detection resistor 13. If dielectric breakdown occurs, a voltage is generated across the detection resistor 13 or 14 as shown in the equation (4) or the equation (5), so that the leakage can be detected.
【0013】また、高圧直流電源11の電圧+Bが変動
すると、式(4)および式(5)から両端検出電圧Vs1
およびVs2も変動するので、漏電検出部19で正確な漏
電を検出するためには、高圧直流電源11の電圧+Bの
値を知る必要があり、そのために電圧測定器24が必要
となる。またこの電圧測定器24は、高圧系と車両ボデ
ーグランドとを分離した状態で電圧を測定しなければな
らない。When the voltage + B of the high voltage DC power supply 11 fluctuates, the both-end detection voltage V s1 can be calculated from the equations (4) and (5).
Since V s2 and V s2 also fluctuate, it is necessary to know the value of the voltage + B of the high-voltage DC power supply 11 in order for the leakage detection unit 19 to accurately detect the leakage, and therefore the voltage measuring device 24 is required. Further, the voltage measuring device 24 must measure the voltage in a state where the high voltage system and the vehicle body ground are separated.
【0014】図2は電圧測定器24の構成の一例を示
す。これは絶縁増幅器の例であり、31、32、35は
抵抗、33は電圧ー周波数変換器(以下V−F変換器と
称す)、34はフォトカプラ、36は周波数ー電圧変換
器(以下F−V変換器と称す)、37は1次側と2次側
が分離されたDC/DC変換器である。高圧直流電源1
1の電圧+Bは、V−F変換器33により一旦周波数に
変換され、フォトカプラ34でグランドを分離したまま
でF−V変換器36に伝達され、F−V変換器36によ
って電圧に変換される。このようにして、高圧直流電源
1の電圧+Bを、高圧系と車両ボデーグランドとを分離
した状態で測定することができる。FIG. 2 shows an example of the configuration of the voltage measuring device 24. This is an example of an isolation amplifier, 31, 32, and 35 are resistors, 33 is a voltage-frequency converter (hereinafter referred to as VF converter), 34 is a photocoupler, and 36 is a frequency-voltage converter (hereinafter F). A reference numeral 37 is a DC / DC converter in which the primary side and the secondary side are separated. High voltage DC power supply 1
The voltage + B of 1 is once converted into a frequency by the VF converter 33, transmitted to the FV converter 36 with the ground separated by the photocoupler 34, and converted into a voltage by the FV converter 36. It In this way, the voltage + B of the high voltage DC power supply 1 can be measured in a state where the high voltage system and the vehicle body ground are separated.
【0015】図3はカレントトランスファによる別の電
圧測定器24の構成例であり、41は抵抗、42はトロ
イダルコア、43はホール素子、44は増幅器である。
高圧直流電源11から抵抗41を通じて流れる電流は、
トロイダルコア42、ホール素子43で構成されたカレ
ントトランスファによって検出される。この電流値は、
高圧直流電源11の電圧+Bの値と抵抗41によって定
まるので、この電流値を測定することにより、高圧直流
電源11の電圧+Bを求めることができる。FIG. 3 is a structural example of another voltage measuring device 24 using current transfer. 41 is a resistor, 42 is a toroidal core, 43 is a Hall element, and 44 is an amplifier.
The current flowing from the high voltage DC power supply 11 through the resistor 41 is
It is detected by the current transfer composed of the toroidal core 42 and the hall element 43. This current value is
The voltage + B of the high-voltage DC power supply 11 is determined by the value of the resistor 41. Therefore, the voltage + B of the high-voltage DC power supply 11 can be obtained by measuring this current value.
【0016】漏電判定部19は、スイッチ18を切り替
えて、両端検出電圧Vs1とVs2を計測するとともに、電
圧測定器24からの高圧直流電源11の電圧+Bを参照
して漏電のレベルおよび漏電部位を算出し、漏電検出出
力20を出力する。The leakage determination unit 19 switches the switch 18 to measure both-end detection voltages V s1 and V s2 , and refers to the voltage + B of the high-voltage DC power supply 11 from the voltage measuring device 24 to determine the level of leakage and the leakage. The part is calculated and the leakage detection output 20 is output.
