JP2006220520A - Dielectric resistance measuring device of floating d.c. power supply and its method - Google Patents

Dielectric resistance measuring device of floating d.c. power supply and its method Download PDF

Info

Publication number
JP2006220520A
JP2006220520A JP2005033744A JP2005033744A JP2006220520A JP 2006220520 A JP2006220520 A JP 2006220520A JP 2005033744 A JP2005033744 A JP 2005033744A JP 2005033744 A JP2005033744 A JP 2005033744A JP 2006220520 A JP2006220520 A JP 2006220520A
Authority
JP
Japan
Prior art keywords
resistance value
voltage
resistance
terminal
ground potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033744A
Other languages
Japanese (ja)
Inventor
Giichi Nomoto
宜一 野本
Toshiaki Ariyoshi
敏明 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005033744A priority Critical patent/JP2006220520A/en
Publication of JP2006220520A publication Critical patent/JP2006220520A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply compose a small measuring device for measuring dielectric resistance of a floating high-voltage D.C. power supply at a low cost. <P>SOLUTION: Resistance value changeover circuits 62 and 162 capable of changing over a high resistance value (Rpa+Rpb=Rp1) to a low resistance value (Rpa=Rp2) and vice versa are connected between a positive terminal 41 of the floating high-voltage D.C. power supply 40 and a ground potential 43 through a protective resistor 51 (resistance value R1). Voltages Vp (Vp1 and Vp2) generated between both ends of the resistance value changeover circuits 62 and 162 before and after the resistance value changeover are measured by voltage measuring instruments 64 and 164; and dielectric resistance Rg is calculated by a controller 66 by using an equation of Rg=[(Vp2-Vp1)/ä(Vp1/Rp1)-(Vp2/Rp2)}]-R1. The need of measuring a voltage between positive and negative terminals of the high-voltage D.C. power supply 40 by a voltage measuring instrument having a special structure with input and output insulated from each other like a conventional technique is obviated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、正端子及び負端子が接地電位から絶縁された直流電源、いわゆる非接地直流電源の絶縁抵抗測定装置及びその方法に関し、たとえば電気自動車、電車、トロリーバス等の非接地直流電源を動力とする電気車両等に適用して好適な非接地直流電源の絶縁抵抗測定装置及びその方法に関する。   The present invention relates to a DC power source in which a positive terminal and a negative terminal are insulated from a ground potential, a so-called non-grounded DC power source insulation resistance measuring apparatus and method, and a power source for a non-grounded DC power source such as an electric vehicle, a train, and a trolley bus. The present invention relates to an insulation resistance measuring device for a non-grounded DC power source suitable for application to an electric vehicle and the like and a method therefor.

従来から、電気車両に搭載されている高圧バッテリ等の直流電源は、直流電源の正負端子を接地電位から電気的に絶縁した(浮かしたあるいはフローティングとした)、いわゆる非接地直流電源として使用に供されている。   Conventionally, a DC power source such as a high voltage battery mounted on an electric vehicle is used as a so-called non-grounded DC power source in which the positive and negative terminals of the DC power source are electrically insulated from a ground potential (floating or floating). Has been.

この非接地直流電源の漏電等による地絡を検出するために、電気車両には、絶縁抵抗測定装置が配置されている(特許文献1)。   In order to detect a ground fault due to leakage or the like of this ungrounded DC power supply, an insulation resistance measuring device is arranged in the electric vehicle (Patent Document 1).

図6は、この特許文献1に記載された絶縁抵抗測定装置2の回路図を示している。この絶縁抵抗測定装置2は、接地電位から絶縁された高圧直流電源4の正端子6及び負端子8のそれぞれに直列に接続された一組の保護抵抗器10、14と漏電検出抵抗器12、16と、各漏電検出抵抗器12、16の一端を接地電位に選択的に接続する切替スイッチ18と、高圧直流電源4の正負端子間の電圧を接地と絶縁した状態で測定する電圧測定器20と、各漏電検出抵抗器12、16の一端を切替スイッチ18を通じて接地電位としたときの電圧を測定する電圧計22、24と、漏電判定部26とを備えている。   FIG. 6 shows a circuit diagram of the insulation resistance measuring apparatus 2 described in Patent Document 1. The insulation resistance measuring device 2 includes a pair of protective resistors 10 and 14 and a leakage detection resistor 12 connected in series to the positive terminal 6 and the negative terminal 8 of the high-voltage DC power source 4 insulated from the ground potential. 16, a changeover switch 18 that selectively connects one end of each leakage detection resistor 12, 16 to the ground potential, and a voltage measuring device 20 that measures the voltage between the positive and negative terminals of the high-voltage DC power supply 4 while being insulated from the ground. And voltmeters 22 and 24 for measuring a voltage when one end of each of the leakage detection resistors 12 and 16 is set to the ground potential through the changeover switch 18, and a leakage determination unit 26.

そして、漏電判定部26は、電圧測定器20及び電圧計22、24による測定電圧と各漏電検出抵抗器12、16の抵抗値、及び保護抵抗器10、14の抵抗値に基づいて、正端子側あるいは負端子側の絶縁抵抗27、28を測定することができると記載されている。   And the leakage determination part 26 is positive terminal based on the measured voltage by the voltage measuring device 20 and the voltmeters 22 and 24, the resistance value of each leakage detection resistor 12 and 16, and the resistance value of the protection resistors 10 and 14. It is described that the insulation resistances 27 and 28 on the side or the negative terminal side can be measured.

特開平6−153303号公報(図1)JP-A-6-153303 (FIG. 1)

しかしながら、上記従来技術に係る絶縁抵抗測定装置2においては、高圧直流電源4の正負端子間の電圧を接地と絶縁した状態で測定する電圧測定器20が必須の構成として含まれている。   However, in the insulation resistance measuring apparatus 2 according to the above-described prior art, the voltage measuring instrument 20 that measures the voltage between the positive and negative terminals of the high-voltage DC power supply 4 while being insulated from the ground is included as an essential configuration.

ここで、電圧測定器20は、入力側がフローティングであり出力側が接地電位基準となることから入力側と出力側とを絶縁する必要があり、絶縁素子としてフォトカプラやホール素子が使用されかつ増幅器等の能動素子が必須となることから回路構成が複雑になるという問題がある。さらに、電圧測定器20の入力端子側は高圧直流電源4の正負端子間に直接接続されることから所定の沿面距離が必要になったり高圧部品が必要になることから、大型になってしまうという問題もある。そして、このような事情から、入力側と出力側とを絶縁する必要のある電圧測定器は、その分、高価になるという問題もある。   Here, since the voltage measuring instrument 20 is floating on the input side and the output side is the ground potential reference, it is necessary to insulate the input side from the output side. A photocoupler or a Hall element is used as an insulating element, and an amplifier or the like is used. Therefore, there is a problem in that the circuit configuration becomes complicated. Furthermore, since the input terminal side of the voltage measuring device 20 is directly connected between the positive and negative terminals of the high-voltage DC power supply 4, a predetermined creepage distance is required or high-voltage parts are required, resulting in an increase in size. There is also a problem. From such a situation, there is a problem that the voltage measuring device that needs to insulate the input side from the output side is more expensive.

この発明はこのような課題を考慮してなされたものであり、簡単な回路構成で、小型で廉価な非接地直流電源の絶縁抵抗を測定することを可能とする非接地直流電源の絶縁抵抗測定装置を提供することを目的とする。   The present invention has been made in consideration of such problems, and it is possible to measure the insulation resistance of a non-grounded DC power supply that can measure the insulation resistance of a small and inexpensive non-grounded DC power supply with a simple circuit configuration. An object is to provide an apparatus.

また、この発明は、非接地直流電源の絶縁抵抗を簡易に測定することを可能とする非接地直流電源の絶縁抵抗測定方法を提供することを目的とする。   Another object of the present invention is to provide a method for measuring the insulation resistance of a non-grounded DC power supply that makes it possible to easily measure the insulation resistance of the non-grounded DC power supply.

この発明に係る非接地直流電源の絶縁抵抗測定装置では、正端子及び負端子が接地電位から絶縁された直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に接続される抵抗値切替回路と、抵抗値切替前後に前記抵抗値切替回路に発生する電圧を測定する電圧測定器と、絶縁抵抗算出器とを備える。前記絶縁抵抗算出器は、前記抵抗値切替回路の切替前後の抵抗値と、切替前後の測定電圧に基づき、前記少なくとも一方の端子の他方の端子と前記接地電位間の絶縁抵抗を算出することができる。   In the insulation resistance measuring apparatus for a non-grounded DC power source according to the present invention, between the positive terminal and the negative terminal of the DC power source in which the positive terminal and the negative terminal are insulated from the ground potential, between at least one terminal and the ground potential. A resistance value switching circuit connected to the voltage sensor, a voltage measuring device for measuring a voltage generated in the resistance value switching circuit before and after the resistance value switching, and an insulation resistance calculator. The insulation resistance calculator calculates an insulation resistance between the other terminal of the at least one terminal and the ground potential based on a resistance value before and after switching of the resistance value switching circuit and a measured voltage before and after switching. it can.

なお、前記直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に保護抵抗器と直列に抵抗値切替回路を接続する構成とすることができる。この場合には、前記絶縁抵抗算出器での絶縁抵抗の算出の際に前記保護抵抗器の抵抗値をも考慮すればよい。   Note that a resistance value switching circuit may be connected in series with a protective resistor between at least one of the positive terminal and the negative terminal of the DC power supply and the ground potential. In this case, the resistance value of the protective resistor may be taken into account when calculating the insulation resistance by the insulation resistance calculator.

また、この発明に係る非接地直流電源の絶縁抵抗測定方法では、正端子及び負端子が接地電位から絶縁された直流電源の絶縁抵抗を測定する方法において、前記直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に抵抗値切替回路を接続する接続工程と、前記抵抗値切替回路に発生する抵抗値切替前後の電圧を測定する測定工程と、絶縁抵抗の算出工程とを備える。絶縁抵抗の算出工程では、前記抵抗値切替回路の切替前後の抵抗値と、切替前後の測定電圧に基づき、前記少なくとも一方の端子の他方の端子と前記接地電位間の絶縁抵抗を算出することができる。   Further, in the method for measuring the insulation resistance of a non-grounded DC power supply according to the present invention, in the method for measuring the insulation resistance of a DC power supply in which the positive terminal and the negative terminal are insulated from the ground potential, the positive terminal and the negative terminal of the DC power supply are measured. A connection step of connecting a resistance value switching circuit between at least one of the terminals and the ground potential, a measurement step of measuring a voltage before and after the resistance value switching generated in the resistance value switching circuit, and an insulation resistance A calculation step. In the calculation step of the insulation resistance, the insulation resistance between the other terminal of the at least one terminal and the ground potential may be calculated based on the resistance value before and after the switching of the resistance value switching circuit and the measured voltage before and after the switching. it can.

この場合にも、前記接続工程で、前記直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に保護抵抗器に直列に前記抵抗値切替回路を接続したとき、前記絶縁抵抗を算出する工程においては、前記保護抵抗器の抵抗値をも考慮すればよい。   Also in this case, when the resistance value switching circuit is connected in series with a protective resistor between at least one of the positive terminal and the negative terminal of the DC power source and the ground potential in the connection step. In the step of calculating the insulation resistance, the resistance value of the protective resistor may be taken into consideration.

この発明によれば、絶縁抵抗を算出する際に、抵抗値切替回路の切替前後の電圧値を測定するようにしたので、直流電源の正負端子間の電圧を測定する必要がなくなり、その結果、従来技術で説明したような直流電源の正負端子間の電圧を接地と絶縁した状態で測定する電圧測定器が不要となる。   According to the present invention, when calculating the insulation resistance, the voltage value before and after switching of the resistance value switching circuit is measured, so it is not necessary to measure the voltage between the positive and negative terminals of the DC power supply, and as a result, A voltage measuring instrument that measures the voltage between the positive and negative terminals of the DC power supply as described in the prior art while being insulated from the ground is not required.

抵抗値切替回路は、従来技術に係る電圧測定器に比較して、受動素子のみから構成することが可能であることから、回路構成が簡単で、廉価でかつ小型化が可能である。   Since the resistance value switching circuit can be composed of only passive elements as compared with the voltage measuring device according to the prior art, the circuit configuration is simple, inexpensive, and miniaturized.

結果として、非接地直流電源の絶縁抵抗測定装置自体を簡単、廉価、かつ小型に構成することができる。   As a result, the insulation resistance measuring device itself of the non-grounded DC power supply can be configured simply, inexpensively and compactly.

以下、この発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の一実施形態が適用された電気車両30の概略構成図を示している。   FIG. 1 shows a schematic configuration diagram of an electric vehicle 30 to which an embodiment of the present invention is applied.

電気車両30は、基本的に、正端子41及び負端子42が接地電位43から絶縁された数百ボルト程度の高圧直流電源40と、高圧直流電源40の正端子41と接地電位43間の絶縁抵抗(抵抗値)Rg及び(又は)負端子42と接地電位43間の絶縁抵抗(抵抗値)Rg´を測定する絶縁抵抗測定装置32と、高圧直流電源40を動力源としてモータ駆動回路36を通じて駆動されるモータ34とから構成される。   The electric vehicle 30 basically has a high-voltage DC power supply 40 of about several hundred volts in which the positive terminal 41 and the negative terminal 42 are insulated from the ground potential 43, and the insulation between the positive terminal 41 of the high-voltage DC power supply 40 and the ground potential 43. An insulation resistance measuring device 32 that measures resistance (resistance value) Rg and / or an insulation resistance (resistance value) Rg ′ between the negative terminal 42 and the ground potential 43, and a high-voltage DC power supply 40 as a power source through a motor drive circuit 36. And a motor 34 to be driven.