【0017】次に、上記実施例における漏電部位の推定
動作について説明する。図1において、保護抵抗12お
よび15は同値(Rh1=Rh2)であり、検出抵抗13お
よび14も同値(Rs1=Rs2)とする。図4は漏電部位
の電圧Vaを0から+Bボルトまで変化させたときの漏
電検出電圧Vs1およびVs2を示している。この図4か
ら、Vs1またはVs2の値により漏電している部位の電圧
Vaが分かるため、この電圧Vaと高圧直流電源11の
バッテリー位置とを対応づけることにより、漏電部位を
推定することができる。さらに、両端検出電圧Vs1とV
s2をそれぞれ計測することにより、一方の検出出力が小
さくとも他方が大きいため、検出感度が高い方を使用す
ることにより、漏電判定を正確に行なうことができる。Next, the operation of estimating the leakage site in the above embodiment will be described. In FIG. 1, the protection resistors 12 and 15 have the same value (R h1 = R h2 ), and the detection resistors 13 and 14 have the same value (R s1 = R s2 ). FIG. 4 shows the leakage detection voltages V s1 and V s2 when the voltage Va at the leakage portion is changed from 0 to + B volt. From FIG. 4, the voltage Va at the site of leakage is known from the value of V s1 or V s2 . Therefore, the leakage site can be estimated by associating this voltage Va with the battery position of the high voltage DC power supply 11. it can. Furthermore, the detection voltage Vs1 and V
By measuring s2 respectively, one detection output is small but the other is large. Therefore, by using the one with higher detection sensitivity, it is possible to accurately determine the leakage.
【0018】このように、上記実施例によれば、漏電判
定部19がスイッチ18を介して一組の検出抵抗13お
よび14を選択的にグランドに接地し、その時のそれぞ
れの両端検出電圧Vs1およびVs2を計測することによ
り、漏電の発生および発生部位を判定することができ
る。また、両端検出電圧Vs1とVs2の値は、図4に示す
ように、一方が小さくとも他方が大きいため、漏電部位
の位置に拘らずに検出感度が高くとれ、漏電を正確に検
出することができる。さらに、両端検出電圧Vs1および
Vs2の2つの値を計測することにより、漏電がどこの部
位で発生しても不感帯がなく、漏電を必ず検出できると
いう利点を有する。さらにまた、電圧測定器24により
高圧直流電源11の電圧+Bを測定することにより、電
圧+Bの変動に影響されずに漏電を正確に検出できると
いう利点を有する。As described above, according to the above-described embodiment, the leakage determining unit 19 selectively grounds the pair of detection resistors 13 and 14 via the switch 18 to the ground, and the respective detection voltage V s1 at both ends at that time. By measuring V s2 and V s2 , it is possible to determine the occurrence and location of the leakage. Further, as shown in FIG. 4, the values of both-end detection voltages V s1 and V s2 are large even if one is small, so that the detection sensitivity is high regardless of the position of the leakage site, and the leakage is accurately detected. be able to. Further, by measuring the two values of the both-end detection voltages V s1 and V s2 , there is an advantage that the dead zone can be detected without any dead zone no matter where the leakage occurs. Furthermore, by measuring the voltage + B of the high-voltage DC power supply 11 by the voltage measuring device 24, there is an advantage that the leakage can be accurately detected without being affected by the fluctuation of the voltage + B.
【0019】なお、上記実施例においては、検出抵抗1
3および14の両端検出電圧16および17を計測する
ことにより漏電を検出しているが、検出抵抗13、14
の両端に流れる電流値を計測することにより漏電を検出
するようにしてもよい。In the above embodiment, the detection resistor 1
Although the leakage current is detected by measuring the detection voltages 16 and 17 at both ends of 3 and 14, the detection resistances 13 and 14 are detected.
Leakage may be detected by measuring the value of the current flowing at both ends of the.