絶縁抵抗測定装置32は、高圧直流電源40の正端子41と接地電位43との間に直列に接続される保護抵抗器(抵抗値R1)51と抵抗値切替回路62と、高抵抗値と低抵抗値に切換可能な抵抗値切替回路62の抵抗値切替前後の電圧Vp(切替前の電圧をVp1、切替後の電圧をVp2とする。)を測定する電圧測定器64と、保護抵抗器51の抵抗値R1と抵抗値切替前後の抵抗値(Rpa+Rpb、Rpa)と抵抗値切替前後の電圧Vp(Vp1、Vp2)とに基づき絶縁抵抗Rg(Rg´)を算出する制御器(絶縁抵抗算出器)66とを備える。   The insulation resistance measuring device 32 includes a protective resistor (resistance value R1) 51, a resistance value switching circuit 62, a high resistance value and a low resistance connected in series between the positive terminal 41 of the high-voltage DC power supply 40 and the ground potential 43. A voltage measuring device 64 that measures a voltage Vp before and after the resistance value switching of the resistance value switching circuit 62 that can be switched to a resistance value (a voltage before switching is Vp1, and a voltage after switching is Vp2), and a protective resistor 51 A controller (insulation resistance calculator) that calculates an insulation resistance Rg (Rg ′) based on the resistance value R1, the resistance values before and after the resistance value switching (Rpa + Rpb, Rpa), and the voltages Vp (Vp1, Vp2) before and after the resistance value switching. 66).

抵抗値切替回路62は、直列接続される抵抗器(抵抗値Rpa)67と抵抗器(抵抗値Rpb)68と抵抗器68を短絡するスイッチK2とから構成されている。   The resistance value switching circuit 62 includes a resistor (resistance value Rpa) 67, a resistor (resistance value Rpb) 68, and a switch K2 that short-circuits the resistor 68.

この抵抗値切替回路62は、スイッチK1の共通接点側と接地電位43との間に接続されている。スイッチK1の固定接点側は、保護抵抗器51を介して高圧直流電源40の正端子41に接続されている。   The resistance value switching circuit 62 is connected between the common contact side of the switch K 1 and the ground potential 43. The fixed contact side of the switch K1 is connected to the positive terminal 41 of the high-voltage DC power supply 40 via the protective resistor 51.

抵抗値切替回路62の抵抗値Rpは、スイッチK2がクローズとされたときに、抵抗値Rp=Rpaとなり、オープンとされたときに抵抗値Rp=Rpa+Rpbとされる。スイッチK1及びK2のクローズとオープン(開閉)は、制御器66によりスイッチK1、K2の切替制御端子の電位が切り替えられことで行われる。   The resistance value Rp of the resistance value switching circuit 62 is the resistance value Rp = Rpa when the switch K2 is closed, and the resistance value Rp = Rpa + Rpb when the switch K2 is opened. The switches K1 and K2 are closed and opened (open / close) by the controller 66 switching the potentials of the switching control terminals of the switches K1 and K2.

ここで、制御器66は、CPU、EEPROM(あるいはフラッシュROM)等のROM、RAM、及びA/D変換器等の入出力インタフェースを有し、ROMに格納された後述するデータ及びプログラムに基づき絶縁抵抗値Rg(Rg´)を算出し、算出結果に基づく状態信号(地絡しているかどうかの状態を表す信号)Stをモータ駆動回路36に送信する。この場合、この算出結果に基づく警告情報をメータパネル上への表示、ナビゲーションディスプレイ上への表示、あるいはスピーカからの音声により電気車両30の運転者に知らせ、注意を促す。   Here, the controller 66 has an input / output interface such as a CPU, an EEPROM (or flash ROM) such as a ROM, a RAM, and an A / D converter, and is insulated based on data and programs described later stored in the ROM. The resistance value Rg (Rg ′) is calculated, and a state signal (a signal indicating whether or not there is a ground fault) St based on the calculation result is transmitted to the motor drive circuit 36. In this case, the warning information based on the calculation result is displayed on the meter panel, displayed on the navigation display, or the sound from the speaker is notified to the driver of the electric vehicle 30 to call attention.

なお、制御器66内に電圧測定器64、164を一体的に組み込むことも可能である。   Note that the voltage measuring devices 64 and 164 may be integrated into the controller 66.

モータ駆動回路36は、ECUであり、状態信号Stに基づき、モータ34の駆動、非駆動の継続を決定する。   The motor drive circuit 36 is an ECU, and determines whether to drive or not drive the motor 34 based on the state signal St.

この実施形態において、高圧直流電源40の正端子41と接地電位43との間に接続されている保護抵抗器51と抵抗値切替回路62を含む回路により、高圧直流電源40の負端子42と接地電位43との間の絶縁抵抗Rgを測定することが可能である。その一方、高圧直流電源40の負端子42と接地電位43との間に接続されている保護抵抗器151と抵抗値切替回路162を含む回路により、高圧直流電源40の正端子41と接地電位43との間の絶縁抵抗Rg´を測定することが可能である。   In this embodiment, the circuit including the protective resistor 51 and the resistance value switching circuit 62 connected between the positive terminal 41 of the high-voltage DC power supply 40 and the ground potential 43 is connected to the negative terminal 42 of the high-voltage DC power supply 40 and the ground. It is possible to measure the insulation resistance Rg between the potential 43. On the other hand, the positive terminal 41 and the ground potential 43 of the high-voltage DC power supply 40 are provided by a circuit including the protective resistor 151 and the resistance value switching circuit 162 connected between the negative terminal 42 of the high-voltage DC power supply 40 and the ground potential 43. It is possible to measure the insulation resistance Rg ′ between the two.

ただ、同一回路構成とされているので、以下、主に、絶縁抵抗Rgを測定する際の作用について説明する。   However, since they have the same circuit configuration, the operation when measuring the insulation resistance Rg will be mainly described below.

なお、ここで、絶縁抵抗Rg´を測定する構成について簡単な説明をしておく。高圧直流電源40の負端子42と接地電位43との間に、保護抵抗器151とスイッチK11と抵抗値切替回路162とが直列に接続され、抵抗値切替回路162を構成する直列抵抗器167、168中、抵抗器168を短絡又は開放するスイッチK12の切替制御端子と、保護抵抗器151と抵抗値切替回路162と高圧直流電源40の負端子42とを直列に接続するスイッチK11の切替制御端子が制御器66に接続されるとともに、抵抗値切替回路162の抵抗値切替前後の電圧Vp´を測定する電圧測定器164の出力端子が制御器66に接続された構成とされている。   Here, a simple description will be given of a configuration for measuring the insulation resistance Rg ′. A protective resistor 151, a switch K11, and a resistance value switching circuit 162 are connected in series between the negative terminal 42 of the high-voltage DC power supply 40 and the ground potential 43, and a series resistor 167 constituting the resistance value switching circuit 162, 168, the switching control terminal of the switch K12 that short-circuits or opens the resistor 168, the switching control terminal of the switch K11 that connects the protective resistor 151, the resistance value switching circuit 162, and the negative terminal 42 of the high-voltage DC power supply 40 in series. Is connected to the controller 66, and the output terminal of the voltage measuring device 164 that measures the voltage Vp ′ before and after the resistance value switching of the resistance value switching circuit 162 is connected to the controller 66.

なお、上述した抵抗値切替回路62、162は、少なくとも2つの異なる抵抗値に切り替えることが可能な回路であればよいので2本の抵抗器の直列回路に限らないことはいうまでもない。   Needless to say, the resistance value switching circuits 62 and 162 described above are not limited to a series circuit of two resistors, as long as they can be switched to at least two different resistance values.

また、絶縁抵抗Rg、Rg´を算出するために、制御器66のROMには、予め保護抵抗器51の抵抗値R1、抵抗器67の抵抗値Rpa、抵抗器68の抵抗値Rpb及び保護抵抗器151の抵抗値、抵抗器167の抵抗値、抵抗器68の抵抗値が格納されている。   In addition, in order to calculate the insulation resistances Rg and Rg ′, the ROM of the controller 66 stores in advance the resistance value R1 of the protection resistor 51, the resistance value Rpa of the resistor 67, the resistance value Rpb of the resistor 68, and the protection resistance. The resistance value of the resistor 151, the resistance value of the resistor 167, and the resistance value of the resistor 68 are stored.

次に絶縁抵抗の測定方法の一例について、図2のフローチャートを参照して説明する。なお、図2のフローチャートは、非接地の高圧直流電源40の負端子42と接地電位43間の絶縁抵抗Rgの測定方法の内容であるが、正端子41と接地電位43間の絶縁抵抗Rg´について当業者はこの図3のフローチャートを参照して容易に測定することができる。   Next, an example of a method for measuring insulation resistance will be described with reference to the flowchart of FIG. 2 is a content of the method of measuring the insulation resistance Rg between the negative terminal 42 of the ungrounded high-voltage DC power supply 40 and the ground potential 43, but the insulation resistance Rg ′ between the positive terminal 41 and the ground potential 43. Those skilled in the art can easily make a measurement with reference to the flowchart of FIG.

まず、ステップS1の絶縁抵抗測定装置32の接続工程について説明すると、正端子41及び負端子42が接地電位43から絶縁された高圧直流電源40の正端子41及び負端子42中、少なくとも一方の端子、例えば正端子41と接地電位43との間に保護抵抗器51、スイッチK1を介して抵抗値切替回路62を接続する。また、抵抗値切替回路62の両端子間に電圧測定器64を接続し、スイッチK1、K2の切替制御端子と電圧測定器64の出力端子とを制御器66に接続する。   First, the connection process of the insulation resistance measuring device 32 in step S1 will be described. At least one of the positive terminal 41 and the negative terminal 42 of the high-voltage DC power source 40 in which the positive terminal 41 and the negative terminal 42 are insulated from the ground potential 43. For example, a resistance value switching circuit 62 is connected between the positive terminal 41 and the ground potential 43 via the protective resistor 51 and the switch K1. The voltage measuring device 64 is connected between both terminals of the resistance value switching circuit 62, and the switching control terminals of the switches K 1 and K 2 and the output terminal of the voltage measuring device 64 are connected to the controller 66.

次に、ステップS2の初期設定では、スイッチK1及びスイッチK2を制御器66によりオープンにしておく。なお、スイッチK2は、クローズにしておいてもよい。クローズ状態とした場合には、後述するステップS3a、S3bの工程とステップS3c、S3dの工程とを入れ替えればよい。   Next, in the initial setting in step S2, the switches K1 and K2 are opened by the controller 66. Note that the switch K2 may be closed. When the closed state is set, steps S3a and S3b described later may be interchanged with steps S3c and S3d.

次いで、ステップS3(S3a〜S3d)の測定工程では、抵抗値切替回路62に発生する抵抗値切替前後の電圧Vpを測定する。   Next, in the measurement process of step S3 (S3a to S3d), the voltage Vp before and after the resistance value switching generated in the resistance value switching circuit 62 is measured.

この場合、まず、ステップS3aにおいて、スイッチK1をクローズ、スイッチK2をオープンにする。   In this case, first, in step S3a, the switch K1 is closed and the switch K2 is opened.

次いで、ステップS3bにおいて、抵抗器67と抵抗器68の直列抵抗に発生する電圧降下を電圧Vp=Vp1として電圧測定器64により測定し制御器66に供給する。制御器66は、この電圧Vp1をRAMに記憶しておく。   Next, in step S3b, the voltage drop generated in the series resistance of the resistor 67 and the resistor 68 is measured by the voltage measuring device 64 as the voltage Vp = Vp1, and supplied to the controller 66. The controller 66 stores this voltage Vp1 in the RAM.

次に、ステップS3cにおいて、スイッチK1、K2をともにクローズにする。   Next, in step S3c, both the switches K1 and K2 are closed.

この場合、抵抗器68は短絡とされているので、ステップS3dにおいて、抵抗器67に発生する電圧降下をVp=Vp2として電圧測定器64により測定し制御器66に供給する。制御器66は、この電圧Vp2をRAMに記憶しておく。   In this case, since the resistor 68 is short-circuited, the voltage drop generated in the resistor 67 is measured by the voltage measuring device 64 as Vp = Vp2 and supplied to the controller 66 in step S3d. The controller 66 stores this voltage Vp2 in the RAM.

次いで、ステップS4において、スイッチK1、K2をオープンにする。   Next, in step S4, the switches K1 and K2 are opened.

次いで、ステップS5において、ステップS3の測定結果に基づき、制御器66により絶縁抵抗Rgを算出する。   Next, in step S5, the controller 66 calculates the insulation resistance Rg based on the measurement result in step S3.

この絶縁抵抗Rgの算出の仕方について、以下に説明する。   A method of calculating the insulation resistance Rg will be described below.

図3は、ステップS3aにおけるスイッチK1がクローズ、スイッチK2がオープンであるときの測定回路の構成を示している。このとき、ループ電流をip1として、キルヒホッフの法則を適用すると次の(1)式が得られる。   FIG. 3 shows the configuration of the measurement circuit when the switch K1 is closed and the switch K2 is open in step S3a. At this time, when Kirchhoff's law is applied with the loop current set to ip1, the following equation (1) is obtained.