【0020】[0020]
【発明の効果】本発明は、上記実施例から明らかなよう
に、高圧直流電源のプラス側およびマイナス側のそれぞ
れに一組の保護抵抗と漏電検出抵抗とを直列に接続し、
各漏電検出抵抗の一端をスイッチによりボデーグランド
に選択的に接地して、その時の各漏電検出抵抗に生じる
電圧値または電流値をそれぞれ計測して漏電を検出する
ようにしたので、漏電発生部位による漏電検出の不感帯
をなくすことができ、それぞれの測定値から漏電の正確
な検出および漏電部位の推測を行なうことができるとい
う効果を有する。また、高圧直流電源の電圧値を測定す
ることにより、電源電圧の変動による検出のばらつきを
抑えることができ、漏電検出精度をより高めることがで
きるという効果を有する。As is apparent from the above embodiment, the present invention connects a pair of protective resistance and earth leakage detection resistance in series on each of the positive side and the negative side of a high voltage DC power supply,
One end of each leakage detection resistor is selectively grounded to the body ground by a switch, and the voltage value or current value generated in each leakage detection resistor at that time is measured to detect the leakage current. The dead zone of the electric leakage detection can be eliminated, and the electric leakage can be accurately detected and the electric leakage site can be estimated from the respective measured values. Further, by measuring the voltage value of the high-voltage DC power supply, it is possible to suppress variations in detection due to fluctuations in the power supply voltage, and it is possible to further improve the leakage detection accuracy.
【図1】本発明の一実施例における漏電検出装置の構成
を示すブロック回路図FIG. 1 is a block circuit diagram showing the configuration of an earth leakage detection device according to an embodiment of the present invention.
【図2】同装置における電圧測定器の構成を示すブロッ
ク回路図FIG. 2 is a block circuit diagram showing a configuration of a voltage measuring device in the device.
【図3】同装置における電圧測定器の別の構成を示すブ
ロック回路図FIG. 3 is a block circuit diagram showing another configuration of the voltage measuring device in the device.
【図4】同装置における漏電検出電圧と漏電部位の電圧
との関係を示すグラフFIG. 4 is a graph showing the relationship between the leakage detection voltage and the voltage at the leakage site in the device.
【図5】従来の漏電検出装置の構成を示す回路図FIG. 5 is a circuit diagram showing a configuration of a conventional leakage detection device.
【図6】同装置における漏電検出動作を説明するための
回路図FIG. 6 is a circuit diagram for explaining a leakage detection operation in the device.
【図7】同装置における高圧直流電源の中間で絶縁破壊
により漏電しているときの動作を説明するための回路図FIG. 7 is a circuit diagram for explaining the operation of the same apparatus when a high voltage DC power supply is in the middle and a current is leaking due to a dielectric breakdown.
11 高圧直流電源 12、15 電流制限用の保護抵抗 13、14 漏電検出用の検出抵抗 16、17 検出抵抗13、14の両端検出電圧(漏電
検出電圧) 18 スイッチ 19 漏電判定部 20 漏電検出出力 21 高圧直流電源のプラス端子 22 高圧直流電源のマイナス端子 23 漏電抵抗 24 電圧測定器11 High-voltage DC power supply 12, 15 Protection resistor for current limit 13, 14 Detection resistor for leakage detection 16, 17 Detection voltage across both ends of detection resistor 13, 14 (leakage detection voltage) 18 Switch 19 Leakage detection part 20 Leakage detection output 21 High voltage DC power supply positive terminal 22 High voltage DC power supply negative terminal 23 Leakage resistance 24 Voltage measuring instrument
Claims (4)
ンドから分離された高圧直流電源のプラス側およびマイ
ナス側のそれぞれに直列に接続された一組の保護抵抗お
よび漏電検出抵抗と、前記各漏電検出抵抗の一端をそれ
ぞれ前記車両のボデーグランドに選択的に接地するスイ
ッチと、前記高圧直流電源の電圧を前記車両のボデーグ
ランドと分離した状態で計測する電圧測定器と、前記各
漏電検出抵抗の両端部における電圧値または電流値から
漏電を判定する漏電判定部とを備えた漏電検出装置。1. A set of a protection resistor and a leakage detection resistor connected in series to each of a positive side and a negative side of a high-voltage DC power supply mounted on a vehicle and separated from a body ground of the vehicle, and each of the leakage currents. A switch that selectively grounds one end of each of the detection resistors to the body ground of the vehicle, a voltage measuring device that measures the voltage of the high-voltage DC power supply in a state of being separated from the body ground of the vehicle, and each of the leakage detection resistors. An electrical leakage detection device comprising an electrical leakage determination unit that determines electrical leakage from voltage values or current values at both ends.
漏電検出抵抗を選択的に接地させ、前記スイッチが閉と
なった側の漏電検出抵抗の両端電圧または電流の計測値
と、電圧測定器により測定された高圧直流電源の電圧値
とから漏電の有無および漏電部位を検出する請求項1記
載の漏電検出装置。2. A leakage measuring unit switches a switch to selectively ground each leakage detecting resistor, and a measured value of a voltage or a current across the leakage detecting resistor on the side where the switch is closed, and a voltage measuring device. The leakage detection device according to claim 1, wherein the presence or absence of leakage and the leakage site are detected from the voltage value of the high-voltage DC power supply measured by.
換する絶縁増幅器により構成されている請求項1または
2記載の漏電検出装置。3. The leakage detection device according to claim 1, wherein the voltage measuring device is composed of an insulation amplifier that converts the voltage of the high-voltage DC power supply.
荷を流れる電流値をカレントトランスファーによって求
めることにより高圧直流電源の電圧値を測定する請求項
1または2記載の漏電検出装置。4. The earth leakage detection device according to claim 1, wherein the voltage measuring device measures the voltage value of the high-voltage DC power supply by obtaining the value of the current flowing through a load from the high-voltage DC power supply by current transfer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4298620A JP2838462B2 (en) | 1992-11-09 | 1992-11-09 | Earth leakage detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4298620A JP2838462B2 (en) | 1992-11-09 | 1992-11-09 | Earth leakage detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06153303A true JPH06153303A (en) | 1994-05-31 |
JP2838462B2 JP2838462B2 (en) | 1998-12-16 |
Family
ID=17862089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4298620A Expired - Fee Related JP2838462B2 (en) | 1992-11-09 | 1992-11-09 | Earth leakage detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2838462B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396282B1 (en) | 1996-03-26 | 2002-05-28 | Daimlerchrysler Ag | Process for testing the ground contact of parts of a networked system |
WO2002082107A1 (en) * | 2001-03-30 | 2002-10-17 | Sanyo Electric Co., Ltd. | Circuit for detecting leak from power supply |
US6731116B2 (en) | 2001-08-29 | 2004-05-04 | Omron Corporation | Short-circuit detector |
KR100504690B1 (en) * | 1997-10-30 | 2005-09-26 | 마츠시타 덴끼 산교 가부시키가이샤 | Electric leak detecting apparatus for electric motorcars |
JP2006220520A (en) * | 2005-02-10 | 2006-08-24 | Honda Motor Co Ltd | Dielectric resistance measuring device of floating d.c. power supply and its method |
JP2007240300A (en) * | 2006-03-08 | 2007-09-20 | Yazaki Corp | Insulation detection method and device |
JP2007327856A (en) * | 2006-06-08 | 2007-12-20 | Sanyo Electric Co Ltd | Leakage detection circuit for electrically-driven vehicle and leakage detection method for electrically-driven vehicle |
JP2009004373A (en) * | 1997-07-25 | 2009-01-08 | 3M Co | In-situ failure detection apparatus of container housed-type energy storage device |
US7629794B2 (en) | 2006-03-23 | 2009-12-08 | Keihin Corporation | Leakage detection circuit and battery electronic control unit |
KR100958795B1 (en) * | 2008-09-01 | 2010-05-18 | 주식회사 엘지화학 | Apparatus and Method for sensing leakage current of battery, and Battery-driven apparatus and Battery pack including the apparatus |
JP2012068183A (en) * | 2010-09-27 | 2012-04-05 | Hioki Ee Corp | Leakage current measurement apparatus |
EP2508904A1 (en) * | 2009-12-03 | 2012-10-10 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Secondary battery system |