Vbatt−R1・ip1−Vp1−Rg・Ip1=0 …(1)   Vbatt-R1.ip1-Vp1-Rg.Ip1 = 0 (1)

図4は、ステップS3cにおけるスイッチK1がクローズ、スイッチK2がオープンであるときの測定回路の構成を示している。このとき、ループ電流をip2として、キルヒホッフの法則を適用すると次の(2)式が得られる。   FIG. 4 shows the configuration of the measurement circuit when the switch K1 is closed and the switch K2 is open in step S3c. At this time, when Kirchhoff's law is applied with the loop current set to ip2, the following equation (2) is obtained.

Vbatt−R1・ip2−Vp2−Rg・ip2=0 …(2)   Vbatt-R1.ip2-Vp2-Rg.ip2 = 0 (2)

また、オームの法則により、ip1とip2は、それぞれ、次の(3)式及び(4)式で表される。   Further, according to Ohm's law, ip1 and ip2 are expressed by the following equations (3) and (4), respectively.

ip1=Vp1/(Rpa+Rpb) …(3)   ip1 = Vp1 / (Rpa + Rpb) (3)

ip2=Vp2/Rpa …(4)   ip2 = Vp2 / Rpa (4)

上記(1)〜(4)式よりVbattを消去し、絶縁抵抗Rgを求めると次の(5)式が得られる。   When Vbatt is eliminated from the above equations (1) to (4) and the insulation resistance Rg is obtained, the following equation (5) is obtained.

Rg={(Vp2−Vp1)/(ip1−ip2)}−R1
=[(Vp2-Vp1)/[[Vp1/(Rpa+Rpb)]-(Vp2/Rpa)]]-R1 …(5)
Rg = {(Vp2-Vp1) / (ip1-ip2)}-R1
= [(Vp2-Vp1) / [[Vp1 / (Rpa + Rpb)]-(Vp2 / Rpa)]]-R1 (5)

ここで、分かり易くするために、Rpa+Rpb=Rp1、Rpa=Rp2と置けば、(5)式は、次の(6)式で表される。   Here, for the sake of easy understanding, if Rpa + Rpb = Rp1 and Rpa = Rp2 are set, equation (5) is expressed by the following equation (6).

Rg=[(Vp2−Vp1)/{(Vp1/Rp1)−(Vp2/Rp2)}]
−R1 …(6)
Rg = [(Vp2-Vp1) / {(Vp1 / Rp1)-(Vp2 / Rp2)}]
-R1 (6)

ここで、抵抗値Rp1=Rpa+Rpbと、抵抗値Rp2=Rpaは、既知であるので、電圧VP2と、電圧Vp1とを測定することにより、高圧直流電源40の負端子42と接地電位43間の絶縁抵抗Rgを算出(測定)することができる。   Here, since the resistance value Rp1 = Rpa + Rpb and the resistance value Rp2 = Rpa are known, the insulation between the negative terminal 42 of the high-voltage DC power supply 40 and the ground potential 43 is obtained by measuring the voltage VP2 and the voltage Vp1. The resistance Rg can be calculated (measured).

高圧直流電源40の正端子41と接地電位43間の接地抵抗Rg´も、抵抗値切替回路162を利用して同様に測定することができる。   The ground resistance Rg ′ between the positive terminal 41 of the high-voltage DC power supply 40 and the ground potential 43 can be similarly measured using the resistance value switching circuit 162.

なお、図5に示すように、保護抵抗器51、151を省略した絶縁抵抗測定装置32Aを搭載する電気車両30Aの構成とすることもできる。   In addition, as shown in FIG. 5, it can also be set as the structure of 30 A of electric vehicles carrying the insulation resistance measuring apparatus 32A which abbreviate | omitted the protective resistors 51 and 151. FIG.

この場合、絶縁抵抗Rgは、上記(6)式においてR1=0と置いた、次の(7)式により求めることができる。   In this case, the insulation resistance Rg can be obtained by the following equation (7) in which R1 = 0 in the above equation (6).

Rg=[(Vp2−Vp1)/{(Vp1/Rp1)−(Vp2/Rp2)}]
…(7)
Rg = [(Vp2-Vp1) / {(Vp1 / Rp1)-(Vp2 / Rp2)}]
... (7)

この後、制御器66において、求めた絶縁抵抗Rg及び絶縁抵抗Rg´と閾値が比較され、絶縁抵抗Rg、Rg´が閾値を上回る値であれば、モータ駆動回路36に対して絶縁抵抗Rg、Rg´が正常であることを示す状態信号を送り、絶縁抵抗Rg、Rg´が閾値を下回る値であれば、モータ駆動回路36に対して絶縁抵抗Rg、Rg´が異常であり、地絡していることを示す状態信号Stを送る。   Thereafter, the controller 66 compares the obtained insulation resistance Rg and the insulation resistance Rg ′ with the threshold value, and if the insulation resistances Rg and Rg ′ exceed the threshold value, the insulation resistance Rg, If a state signal indicating that Rg ′ is normal is sent and the insulation resistances Rg and Rg ′ are below the threshold values, the insulation resistances Rg and Rg ′ are abnormal with respect to the motor drive circuit 36, and a ground fault occurs. A status signal St indicating that the

モータ駆動回路36は、状態信号Stが正常状態を示す信号である場合には、モータ34の駆動を継続し、異常状態を示す信号である場合には、モータ34の駆動を停止する。   The motor drive circuit 36 continues to drive the motor 34 when the state signal St is a signal indicating a normal state, and stops driving the motor 34 when the signal is an signal indicating an abnormal state.

なお、求めた絶縁抵抗Rgを(1)〜(4)式に代入して高圧直流電源40の現在の端子電圧Vbattを求めることもできる。   Note that the current terminal voltage Vbatt of the high-voltage DC power supply 40 can be obtained by substituting the obtained insulation resistance Rg into the equations (1) to (4).

以上説明したように上述した実施形態によれば、接地電位43から絶縁された高圧直流電源40の正端子41及び負端子42と接地電位43との間に保護抵抗器51、151を介してあるいは直接に、抵抗値を高抵抗値(Rp1=Rpa+Rpb)と低抵抗値(Rp2=Rpa)に切り替えることが可能な抵抗値切替回路62、162を接続するようにしている。   As described above, according to the above-described embodiment, the protective terminals 51 and 151 are connected between the positive terminal 41 and the negative terminal 42 of the high-voltage DC power source 40 insulated from the ground potential 43 and the ground potential 43, or The resistance value switching circuits 62 and 162 that can switch the resistance value between a high resistance value (Rp1 = Rpa + Rpb) and a low resistance value (Rp2 = Rpa) are directly connected.