WO2013098876A1 (en) | 2011-12-26 | 2013-07-04 | 川崎重工業株式会社 | Leak detector, and leak detection method for electric vehicle |
WO2013098932A1 (en) * | 2011-12-27 | 2013-07-04 | 株式会社日立製作所 | Battery system, and ground-fault detection device |
WO2013099751A1 (en) * | 2011-12-26 | 2013-07-04 | 三菱重工業株式会社 | Battery system |
JP2013167521A (en) * | 2012-02-15 | 2013-08-29 | Chubu Electrical Safety Services Foundation | Insulation measuring device for photovoltaic power generation apparatus and method for measuring insulation of photovoltaic power generation apparatus |
JP2014505452A (en) * | 2010-10-21 | 2014-02-27 | ルノー エス.ア.エス. | Apparatus and method for estimating contact current and protecting electrical equipment from the contact current |
JP2016090337A (en) * | 2014-10-31 | 2016-05-23 | 株式会社ケーヒン | Leak detection device |
CN107015049A (en) * | 2017-05-03 | 2017-08-04 | 长春捷翼汽车零部件有限公司 | Control and protection device on intelligent high reliability electric automobile cable |
JP2018507409A (en) * | 2015-02-19 | 2018-03-15 | エヌイーシー・エナジー・ソリューションズ・インコーポレイテッドNEC Energy Solutions, Inc. | System and method for detecting a ground fault in an energy storage and / or power generation system using a DC / AC power conversion system |
JP2018152996A (en) * | 2017-03-13 | 2018-09-27 | オムロン株式会社 | Distributed power source |
KR102042831B1 (en) * | 2018-06-27 | 2019-11-08 | 현대오트론 주식회사 | Apparatus and method for measuring isolation resistance using oscillator |
JP2022535244A (en) * | 2020-01-30 | 2022-08-05 | エルジー エナジー ソリューション リミテッド | COMMON MODE VOLTAGE MONITORING DEVICE AND MONITORING METHOD |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4056923B2 (en) | 2003-04-28 | 2008-03-05 | 本田技研工業株式会社 | Ground fault detector |
JP5728161B2 (en) * | 2010-03-26 | 2015-06-03 | 本田技研工業株式会社 | Ground fault detection method and ground fault detection apparatus |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS482785U (en) * | 1971-05-19 | 1973-01-13 | ||
JPS50113469U (en) * | 1974-02-25 | 1975-09-16 | ||
JPS5644859A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Sensing circuit of maximum electric current |
JPS60131019A (en) * | 1983-12-19 | 1985-07-12 | 株式会社明電舎 | Dc ground-fault relay |
JPS61223658A (en) * | 1985-03-29 | 1986-10-04 | Mitsubishi Electric Corp | Detecting circuit for voltage peak value between ac lines |
JPS6440956A (en) * | 1987-08-07 | 1989-02-13 | Canon Kk | Image forming device |
JPH01165973A (en) * | 1987-12-23 | 1989-06-29 | Kawasaki Steel Corp | Measuring device of insulation resistance of direct-current circuit |
JPH0384475A (en) * | 1989-08-28 | 1991-04-10 | Toyo Commun Equip Co Ltd | Measurement of insulation resistance for dc circuit |
JPH03239965A (en) * | 1990-02-17 | 1991-10-25 | Yaskawa Electric Mfg Co Ltd | Current detector |
JPH03267764A (en) * | 1990-03-15 | 1991-11-28 | Nec Corp | Hall element type current detector |
JPH0412616A (en) * | 1990-05-02 | 1992-01-17 | Kandenko Co Ltd | Detecting method for ground fault of dc circuit |
JPH0472835U (en) * | 1990-10-29 | 1992-06-26 |
-
1992
- 1992-11-09 JP JP4298620A patent/JP2838462B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS482785U (en) * | 1971-05-19 | 1973-01-13 | ||
JPS50113469U (en) * | 1974-02-25 | 1975-09-16 | ||
JPS5644859A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Sensing circuit of maximum electric current |
JPS60131019A (en) * | 1983-12-19 | 1985-07-12 | 株式会社明電舎 | Dc ground-fault relay |
JPS61223658A (en) * | 1985-03-29 | 1986-10-04 | Mitsubishi Electric Corp | Detecting circuit for voltage peak value between ac lines |
JPS6440956A (en) * | 1987-08-07 | 1989-02-13 | Canon Kk | Image forming device |
JPH01165973A (en) * | 1987-12-23 | 1989-06-29 | Kawasaki Steel Corp | Measuring device of insulation resistance of direct-current circuit |
JPH0384475A (en) * | 1989-08-28 | 1991-04-10 | Toyo Commun Equip Co Ltd | Measurement of insulation resistance for dc circuit |
JPH03239965A (en) * | 1990-02-17 | 1991-10-25 | Yaskawa Electric Mfg Co Ltd | Current detector |
JPH03267764A (en) * | 1990-03-15 | 1991-11-28 | Nec Corp | Hall element type current detector |
JPH0412616A (en) * | 1990-05-02 | 1992-01-17 | Kandenko Co Ltd | Detecting method for ground fault of dc circuit |
JPH0472835U (en) * | 1990-10-29 | 1992-06-26 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396282B1 (en) | 1996-03-26 | 2002-05-28 | Daimlerchrysler Ag | Process for testing the ground contact of parts of a networked system |
JP2009004373A (en) * | 1997-07-25 | 2009-01-08 | 3M Co | In-situ failure detection apparatus of container housed-type energy storage device |
KR100504690B1 (en) * | 1997-10-30 | 2005-09-26 | 마츠시타 덴끼 산교 가부시키가이샤 | Electric leak detecting apparatus for electric motorcars |
WO2002082107A1 (en) * | 2001-03-30 | 2002-10-17 | Sanyo Electric Co., Ltd. | Circuit for detecting leak from power supply |
US6833708B2 (en) | 2001-03-30 | 2004-12-21 | Sanyo Electric Co., Ltd. | Leak detecting circuit for power source device |
US6731116B2 (en) | 2001-08-29 | 2004-05-04 | Omron Corporation | Short-circuit detector |
JP2006220520A (en) * | 2005-02-10 | 2006-08-24 | Honda Motor Co Ltd | Dielectric resistance measuring device of floating d.c. power supply and its method |
JP2007240300A (en) * | 2006-03-08 | 2007-09-20 | Yazaki Corp | Insulation detection method and device |
US7629794B2 (en) | 2006-03-23 | 2009-12-08 | Keihin Corporation | Leakage detection circuit and battery electronic control unit |
JP2007327856A (en) * | 2006-06-08 | 2007-12-20 | Sanyo Electric Co Ltd | Leakage detection circuit for electrically-driven vehicle and leakage detection method for electrically-driven vehicle |
KR100958795B1 (en) * | 2008-09-01 | 2010-05-18 | 주식회사 엘지화학 | Apparatus and Method for sensing leakage current of battery, and Battery-driven apparatus and Battery pack including the apparatus |
CN102171578A (en) * | 2008-09-01 | 2011-08-31 | 株式会社Lg化学 | Apparatus and method for sensing a current leakage of a battery, and battery driving apparatus and battery pack including the apparatus |
EP2508904A4 (en) * | 2009-12-03 | 2014-08-20 | Toshiba Mitsubishi Elec Inc | Secondary battery system |
EP2508904A1 (en) * | 2009-12-03 | 2012-10-10 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Secondary battery system |
JP2012068183A (en) * | 2010-09-27 | 2012-04-05 | Hioki Ee Corp | Leakage current measurement apparatus |
JP2014505452A (en) * | 2010-10-21 | 2014-02-27 | ルノー エス.ア.エス. | Apparatus and method for estimating contact current and protecting electrical equipment from the contact current |
JP2013134120A (en) * | 2011-12-26 | 2013-07-08 | Mitsubishi Heavy Ind Ltd | Battery system |
WO2013099751A1 (en) * | 2011-12-26 | 2013-07-04 | 三菱重工業株式会社 | Battery system |
US9529033B2 (en) | 2011-12-26 | 2016-12-27 | Kawasaki Jukogyo Kabushiki Kaisha | Ground leakage detector, and method of detecting ground leakage in electric vehicle |
WO2013098876A1 (en) | 2011-12-26 | 2013-07-04 | 川崎重工業株式会社 | Leak detector, and leak detection method for electric vehicle |
WO2013098932A1 (en) * | 2011-12-27 | 2013-07-04 | 株式会社日立製作所 | Battery system, and ground-fault detection device |