そして、電圧測定器64、164により抵抗値切替前後に抵抗値切替回路62、162の両端に発生する電圧Vp(Vp1、Vp2)、Vp´(Vp1´、Vp2´)を測定し、絶縁抵抗算出器としての制御器66により、上記(6)式もしくは(7)式により絶縁抵抗Rg、Rg´を算出するようにしている。   The voltages Vp (Vp1, Vp2) and Vp ′ (Vp1 ′, Vp2 ′) generated at both ends of the resistance value switching circuits 62, 162 before and after the resistance value switching are measured by the voltage measuring devices 64, 164, and the insulation resistance is calculated. Insulation resistances Rg and Rg ′ are calculated by the above-described equation (6) or (7) by a controller 66 as a device.

この実施形態によれば、従来技術のように、高圧直流電源40の正負端子間の電圧を、入出力が絶縁された特殊構造の電圧測定器で測定することなく絶縁抵抗Rg、Rg´を測定することができる。   According to this embodiment, as in the prior art, the insulation resistances Rg and Rg ′ are measured without measuring the voltage between the positive and negative terminals of the high-voltage DC power supply 40 with a voltage measuring device having a special structure in which the input and output are insulated. can do.

抵抗値切替回路62は、そのような特殊構造の電圧測定器に比較して、抵抗器67、167、68、168とスイッチK2、K12の受動素子のみから構成することができるので、回路構成が簡単で、廉価でかつ小型化ができる。結果として、非接地高圧直流電源40の絶縁抵抗測定装置32、32A自体を簡単、廉価、かつ小型に構成することができる。   Since the resistance value switching circuit 62 can be composed of only resistors 67, 167, 68, 168 and passive elements of the switches K2, K12 as compared with the voltage measuring device having such a special structure, the circuit configuration is It is simple, inexpensive and can be downsized. As a result, the insulation resistance measuring devices 32 and 32A themselves of the ungrounded high-voltage DC power supply 40 can be configured simply, inexpensively, and compactly.

この発明の一実施形態に係る絶縁抵抗測定装置が適用された電気車両の構成図である。1 is a configuration diagram of an electric vehicle to which an insulation resistance measuring device according to an embodiment of the present invention is applied. 絶縁抵抗測定装置の動作説明に供されるフローチャートである。It is a flowchart with which operation | movement description of an insulation resistance measuring apparatus is provided. 抵抗値切替回路が比較的に高抵抗状態にあるときの回路模式図である。It is a circuit schematic diagram when a resistance value switching circuit is in a relatively high resistance state. 抵抗値切替回路が比較的に低抵抗状体にあるときの回路模式図である。It is a circuit schematic diagram when a resistance value switching circuit is in a relatively low resistance body. この発明の他の実施形態に係る絶縁抵抗測定装置が適用された電気車両の構成図である。It is a block diagram of the electric vehicle to which the insulation resistance measuring apparatus which concerns on other embodiment of this invention was applied. 従来技術に係る絶縁抵抗測定装置の構成図である。It is a block diagram of the insulation resistance measuring apparatus which concerns on a prior art.

符号の説明Explanation of symbols

30、30A…電気車両 32、32A…絶縁抵抗測定装置
34…モータ 36…モータ駆動回路
40…高圧直流電源 41…正端子
42…負端子 43…接地電位
51、151…保護抵抗器 62、162…抵抗値切替回路
64、164…電圧測定器 66…制御器(絶縁抵抗算出器)
67、68、167、168…抵抗器
30, 30A ... Electric vehicle 32, 32A ... Insulation resistance measuring device 34 ... Motor 36 ... Motor drive circuit 40 ... High voltage DC power supply 41 ... Positive terminal 42 ... Negative terminal 43 ... Ground potential 51, 151 ... Protection resistor 62, 162 ... Resistance value switching circuit 64, 164 ... Voltage measuring device 66 ... Controller (insulation resistance calculator)
67, 68, 167, 168 ... resistors

Claims (4)

正端子及び負端子が接地電位から絶縁された直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に接続される抵抗値切替回路と、
前記抵抗値切替回路に発生する抵抗値切替前後の電圧を測定する電圧測定器と、
前記抵抗値切替回路の切替前後の抵抗値と、切替前後の測定電圧に基づき、前記少なくとも一方の端子の他方の端子と前記接地電位との間の絶縁抵抗を算出する絶縁抵抗算出器と
を備えることを特徴とする非接地直流電源の絶縁抵抗測定装置。
A resistance value switching circuit connected between at least one of the positive terminal and the negative terminal of the DC power source in which the positive terminal and the negative terminal are insulated from the ground potential, and the ground potential;
A voltage measuring device for measuring a voltage before and after the resistance value switching generated in the resistance value switching circuit;
An insulation resistance calculator that calculates an insulation resistance between the other terminal of the at least one terminal and the ground potential based on a resistance value before and after switching of the resistance value switching circuit and a measured voltage before and after switching. An insulation resistance measuring device for a non-grounded DC power supply.
正端子及び負端子が接地電位から絶縁された直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に保護抵抗器を介して接続される抵抗値切替回路と、
前記抵抗値切替回路に発生する抵抗値切替前後の電圧を測定する電圧測定器と、
前記保護抵抗器の抵抗値と、前記抵抗値切替回路の切替前後の抵抗値と、切替前後の測定電圧とに基づき、前記少なくとも一方の端子の他方の端子と前記接地電位との間の絶縁抵抗を算出する絶縁抵抗算出器と
を備えることを特徴とする非接地直流電源の絶縁抵抗測定装置。
A resistance value switching circuit connected via a protective resistor between at least one of the positive terminal and the negative terminal of the DC power source, the positive terminal and the negative terminal of which are insulated from the ground potential, and the ground potential; ,
A voltage measuring device for measuring a voltage before and after the resistance value switching generated in the resistance value switching circuit;
Insulation resistance between the other terminal of the at least one terminal and the ground potential based on the resistance value of the protective resistor, the resistance value before and after switching of the resistance value switching circuit, and the measured voltage before and after switching An insulation resistance measuring device for an ungrounded DC power supply, comprising: an insulation resistance calculator for calculating
正端子及び負端子が接地電位から絶縁された直流電源の絶縁抵抗を測定する方法において、
前記直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に抵抗値切替回路を接続する接続工程と、
前記抵抗値切替回路に発生する抵抗値切替前後の電圧を測定する測定工程と、
前記抵抗値切替回路の切替前後の抵抗値と、切替前後の測定電圧に基づき、前記少なくとも一方の端子の他方の端子と前記接地電位間の絶縁抵抗を算出する算出工程と
を備えることを特徴とする非接地直流電源の絶縁抵抗測定方法。
In the method of measuring the insulation resistance of a DC power source in which the positive terminal and the negative terminal are insulated from the ground potential,
A connecting step of connecting a resistance value switching circuit between at least one of the positive terminal and the negative terminal of the DC power source and the ground potential;
A measurement step of measuring a voltage before and after resistance value switching generated in the resistance value switching circuit;
A calculation step of calculating an insulation resistance between the other terminal of the at least one terminal and the ground potential based on a resistance value before and after switching of the resistance value switching circuit and a measured voltage before and after switching. Measurement method for insulation resistance of ungrounded DC power supplies.
正端子及び負端子が接地電位から絶縁された直流電源の絶縁抵抗を測定する方法において、
前記直流電源の前記正端子及び前記負端子中、少なくとも一方の端子と前記接地電位との間に保護抵抗器を介して抵抗値切替回路を接続する接続工程と、
前記抵抗値切替回路に発生する抵抗値切替前後の電圧を測定する測定工程と、
前記保護抵抗器の抵抗値と、前記抵抗値切替回路の切替前後の抵抗値と、切替前後の測定電圧に基づき、前記少なくとも一方の端子の他方の端子と前記接地電位間の絶縁抵抗を算出する工程と
を備えることを特徴とする非接地直流電源の絶縁抵抗測定方法。
In the method of measuring the insulation resistance of a DC power source in which the positive terminal and the negative terminal are insulated from the ground potential,
A connection step of connecting a resistance value switching circuit via a protective resistor between at least one of the positive terminal and the negative terminal of the DC power source and the ground potential;
A measurement step of measuring a voltage before and after resistance value switching generated in the resistance value switching circuit;
Based on the resistance value of the protective resistor, the resistance value before and after switching of the resistance value switching circuit, and the measured voltage before and after switching, the insulation resistance between the other terminal of the at least one terminal and the ground potential is calculated. A method for measuring an insulation resistance of a non-grounded DC power supply comprising the steps of:
JP2005033744A 2005-02-10 2005-02-10 Dielectric resistance measuring device of floating d.c. power supply and its method Pending JP2006220520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033744A JP2006220520A (en) 2005-02-10 2005-02-10 Dielectric resistance measuring device of floating d.c. power supply and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033744A JP2006220520A (en) 2005-02-10 2005-02-10 Dielectric resistance measuring device of floating d.c. power supply and its method

Publications (1)

Publication Number Publication Date
JP2006220520A true JP2006220520A (en) 2006-08-24

Family

ID=36982946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033744A Pending JP2006220520A (en) 2005-02-10 2005-02-10 Dielectric resistance measuring device of floating d.c. power supply and its method

Country Status (1)

Country Link
JP (1) JP2006220520A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281986A (en) * 2008-05-26 2009-12-03 Yazaki Corp Insulation measurement apparatus
JP2010019603A (en) * 2008-07-08 2010-01-28 Hitachi Ltd Power supply
WO2010110589A3 (en) * 2009-03-23 2011-01-20 에스케이에너지 주식회사 Insulation resistance measuring circuit free from influence of battery voltage
JP2011252827A (en) * 2010-06-03 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Resistance value calculation device
JP2012068023A (en) * 2010-09-21 2012-04-05 Hioki Ee Corp Ground resistance meter
CN102621385A (en) * 2011-01-26 2012-08-01 致茂电子股份有限公司 Circuit stability compensation method
CN103105537A (en) * 2012-12-26 2013-05-15 深圳创动科技有限公司 Battery panel ground insulation impedance detection circuit and method
WO2014054270A1 (en) * 2012-10-05 2014-04-10 三洋電機株式会社 Leak processing device and cell power source device
EP2801837A1 (en) * 2012-03-26 2014-11-12 LG Chem, Ltd. Device and method for measuring insulation resistance of battery
US9404974B2 (en) 2014-01-08 2016-08-02 Fanuc Corporation Motor drive device including insulation deterioration detection function and insulation resistance detection method of motor
CN105911352A (en) * 2016-04-13 2016-08-31 北京新能源汽车股份有限公司 Tester for measuring insulation resistance of power battery
JP2016527508A (en) * 2013-08-07 2016-09-08 エルジー・ケム・リミテッド System and method for determining insulation resistance of battery pack
RU2609726C1 (en) * 2015-08-26 2017-02-02 Закрытое акционерное общество "РАДИУС АВТОМАТИКА" Method of determination of insulation resistance for direct current network with insulated neutral
JP2017075930A (en) * 2015-10-13 2017-04-20 富士電機株式会社 Method and device for measuring insulation resistance of dc power feeding circuit
JP2019056626A (en) * 2017-09-21 2019-04-11 矢崎総業株式会社 Ground fault detector
JP2020501126A (en) * 2017-06-27 2020-01-16 エルジー・ケム・リミテッド Insulation resistance calculation system and method
WO2020141768A1 (en) * 2019-01-03 2020-07-09 주식회사 엘지화학 Insulation resistance measuring device and method
CN111722014A (en) * 2020-06-29 2020-09-29 蜂巢能源科技有限公司 Insulation detection method, insulation detection device, insulation detection medium, and electronic device
JP2022531527A (en) * 2019-11-18 2022-07-07 エルジー エナジー ソリューション リミテッド Insulation resistance measuring device and battery system to which the device is applied
EP4089422A1 (en) * 2021-05-12 2022-11-16 Schneider Electric Industries SAS Device and method for estimating the insulation impedance of a tt or tn network
WO2023228718A1 (en) * 2022-05-24 2023-11-30 パナソニックIpマネジメント株式会社 Insulation resistance detection circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165973A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Measuring device of insulation resistance of direct-current circuit
JPH06153303A (en) * 1992-11-09 1994-05-31 Matsushita Electric Ind Co Ltd Leak detector
JPH09152453A (en) * 1995-11-29 1997-06-10 Nippon Telegr & Teleph Corp <Ntt> Resistance test circuit
JP2002139528A (en) * 2000-11-01 2002-05-17 Nf Corp Impedance measuring device
JP2004325382A (en) * 2003-04-28 2004-11-18 Honda Motor Co Ltd Grounding detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165973A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Measuring device of insulation resistance of direct-current circuit
JPH06153303A (en) * 1992-11-09 1994-05-31 Matsushita Electric Ind Co Ltd Leak detector
JPH09152453A (en) * 1995-11-29 1997-06-10 Nippon Telegr & Teleph Corp <Ntt> Resistance test circuit
JP2002139528A (en) * 2000-11-01 2002-05-17 Nf Corp Impedance measuring device
JP2004325382A (en) * 2003-04-28 2004-11-18 Honda Motor Co Ltd Grounding detection device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281986A (en) * 2008-05-26 2009-12-03 Yazaki Corp Insulation measurement apparatus
JP2010019603A (en) * 2008-07-08 2010-01-28 Hitachi Ltd Power supply
CN102362185B (en) * 2009-03-23 2014-06-25 Sk新技术 Insulation resistance measuring circuit free from influence of battery voltage
WO2010110589A3 (en) * 2009-03-23 2011-01-20 에스케이에너지 주식회사 Insulation resistance measuring circuit free from influence of battery voltage
CN102362185A (en) * 2009-03-23 2012-02-22 Sk新技术 Insulation resistance measuring circuit free from influence of battery voltage
JP2012521561A (en) * 2009-03-23 2012-09-13 エスケー イノベーション カンパニー リミテッド Insulation resistance measurement circuit not affected by battery voltage
US8779784B2 (en) 2009-03-23 2014-07-15 Sk Innovation Co., Ltd. Insulation resistance measuring circuit free from influence of battery voltage
JP2011252827A (en) * 2010-06-03 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Resistance value calculation device
JP2012068023A (en) * 2010-09-21 2012-04-05 Hioki Ee Corp Ground resistance meter
CN102621385A (en) * 2011-01-26 2012-08-01 致茂电子股份有限公司 Circuit stability compensation method
CN102621385B (en) * 2011-01-26 2014-07-30 致茂电子股份有限公司 Circuit stability compensation method
EP2801837A4 (en) * 2012-03-26 2015-04-29 Lg Chemical Ltd Device and method for measuring insulation resistance of battery
EP2801837A1 (en) * 2012-03-26 2014-11-12 LG Chem, Ltd. Device and method for measuring insulation resistance of battery
US9541608B2 (en) 2012-03-26 2017-01-10 Lg Chem, Ltd. Apparatus and method for measuring insulation resistance of battery
JP2014074687A (en) * 2012-10-05 2014-04-24 Panasonic Corp Leak processing device and battery power supply unit
WO2014054270A1 (en) * 2012-10-05 2014-04-10 三洋電機株式会社 Leak processing device and cell power source device
CN103105537B (en) * 2012-12-26 2015-08-12 深圳创动科技有限公司 Battery panel ground insulation impedance detection circuit and method
CN103105537A (en) * 2012-12-26 2013-05-15 深圳创动科技有限公司 Battery panel ground insulation impedance detection circuit and method
JP2016527508A (en) * 2013-08-07 2016-09-08 エルジー・ケム・リミテッド System and method for determining insulation resistance of battery pack
US9404974B2 (en) 2014-01-08 2016-08-02 Fanuc Corporation Motor drive device including insulation deterioration detection function and insulation resistance detection method of motor
RU2609726C1 (en) * 2015-08-26 2017-02-02 Закрытое акционерное общество "РАДИУС АВТОМАТИКА" Method of determination of insulation resistance for direct current network with insulated neutral
JP2017075930A (en) * 2015-10-13 2017-04-20 富士電機株式会社 Method and device for measuring insulation resistance of dc power feeding circuit
CN105911352A (en) * 2016-04-13 2016-08-31 北京新能源汽车股份有限公司 Tester for measuring insulation resistance of power battery
JP2020501126A (en) * 2017-06-27 2020-01-16 エルジー・ケム・リミテッド Insulation resistance calculation system and method
JP2019056626A (en) * 2017-09-21 2019-04-11 矢崎総業株式会社 Ground fault detector
JP7173642B2 (en) 2019-01-03 2022-11-16 エルジー エナジー ソリューション リミテッド Insulation resistance measuring device and method
CN113692539A (en) * 2019-01-03 2021-11-23 株式会社Lg新能源 Insulation resistance measuring device and method
US20220003823A1 (en) * 2019-01-03 2022-01-06 Lg Energy Solution, Ltd. Insulation Resistance Measurement Apparatus and Method Thereof
JP2022517496A (en) * 2019-01-03 2022-03-09 エルジー エナジー ソリューション リミテッド Insulation resistance measuring device and method
WO2020141768A1 (en) * 2019-01-03 2020-07-09 주식회사 엘지화학 Insulation resistance measuring device and method
US11906591B2 (en) * 2019-01-03 2024-02-20 Lg Energy Solution, Ltd. Insulation resistance measurement apparatus and method thereof
JP2022531527A (en) * 2019-11-18 2022-07-07 エルジー エナジー ソリューション リミテッド Insulation resistance measuring device and battery system to which the device is applied
JP7264578B2 (en) 2019-11-18 2023-04-25 エルジー エナジー ソリューション リミテッド Insulation resistance measuring device and battery system to which the device is applied
US11841389B2 (en) 2019-11-18 2023-12-12 Lg Energy Solution, Ltd. Apparatus for estimating insulation resistance and battery system using the same
CN111722014A (en) * 2020-06-29 2020-09-29 蜂巢能源科技有限公司 Insulation detection method, insulation detection device, insulation detection medium, and electronic device
EP4089422A1 (en) * 2021-05-12 2022-11-16 Schneider Electric Industries SAS Device and method for estimating the insulation impedance of a tt or tn network
WO2023228718A1 (en) * 2022-05-24 2023-11-30 パナソニックIpマネジメント株式会社 Insulation resistance detection circuit

Similar Documents

Publication Publication Date Title
JP2006220520A (en) Dielectric resistance measuring device of floating d.c. power supply and its method
JP4705495B2 (en) Leakage detection circuit and battery electronic control device
US8884638B2 (en) Circuit arrangement for monitoring an electrical insulation
US8766653B2 (en) Measuring device for measuring insulation resistance of an electric vehicle
US8760168B2 (en) Assembled battery total voltage detection circuit
JP4241787B2 (en) Total battery voltage detection and leak detection device
JP5560474B2 (en) Dielectric breakdown detection circuit
US8552733B2 (en) Electrical leak detecting apparatus for an electric vehicle
US7573275B2 (en) Temperature sensor control apparatus
JP2009042080A (en) Voltage detecting device
JP2007198995A (en) Ground fault resistance measurement circuit and ground fault detection circuit
JP2003066090A (en) Leak detector
JP2007327856A (en) Leakage detection circuit for electrically-driven vehicle and leakage detection method for electrically-driven vehicle
US10663510B2 (en) Insulation detecting method for electric machine
WO2015182030A1 (en) Vehicle ground fault detection device
JP2007068249A (en) Leak detector for electric car
KR102061281B1 (en) Online insulation resistance measurement device and method in vehicle type inverter
KR20140051812A (en) Driver circuit for an electric vehicle and a diagnostic method
JP2007132684A (en) Insulation resistance measurement device
KR101063771B1 (en) Leakage detection device for electric vehicles
CN114252712A (en) Battery pack insulation detection circuit and method and vehicle
JP2019052963A (en) Abnormality detector
CN113567743A (en) Detection system and method for electric vehicle power converter
US20060022527A1 (en) Protective device in a controller
JP4788868B2 (en) Earthester and ground resistance measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A02 Decision of refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110225