CN103282786A (en) * | 2011-12-27 | 2013-09-04 | 株式会社日立制作所 | Battery system, and ground-fault detection device |
JP2013167521A (en) * | 2012-02-15 | 2013-08-29 | Chubu Electrical Safety Services Foundation | Insulation measuring device for photovoltaic power generation apparatus and method for measuring insulation of photovoltaic power generation apparatus |
JP2016090337A (en) * | 2014-10-31 | 2016-05-23 | 株式会社ケーヒン | Leak detection device |
JP2018507409A (en) * | 2015-02-19 | 2018-03-15 | エヌイーシー・エナジー・ソリューションズ・インコーポレイテッドNEC Energy Solutions, Inc. | System and method for detecting a ground fault in an energy storage and / or power generation system using a DC / AC power conversion system |
JP2018152996A (en) * | 2017-03-13 | 2018-09-27 | オムロン株式会社 | Distributed power source |
CN107015049A (en) * | 2017-05-03 | 2017-08-04 | 长春捷翼汽车零部件有限公司 | Control and protection device on intelligent high reliability electric automobile cable |
CN107015049B (en) * | 2017-05-03 | 2018-07-27 | 长春捷翼汽车零部件有限公司 | Control and protection device on intelligent high reliability electric vehicle cable |
KR102042831B1 (en) * | 2018-06-27 | 2019-11-08 | 현대오트론 주식회사 | Apparatus and method for measuring isolation resistance using oscillator |
JP2022535244A (en) * | 2020-01-30 | 2022-08-05 | エルジー エナジー ソリューション リミテッド | COMMON MODE VOLTAGE MONITORING DEVICE AND MONITORING METHOD |
US12032005B2 (en) | 2020-01-30 | 2024-07-09 | Lg Energy Solution, Ltd. | Device and method for monitoring common mode voltage |
Also Published As
Publication number | Publication date |
---|---|
JP2838462B2 (en) | 1998-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2838462B2 (en) | Earth leakage detection device | |
US6731116B2 (en) | Short-circuit detector | |
JP3107944B2 (en) | Earth leakage detection device | |
US6833708B2 (en) | Leak detecting circuit for power source device | |
JP4326415B2 (en) | Power supply for vehicle | |
JP4293942B2 (en) | Electric vehicle leakage detection circuit and electric vehicle leakage detection method | |
KR20080022486A (en) | Assembled battery total voltage detection and leak detection apparatus | |
JPH04361168A (en) | Electromagnetic induction type conductivity meter | |
CA2295342A1 (en) | Fault-detection for powerlines | |
JP3480019B2 (en) | Leakage determination method and device | |
JP3041150B2 (en) | Earth leakage detection device | |
JPH06153301A (en) | Leak detector | |
CN107110904B (en) | Grounding detection device for vehicle | |
CN114252712A (en) | Battery pack insulation detection circuit and method and vehicle | |
JP2002536669A (en) | Measurement method for capacity measurement system | |
US11959951B2 (en) | Method for estimating the insulation resistance of a high-voltage circuit in an electric or hybrid motor vehicle | |
JPH0384475A (en) | Measurement of insulation resistance for dc circuit | |
WO2013130048A1 (en) | Method and system for determining dc bus leakage | |
JP3206945B2 (en) | Ground fault detection method and apparatus for electric circuit | |
JPH0262831B2 (en) | ||
SU1737363A1 (en) | Method of testing the electric networks insulation resistance | |
JPH03180784A (en) | Calculator for residual capacity of battery | |
JPS596137Y2 (en) | Insulation monitoring device for rotating machine windings | |
JPS61132881A (en) | Insulating state diagnosing method of transformer | |
JPH0379934B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081016 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |