JP7014565B2 - Secondary battery monitoring device and failure diagnosis method - Google Patents

Secondary battery monitoring device and failure diagnosis method Download PDF

Info

Publication number
JP7014565B2
JP7014565B2 JP2017216008A JP2017216008A JP7014565B2 JP 7014565 B2 JP7014565 B2 JP 7014565B2 JP 2017216008 A JP2017216008 A JP 2017216008A JP 2017216008 A JP2017216008 A JP 2017216008A JP 7014565 B2 JP7014565 B2 JP 7014565B2
Authority
JP
Japan
Prior art keywords
current
voltage
secondary battery
circuit
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017216008A
Other languages
Japanese (ja)
Other versions
JP2018099020A (en
Inventor
康弘 宮本
直央 大塚
敦史 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Priority to KR1020170172621A priority Critical patent/KR102431408B1/en
Priority to US15/842,268 priority patent/US10288694B2/en
Priority to CN201711349460.5A priority patent/CN108226794B/en
Priority to EP17207553.3A priority patent/EP3336565B1/en
Publication of JP2018099020A publication Critical patent/JP2018099020A/en
Application granted granted Critical
Publication of JP7014565B2 publication Critical patent/JP7014565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、二次電池監視装置及び故障診断方法に関する。 The present invention relates to a secondary battery monitoring device and a failure diagnosis method.

従来の複数直列接続された二次電池の異常を検出する二次電池監視装置は、二次電池監視装置の故障を検出する機能を備えている。 The conventional secondary battery monitoring device for detecting an abnormality in a plurality of secondary batteries connected in series has a function of detecting a failure in the secondary battery monitoring device.

二次電池監視装置は、各二次電池毎に設けられた異常検出回路と、各異常検出回路の異常判定電圧を変更する判定電圧変更回路を備えている。そして、二次電池監視装置は、判定電圧変更回路が異常検出回路の異常判定電圧を変更して、二次電池の電圧を検出することで異常検出回路の故障を検出する(例えば、特許文献1参照)。 The secondary battery monitoring device includes an abnormality detection circuit provided for each secondary battery and a determination voltage change circuit for changing the abnormality determination voltage of each abnormality detection circuit. Then, the secondary battery monitoring device detects the failure of the abnormality detection circuit by the determination voltage changing circuit changing the abnormality determination voltage of the abnormality detection circuit and detecting the voltage of the secondary battery (for example, Patent Document 1). reference).

特開2004-127663号公報Japanese Unexamined Patent Publication No. 2004-127663

しかしながら、従来の二次電池監視装置は、基準電圧回路の出力する基準電圧の値がずれる故障の場合、過充電検出においては判定電圧が上がる故障と、過放電検出においては判定電圧が下がる故障の検出が困難であった。また、分圧抵抗の抵抗比においても、異常の発生のしかたによっては、その検出が難しかった。即ち、従来の二次電池監視装置は、故障箇所や故障モードによっては、故障の検出が難しいという課題があった。 However, in the conventional secondary battery monitoring device, in the case of a failure in which the value of the reference voltage output by the reference voltage circuit deviates, a failure in which the judgment voltage rises in overcharge detection and a failure in which the judgment voltage drops in overdischarge detection. It was difficult to detect. In addition, it was difficult to detect the resistivity ratio of the voltage dividing resistance depending on how the abnormality occurred. That is, the conventional secondary battery monitoring device has a problem that it is difficult to detect a failure depending on the failure location and the failure mode.

本発明は、上記課題に鑑みてなされたものであり、故障箇所や故障モードに係らず故障を検出することが可能な二次電池監視装置及び故障診断方法を提供することを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a secondary battery monitoring device and a failure diagnosis method capable of detecting a failure regardless of a failure location or a failure mode.

本発明の二次電池監視装置は、二次電池の両端が接続され、出力端子から検出電圧を出力する抵抗回路と、検出電圧に基づいて二次電池の異常を検出する検出回路と、二次電池の両端が接続され二次電池の電圧を電流に変換する電圧電流変換回路と、電圧電流変換回路の電流を電圧に変換する電流電圧変換回路と、電流電圧変換回路の電圧に基づいて二次電池の電圧に比例した第一の電流を生成する第一の電流生成回路と、抵抗回路の出力端子を故障診断用の電圧とするための電圧に比例した第二の電流を生成する第二の電流生成回路と、第一の電流と第二の電流に応じた故障検出電流を流すカレントミラー回路と、抵抗回路の出力端子に故障検出電流を流すスイッチと、を備えたことを特徴とする。
また、本発明の二次電池監視装置の故障診断方法は、第一の二次電池の両端が接続され出力端子から第一の検出電圧を出力する第一の抵抗回路と、第一の検出電圧に基づいて第一の二次電池の異常を検出する第一の検出回路と、第一の二次電池の両端が接続され第一の二次電池の電圧を電流に変換する第一の電圧電流変換回路と、第一の二次電池と直列に接続された第二の二次電池の両端が接続され出力端子から第二の検出電圧を出力する第二の抵抗回路と、第二の検出電圧に基づいて第二の二次電池の異常を検出する第二のの検出回路と、第二の二次電池の両端が接続され第二の二次電池の電圧を電流に変換する第二の電圧電流変換回路と、入力端子が第一のスイッチを介して第一の電圧電流変換回路と第二のスイッチを介して第二の電圧電流変換回路と接続され第一または第二の電圧電流変換回路の電流を電圧に変換する電流電圧変換回路と、電流電圧変換回路の電圧に基づいて二次電池の電圧に比例した第一の電流を生成する第一の電流生成回路と、第一または第二の抵抗回路の出力端子を故障診断用の電圧とするための電圧に比例した第二の電流を生成する第二の電流生成回路と、第一の電流と第二の電流に応じた故障検出電流を流すカレントミラー回路と、第一の抵抗回路の出力端子に故障検出電流を流す第三のスイッチと、第二の抵抗回路の出力端子に故障検出電流を流す第四のスイッチと、を備えた二次電池の異常を検出する二次電池監視装置の故障診断方法であって、第二の二次電池の両端が接続される端子に外部電源から電圧を印加し、第一のスイッチをオフ、第二のスイッチをオン、第三のスイッチをオン、第四のスイッチをオフして、第一の検出回路の検出結果によって二次電池監視装置の故障を診断することを特徴とする。
The secondary battery monitoring device of the present invention has a resistance circuit in which both ends of the secondary battery are connected and outputs a detection voltage from an output terminal, a detection circuit that detects an abnormality in the secondary battery based on the detection voltage, and a secondary. A voltage-current conversion circuit that connects both ends of the battery and converts the voltage of the secondary battery into current, a current-voltage conversion circuit that converts the current of the voltage-current conversion circuit into voltage, and a secondary based on the voltage of the current-voltage conversion circuit. A first current generation circuit that generates a first current proportional to the voltage of the battery, and a second current generation circuit that generates a second current proportional to the voltage for making the output terminal of the resistance circuit a voltage for failure diagnosis. It is characterized by including a current generation circuit, a current mirror circuit that flows a failure detection current according to the first current and the second current, and a switch that flows a failure detection current to the output terminal of the resistance circuit.
Further, in the failure diagnosis method of the secondary battery monitoring device of the present invention, a first resistance circuit in which both ends of the first secondary battery are connected and the first detection voltage is output from the output terminal, and a first detection voltage. The first detection circuit that detects the abnormality of the first secondary battery based on the current, and the first voltage current that converts the voltage of the first secondary battery into a current by connecting both ends of the first secondary battery. The conversion circuit, the second resistance circuit in which both ends of the second secondary battery connected in series with the first secondary battery are connected and the second detection voltage is output from the output terminal, and the second detection voltage. A second detection circuit that detects an abnormality in the second secondary battery based on the current, and a second voltage that converts the voltage of the second secondary battery into a current by connecting both ends of the second secondary battery. The current conversion circuit and the first or second voltage-current conversion circuit in which the input terminal is connected to the first voltage-current conversion circuit via the first switch and the second voltage-current conversion circuit via the second switch. A current-voltage conversion circuit that converts the current of the current into a voltage, a first current generation circuit that generates a first current proportional to the voltage of the secondary battery based on the voltage of the current-voltage conversion circuit, and a first or second current generation circuit. A second current generation circuit that generates a second current proportional to the voltage used to make the output terminal of the resistance circuit of the resistor circuit a voltage for failure diagnosis, and a failure detection current according to the first current and the second current. It is equipped with a current mirror circuit that allows the current to flow, a third switch that allows the failure detection current to flow to the output terminal of the first resistance circuit, and a fourth switch that allows the failure detection current to flow to the output terminal of the second resistance circuit. This is a failure diagnosis method for the secondary battery monitoring device that detects abnormalities in the secondary battery. A voltage is applied from an external power supply to the terminals to which both ends of the secondary battery are connected, and the first switch is turned off. The second switch is turned on, the third switch is turned on, and the fourth switch is turned off, and the failure of the secondary battery monitoring device is diagnosed based on the detection result of the first detection circuit.

本発明の二次電池監視装置及び故障診断方法によれば、故障箇所や故障モードに係らず故障を検出することが可能となる。 According to the secondary battery monitoring device and the failure diagnosis method of the present invention, it is possible to detect a failure regardless of the failure location and the failure mode.

本発明の二次電池監視装置を示すブロック図である。It is a block diagram which shows the secondary battery monitoring apparatus of this invention. 本発明の二次電池監視装置の故障診断方法を示すブロック図である。It is a block diagram which shows the failure diagnosis method of the secondary battery monitoring apparatus of this invention.

図1は、本発明の実施形態の二次電池監視装置100を示すブロック図である。 FIG. 1 is a block diagram showing a secondary battery monitoring device 100 according to an embodiment of the present invention.

二次電池監視装置100は、電圧電流変換回路11、21と、選択スイッチ12、22と、抵抗回路13、23と、基準電圧回路14、24と、スイッチ15、16、25、26と、コンパレータ17、18、27、28と、電流電圧変換回路31と、オペアンプ32、35と、MOSトランジスタ33、36と、抵抗34、37と、基準電圧回路38と、カレントミラー回路39を備えている。 The secondary battery monitoring device 100 includes voltage / current conversion circuits 11, 21, selection switches 12, 22, resistance circuits 13, 23, reference voltage circuits 14, 24, switches 15, 16, 25, 26, and a comparator. It includes 17, 18, 27, 28, a current-voltage conversion circuit 31, operational amplifiers 32, 35, MOS transistors 33, 36, resistors 34, 37, a reference voltage circuit 38, and a current mirror circuit 39.

また、図示はしないが、二次電池監視装置100は、二次電池C1、C2の電圧情報などによって充放電制御スイッチを制御する制御回路など、を備えている。 Although not shown, the secondary battery monitoring device 100 includes a control circuit that controls a charge / discharge control switch based on voltage information of the secondary batteries C1 and C2.

コンパレータ17、27は、過放電を検出するコンパレータであり、コンパレータ18、28は、過充電を検出するコンパレータである。抵抗回路13は、3つの抵抗13a、13b、13cが直列に接続され、その抵抗値はRa、Rb、Rcとする。抵抗回路23は、3つの抵抗23a、23b、23cが直列に接続され、その抵抗値はRa、Rb、Rcとする。基準電圧回路14、24は、基準電圧vrefを出力する。 The comparators 17 and 27 are comparators for detecting over-discharge, and the comparators 18 and 28 are comparators for detecting over-charging. In the resistance circuit 13, three resistors 13a, 13b, and 13c are connected in series, and the resistance values are Ra, Rb, and Rc. In the resistance circuit 23, three resistors 23a, 23b, and 23c are connected in series, and the resistance values are Ra, Rb, and Rc. The reference voltage circuits 14 and 24 output the reference voltage vref.

電圧電流変換回路11及び21と、電流電圧変換回路31と、オペアンプ32と、MOSトランジスタ33と、抵抗34とは、抵抗回路13(23)におけるコンパレータ17、18(27、28)が検出するノードを基準電圧回路14(24)の基準電位と同じくするための電流Icを生成する電流生成回路である。オペアンプ35と、MOSトランジスタ36と、抵抗37と、基準電圧回路38とは、抵抗回路13(23)におけるコンパレータ17、18(27、28)が検出するノードを故障診断用の電圧にするための電流Irを生成する電流生成回路である。 The voltage-current conversion circuits 11 and 21, the current-voltage conversion circuit 31, the operational capacitor 32, the MOS transistor 33, and the resistor 34 are the nodes detected by the comparators 17, 18 (27, 28) in the resistance circuit 13 (23). Is a current generation circuit that generates a current Ic to make the same as the reference potential of the reference voltage circuit 14 (24). The operational amplifier 35, the MOS transistor 36, the resistor 37, and the reference voltage circuit 38 are used to make the node detected by the comparators 17, 18 (27, 28) in the resistor circuit 13 (23) a voltage for failure diagnosis. It is a current generation circuit that generates a current Ir.

電圧電流変換回路11は、入力端子が二次電池C1の両端に接続され、出力端子は選択スイッチ12を介して電流電圧変換回路31の入力端子に接続される。抵抗回路13は、両端が二次電池C1の両端に接続され、第一出力端子はコンパレータ17の反転入力端子に接続され、第二出力端子はコンパレータ18の非反転入力端子に接続される。基準電圧回路14は、出力端子がコンパレータ17の非反転入力端子とコンパレータ18の反転入力端子に接続される。 In the voltage-current conversion circuit 11, input terminals are connected to both ends of the secondary battery C1, and output terminals are connected to the input terminals of the current-voltage conversion circuit 31 via the selection switch 12. Both ends of the resistance circuit 13 are connected to both ends of the secondary battery C1, the first output terminal is connected to the inverting input terminal of the comparator 17, and the second output terminal is connected to the non-inverting input terminal of the comparator 18. In the reference voltage circuit 14, the output terminal is connected to the non-inverting input terminal of the comparator 17 and the inverting input terminal of the comparator 18.

電圧電流変換回路21は、入力端子が二次電池C2の両端に接続され、出力端子は選択スイッチ22を介して電流電圧変換回路31の入力端子に接続される。抵抗回路23は、両端が二次電池C2の両端に接続され、第一出力端子はコンパレータ27の反転入力端子に接続され、第二出力端子はコンパレータ28の非反転入力端子に接続される。基準電圧回路24は、出力端子がコンパレータ27の非反転入力端子とコンパレータ28の反転入力端子に接続される。コンパレータ17、18、27、28は、出力端子が図示しない制御回路の入力端子に接続される。 In the voltage-current conversion circuit 21, input terminals are connected to both ends of the secondary battery C2, and output terminals are connected to the input terminals of the current-voltage conversion circuit 31 via a selection switch 22. Both ends of the resistance circuit 23 are connected to both ends of the secondary battery C2, the first output terminal is connected to the inverting input terminal of the comparator 27, and the second output terminal is connected to the non-inverting input terminal of the comparator 28. In the reference voltage circuit 24, the output terminal is connected to the non-inverting input terminal of the comparator 27 and the inverting input terminal of the comparator 28. The comparators 17, 18, 27, and 28 are connected to input terminals of a control circuit whose output terminals are not shown.

オペアンプ32は、非反転入力端子が電流電圧変換回路31の出力端子に接続され、出力端子はMOSトランジスタ33のゲートに接続される。MOSトランジスタ33は、ソースが抵抗34の一端とオペアンプ32の反転入力端子に接続される。 In the operational amplifier 32, the non-inverting input terminal is connected to the output terminal of the current-voltage conversion circuit 31, and the output terminal is connected to the gate of the MOS transistor 33. In the MOS transistor 33, the source is connected to one end of the resistor 34 and the inverting input terminal of the operational amplifier 32.

オペアンプ35は、非反転入力端子が基準電圧回路38の出力端子に接続され、出力端子はMOSトランジスタ36のゲートに接続される。MOSトランジスタ36は、ソースが抵抗37の一端とオペアンプ35の反転入力端子に接続される。 In the operational amplifier 35, the non-inverting input terminal is connected to the output terminal of the reference voltage circuit 38, and the output terminal is connected to the gate of the MOS transistor 36. In the MOS transistor 36, the source is connected to one end of the resistor 37 and the inverting input terminal of the operational amplifier 35.

カレントミラー回路39は、入力端子がMOSトランジスタ36のドレインに接続され、出力端子がMOSトランジスタ33のドレインに接続される。スイッチ15は、カレントミラー回路39の出力端子とコンパレータ17の反転入力端子の間に接続される。スイッチ16は、カレントミラー回路39の出力端子とコンパレータ18の非反転入力端子の間に接続される。スイッチ25は、カレントミラー回路39の出力端子とコンパレータ27の反転入力端子の間に接続される。スイッチ26は、カレントミラー回路39の出力端子とコンパレータ28の非反転入力端子の間に接続される。 In the current mirror circuit 39, the input terminal is connected to the drain of the MOS transistor 36, and the output terminal is connected to the drain of the MOS transistor 33. The switch 15 is connected between the output terminal of the current mirror circuit 39 and the inverting input terminal of the comparator 17. The switch 16 is connected between the output terminal of the current mirror circuit 39 and the non-inverting input terminal of the comparator 18. The switch 25 is connected between the output terminal of the current mirror circuit 39 and the inverting input terminal of the comparator 27. The switch 26 is connected between the output terminal of the current mirror circuit 39 and the non-inverting input terminal of the comparator 28.

電圧電流変換回路11(21)は、二次電池C1(C2)の電圧を電流に変換して電流電圧変換回路31に入力する。電流電圧変換回路31は、電圧電流変換回路11(21)の電流を電圧に変換してオペアンプ32の非反転入力端子に入力する。オペアンプ32は、抵抗34に発生する電圧が電流電圧変換回路31の電圧に等しくなるようにMOSトランジスタ33のゲートを制御する。その時、抵抗34に流れる電流は、二次電池の電圧に比例した電流で、その値をIcとする。オペアンプ35は、抵抗37に発生する電圧が基準電圧回路38の電圧に等しくなるようにMOSトランジスタ36のゲートを制御する。その時、抵抗37に流れる電流の値をIrとする。 The voltage-current conversion circuit 11 (21) converts the voltage of the secondary battery C1 (C2) into a current and inputs it to the current-voltage conversion circuit 31. The current-voltage conversion circuit 31 converts the current of the voltage-current conversion circuit 11 (21) into a voltage and inputs it to the non-inverting input terminal of the operational amplifier 32. The operational amplifier 32 controls the gate of the MOS transistor 33 so that the voltage generated in the resistor 34 becomes equal to the voltage of the current-voltage conversion circuit 31. At that time, the current flowing through the resistor 34 is a current proportional to the voltage of the secondary battery, and its value is Ic. The operational amplifier 35 controls the gate of the MOS transistor 36 so that the voltage generated in the resistor 37 becomes equal to the voltage of the reference voltage circuit 38. At that time, the value of the current flowing through the resistor 37 is defined as Ir.

次に、二次電池監視装置100の故障診断機能について説明する。 Next, the failure diagnosis function of the secondary battery monitoring device 100 will be described.

二次電池C1を監視する回路の故障診断をする場合、選択スイッチ12をオンして選択スイッチ22をオフする。電圧電流変換回路11は、二次電池C1の電圧VC1を電流に変換して、選択スイッチ12を介して電流電圧変換回路31に入力する。電流電圧変換回路31は、入力された電流を電圧VC1に変換し、オペアンプ32と抵抗34とMOSトランジスタ33により二次電池C1の電圧VC1に比例した電流Icを得る。 When diagnosing a failure of the circuit that monitors the secondary battery C1, the selection switch 12 is turned on and the selection switch 22 is turned off. The voltage-current conversion circuit 11 converts the voltage VC1 of the secondary battery C1 into a current and inputs the voltage VC1 to the current-voltage conversion circuit 31 via the selection switch 12. The current-voltage conversion circuit 31 converts the input current into a voltage VC1 and obtains a current Ic proportional to the voltage VC1 of the secondary battery C1 by the operational amplifier 32, the resistor 34, and the MOS transistor 33.

ここで、抵抗34の抵抗値R34は、診断するコンパレータの抵抗回路の上位側抵抗値と等しくなるように切替える、即ち、コンパレータ17を診断するときは抵抗値Ra、コンパレータ18を診断するときは抵抗値Ra+Rbとする。 Here, the resistance value R34 of the resistor 34 is switched so as to be equal to the upper resistance value of the resistance circuit of the comparator to be diagnosed, that is, the resistance value Ra when diagnosing the comparator 17 and the resistance when diagnosing the comparator 18. The value is Ra + Rb.

更に、基準電圧回路38の電圧も診断するコンパレータに応じて切替える。基準電圧回路38の電圧値は、コンパレータ17を診断する場合は基準電圧vref未満の電圧Vudを出力し、コンパレータ18を診断する場合は基準電圧vrefより高い電圧Vodを出力する。 Further, the voltage of the reference voltage circuit 38 is also switched according to the comparator for diagnosing. The voltage value of the reference voltage circuit 38 outputs a voltage Vud lower than the reference voltage vref when diagnosing the comparator 17, and outputs a voltage Vod higher than the reference voltage vref when diagnosing the comparator 18.

更に、抵抗37の抵抗値37は、診断するコンパレータの入力部から見た抵抗回路の等価入力抵抗値に切替える。従って、抵抗値37は、コンパレータ17を診断する場合は1/{1/Ra+1/(Rb+Rc)}、コンパレータ18を診断する場合は1/{1/(Ra+Rb)+1/Rc}に設定する。 Further, the resistance value 37 of the resistance 37 is switched to the equivalent input resistance value of the resistance circuit seen from the input unit of the comparator to be diagnosed. Therefore, the resistance value 37 is set to 1 / {1 / Ra + 1 / (Rb + Rc)} when diagnosing the comparator 17 and 1 / {1 / (Ra + Rb) + 1 / Rc} when diagnosing the comparator 18.

これらの切替えは、図示しないテスト回路の制御信号によって行われる。 These switchings are performed by control signals of a test circuit (not shown).

そして、抵抗34に流れる電流Icと抵抗37に流れる電流Irに応じた電流を抵抗回路13に流入、または抵抗回路13から流出する事により、抵抗回路13と基準電圧回路14を診断する。 Then, the resistance circuit 13 and the reference voltage circuit 14 are diagnosed by inflowing the current Ic flowing through the resistor 34 and the current corresponding to the current Ir flowing through the resistor 37 into the resistance circuit 13 or outflowing from the resistance circuit 13.

次に、故障診断の動作について説明する。 Next, the operation of the failure diagnosis will be described.

選択スイッチ12をオンして、抵抗値R34を抵抗値Raに、抵抗値37を1/{1/Ra+1/(Rb+Rc)}、基準電圧回路38の電圧を電圧Vudに設定する。このように設定することで、電流IcをVC1/Raに、電流IrをVud・{1/Ra+1/(Rb+Rc)}にする。 The selection switch 12 is turned on to set the resistance value R34 to the resistance value Ra, the resistance value 37 to 1 / {1 / Ra + 1 / (Rb + Rc)}, and the voltage of the reference voltage circuit 38 to the voltage Vud. By setting in this way, the current Ic is set to VC1 / Ra, and the current Ir is set to Vud · {1 / Ra + 1 / (Rb + Rc)}.

スイッチ15をオンすると、抵抗13aと抵抗13bの接続点からスイッチ15を介して抵抗34に故障検出用の電流Ic-Irが流れ、コンパレータ17の反転入力端子の電圧は電圧Vudになる。この時、電流Icは、抵抗13aと抵抗13bの接続点の電位を二次電池C1の負極の電位と等しくし、電流Irは抵抗13aと抵抗13bの接続点の電位を二次電池C1の負極の電位から電圧Vudだけ高くする。即ち、二次電池C1の電圧VC1に係らず、コンパレータ17の反転入力端子に電圧Vudを印加することが出来る。 When the switch 15 is turned on, a failure detection current Ic-Ir flows from the connection point between the resistors 13a and 13b to the resistor 34 via the switch 15, and the voltage of the inverting input terminal of the comparator 17 becomes a voltage Vud. At this time, the current Ic makes the potential at the connection point between the resistors 13a and 13b equal to the potential at the negative electrode of the secondary battery C1, and the current Ir makes the potential at the connection point between the resistors 13a and 13b the negative potential of the secondary battery C1. Increase the voltage Vud from the potential of. That is, regardless of the voltage VC1 of the secondary battery C1, the voltage Vud can be applied to the inverting input terminal of the comparator 17.

ここで、電圧Vudは基準電圧vrefより低いので、コンパレータ17は過放電を検出する。従って、基準電圧vrefが低くなる異常は、コンパレータ17が過放電を検出しないことで検出が可能となる。また、抵抗値Raが低くなる異常も、コンパレータ17が過放電を検出しないことで検出が可能となる。また、抵抗値Rbや抵抗値Rcが高くなる異常も、コンパレータ17が過放電を検出しないことで検出が可能となる。 Here, since the voltage Vud is lower than the reference voltage vref, the comparator 17 detects over-discharge. Therefore, the abnormality in which the reference voltage vref becomes low can be detected by the comparator 17 not detecting the over discharge. Further, an abnormality in which the resistance value Ra becomes low can be detected by the comparator 17 not detecting the over discharge. Further, an abnormality in which the resistance value Rb or the resistance value Rc becomes high can be detected by the comparator 17 not detecting the over discharge.

次に、スイッチ15をオフして、抵抗値R34を抵抗値Ra+Rbに、抵抗値R37を1/{1/(Ra+Rb)+1/Rc}、基準電圧回路38の電圧を電圧Vodに設定する。このように設定することで、電流IcをVC1/Ra+Rbに、電流IrをVod・{1/(Ra+Rb)+1/Rc}にする。 Next, the switch 15 is turned off, the resistance value R34 is set to the resistance value Ra + Rb, the resistance value R37 is set to 1 / {1 / (Ra + Rb) + 1 / Rc}, and the voltage of the reference voltage circuit 38 is set to the voltage Vod. By setting in this way, the current Ic is set to VC1 / Ra + Rb, and the current Ir is set to Vod · {1 / (Ra + Rb) + 1 / Rc}.

スイッチ16をオンすると、抵抗13bと抵抗13cの接続点にカレントミラー回路39から、スイッチ16を介して故障検出用の電流Ir-Icが流れ、コンパレータ18の非反転入力端子の電圧は電圧Vodになる。この時、電流Icは、抵抗13bと抵抗13cの接続点の電位を二次電池C1の負極の電位と等しくし、電流Irは抵抗13bと抵抗13cの接続点の電位を二次電池C1の負極の電位から電圧Vodだけ高くする。即ち、二次電池C1の電圧VC1に係らず、コンパレータ18の非反転入力端子に電圧Vodを印加することが出来る。 When the switch 16 is turned on, the current Ir-Ic for failure detection flows from the current mirror circuit 39 to the connection point between the resistors 13b and 13c via the switch 16, and the voltage of the non-inverting input terminal of the comparator 18 becomes the voltage Vod. Become. At this time, the current Ic makes the potential at the connection point between the resistor 13b and the resistor 13c equal to the potential at the negative electrode of the secondary battery C1, and the current Ir makes the potential at the connection point between the resistor 13b and the resistor 13c equal to the potential at the negative electrode of the secondary battery C1. Increase the voltage Vod from the potential of. That is, regardless of the voltage VC1 of the secondary battery C1, the voltage Vod can be applied to the non-inverting input terminal of the comparator 18.

ここで、電圧Vodは基準電圧vrefより高いので、コンパレータ18は過充電を検出する。従って、基準電圧vrefが高くなる異常は、コンパレータ18が過充電を検出しないことで検出が可能となる。また、抵抗値Rcが低くなる異常も、コンパレータ18が過充電を検出しないことで検出が可能となる。また、抵抗値Raや抵抗値Rbが高くなる異常も、コンパレータ18が過充電を検出しないことで検出が可能となる。 Here, since the voltage Vod is higher than the reference voltage vref, the comparator 18 detects overcharge. Therefore, an abnormality in which the reference voltage vref becomes high can be detected by the comparator 18 not detecting overcharge. Further, an abnormality in which the resistance value Rc becomes low can also be detected by the comparator 18 not detecting overcharge. Further, an abnormality in which the resistance value Ra or the resistance value Rb becomes high can be detected by the comparator 18 not detecting the overcharge.

また、抵抗値Rbが低くなった異常は、二次電池C1の電圧VC1が通常時にコンパレータ17、18のどちらかが誤動作してしまう事により故障検出が可能となる。 Further, the abnormality in which the resistance value Rb becomes low can be detected by the failure of either the comparators 17 or 18 in the normal state of the voltage VC1 of the secondary battery C1.

二次電池C2を監視する回路の故障診断をする場合、それらの回路を上記したのと同様に診断することが可能である。 When diagnosing a failure of the circuit that monitors the secondary battery C2, it is possible to diagnose those circuits in the same manner as described above.

また、診断時に動作する電圧電流変換回路11を利用して、スイッチ15、16がオフ時に電圧電流変換回路11のみ動作させる事で、二次電池C1と二次電地C2の接続点の接続故障を検出する事も可能となる。 Further, by using the voltage / current conversion circuit 11 that operates at the time of diagnosis and operating only the voltage / current conversion circuit 11 when the switches 15 and 16 are off, the connection failure of the connection point between the secondary battery C1 and the secondary electric ground C2 Can also be detected.

図2は、本実施形態で追加した故障診断のための回路を故障診断する方法を示すブロック図である。以下に、電流生成回路の故障診断を実施する方法を説明する。 FIG. 2 is a block diagram showing a method of fault diagnosing the circuit for fault diagnosis added in the present embodiment. The method of performing the failure diagnosis of the current generation circuit will be described below.

図1との違いは、スイッチ15または16をオンする時に、選択スイッチ12がオフして、選択スイッチ22がオンしていることである。そして、二次電池C2が接続されるべき端子には電圧を変えることが出来る外部電源が接続されている。 The difference from FIG. 1 is that when the switch 15 or 16 is turned on, the selection switch 12 is turned off and the selection switch 22 is turned on. An external power source capable of changing the voltage is connected to the terminal to which the secondary battery C2 should be connected.

このような状態にすると、抵抗回路13は、二次電池C1の電圧が印加されるとともに、電圧電流変換回路21の電流に基づいて電流生成回路が生成する電流Icと、電流Irとで決定される故障検出用の電流が流れる。詳細には、故障検出用の電流は、スイッチ15がオンした時には電流Ic-Irが抵抗回路13から流出し、スイッチ16がオンした時には電流Ir-Icが抵抗回路13に流入する。 In such a state, the resistance circuit 13 is determined by the current Ic generated by the current generation circuit based on the current of the voltage-current conversion circuit 21 and the current Ir while the voltage of the secondary battery C1 is applied. A current for fault detection flows. Specifically, when the switch 15 is turned on, the current Ic-Ir flows out of the resistance circuit 13, and when the switch 16 is turned on, the current Ir-Ic flows into the resistance circuit 13.

この状態で、外部電源の電圧を二次電池C1の電圧より低く設定すると、電流Icは、二次電池C1の電圧から生成される電流より小さくなるので、コンパレータ17の反転入力端子の電圧は電圧Vudよりも高くなる。ここで、この電圧を基準電圧Vrefより高くなるようにすると、コンパレータ17が過放電を検出しないことで、電圧電流変換回路21を含む電流Ic及びIrを生成する電流生成回路に故障がないことを検出することが出来る。また、抵抗回路13のコンパレータ17の反転入力端子の電圧が下がり過ぎる故障を検出することが出来る。 In this state, if the voltage of the external power supply is set lower than the voltage of the secondary battery C1, the current Ic becomes smaller than the current generated from the voltage of the secondary battery C1, so that the voltage of the inverting input terminal of the comparator 17 is a voltage. It will be higher than Vud. Here, when this voltage is set to be higher than the reference voltage Vref, the comparator 17 does not detect over-discharge, so that there is no failure in the current generation circuit that generates the currents Ic and Ir including the voltage-current conversion circuit 21. It can be detected. Further, it is possible to detect a failure in which the voltage of the inverting input terminal of the comparator 17 of the resistance circuit 13 drops too much.

同様にして、スイッチ15をオフ、スイッチ16をオンして、外部電源の電圧を変えて過充電検出回路の故障と、抵抗回路13のコンパレータ18の非反転入力端子の電圧が上がり過ぎる故障を検出することが出来る。 Similarly, the switch 15 is turned off and the switch 16 is turned on to change the voltage of the external power supply to detect a failure of the overcharge detection circuit and a failure of the non-inverting input terminal of the comparator 18 of the resistance circuit 13 to rise too much. Can be done.

さらに、選択スイッチ12をオン、選択スイッチ22をオフして、二次電池C1が接続されるべき端子に電圧を変えることが出来る外部電源を接続して、故障診断をすることで、電圧電流変換回路11を含む電流生成回路に故障が無いことを検出することが出来る。 Further, the selection switch 12 is turned on, the selection switch 22 is turned off, an external power supply capable of changing the voltage is connected to the terminal to which the secondary battery C1 should be connected, and a failure diagnosis is performed to perform voltage-current conversion. It can be detected that there is no failure in the current generation circuit including the circuit 11.

以上説明したように、本実施形態の二次電池監視装置100は、電流Ic及び電流Irを生成する電流生成回路と、カレントミラー回路39と、を備え、スイッチ15、16(25、26)を切替えて抵抗回路に所望の電流を流すようにしたので、故障箇所や故障モードに係らず、二次電池C1(C2)を監視する回路の故障を検出することが可能となる。 As described above, the secondary battery monitoring device 100 of the present embodiment includes a current generation circuit for generating current Ic and current Ir, a current mirror circuit 39, and switches 15, 16 (25, 26). Since the switching is made so that a desired current is passed through the resistance circuit, it is possible to detect the failure of the circuit that monitors the secondary battery C1 (C2) regardless of the failure location or the failure mode.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、二次電池を監視する回路として過放電を検出する回路と過充電を検出する回路を備えた例で説明したが、どちらか一方を備えた構成であっても良い。また、直列に接続された二つの二次電池を監視する回路を例にしたが、二次電池は1つであっても、3つ以上であっても同様に実施可能である。また、電流生成回路は、オペアンプとMOSトランジスタと抵抗で構成すると説明したが、機能を満足すれば良く、この回路に限定されない。また、抵抗回路13と抵抗回路23の各抵抗の抵抗値は同じ値としたが、二次電池C1とC2の電圧が異なる場合など、各抵抗の抵抗値は異なっていても良い。その場合は、電流生成回路を別に備える必要がある。 For example, although the circuit for monitoring the secondary battery includes a circuit for detecting overdischarge and a circuit for detecting overcharge, the configuration may include either one. Further, although a circuit for monitoring two secondary batteries connected in series is taken as an example, it can be similarly implemented whether the number of secondary batteries is one or three or more. Further, although it has been explained that the current generation circuit is composed of an operational amplifier, a MOS transistor, and a resistor, it is not limited to this circuit as long as the function is satisfied. Further, although the resistance value of each resistance of the resistance circuit 13 and the resistance circuit 23 is set to the same value, the resistance value of each resistance may be different, such as when the voltages of the secondary batteries C1 and C2 are different. In that case, it is necessary to separately provide a current generation circuit.

100 二次電池監視装置
11、21 電圧電流変換回路
14、24、38 基準電圧回路
17、18、27、28 コンパレータ
31 電流電圧変換回路
32、35 オペアンプ
39 カレントミラー回路
100 Secondary battery monitoring device 11, 21 Voltage-current conversion circuit 14, 24, 38 Reference voltage circuit 17, 18, 27, 28 Comparator 31 Current-voltage conversion circuit 32, 35 Operational amplifier 39 Current mirror circuit

Claims (5)

二次電池の異常を検出する二次電池監視装置であって、
前記二次電池の両端が接続され、出力端子から検出電圧を出力する抵抗回路と、
前記検出電圧に基づいて、前記二次電池の異常を検出する検出回路と、
前記二次電池の両端が接続され、前記二次電池の電圧を電流に変換する電圧電流変換回路と、
前記電圧電流変換回路の電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路の電圧に基づいて、前記二次電池の電圧に比例した第一の電流を生成する第一の電流生成回路と、
前記抵抗回路の前記出力端子を故障診断用の電圧とするための電圧に比例した第二の電流を生成する第二の電流生成回路と、
前記第一の電流と前記第二の電流に応じた故障検出電流を流すカレントミラー回路と、
前記抵抗回路の前記出力端子に前記故障検出電流を流すスイッチと、
を備えたことを特徴とする二次電池監視装置。
It is a secondary battery monitoring device that detects abnormalities in the secondary battery.
A resistance circuit in which both ends of the secondary battery are connected and the detection voltage is output from the output terminal.
A detection circuit that detects an abnormality in the secondary battery based on the detection voltage, and
A voltage-current conversion circuit in which both ends of the secondary battery are connected and the voltage of the secondary battery is converted into a current.
A current-voltage conversion circuit that converts the current of the voltage-current conversion circuit into a voltage,
A first current generation circuit that generates a first current proportional to the voltage of the secondary battery based on the voltage of the current-voltage conversion circuit.
A second current generation circuit that generates a second current proportional to the voltage for making the output terminal of the resistance circuit a voltage for failure diagnosis, and a second current generation circuit.
A current mirror circuit that flows a failure detection current corresponding to the first current and the second current, and
A switch that allows the failure detection current to flow through the output terminal of the resistance circuit,
A secondary battery monitoring device characterized by being equipped with.
二次電池の異常を検出する二次電池監視装置であって、
前記二次電池の両端が接続され、第一の出力端子から過放電検出電圧を出力し、第二の出力端子から過充電検出電圧を出力する抵抗回路と、
前記過放電検出電圧に基づいて、前記二次電池の過放電を検出する過放電検出回路と、
前記過充電検出電圧に基づいて、前記二次電池の過充電を検出する過充電検出回路と、
前記二次電池の両端が接続され、前記二次電池の電圧を電流に変換する電圧電流変換回路と、
前記電圧電流変換回路の電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路の電圧に基づいて、前記二次電池の電圧に比例した第一の電流を生成する第一の電流生成回路と、
前記抵抗回路の前記第一の出力端子及び前記第二の出力端子を故障診断用の電圧とするための電圧に比例した第二の電流を生成する第二の電流生成回路と、
前記第一の電流と前記第二の電流に応じた故障検出電流を流すカレントミラー回路と、
前記抵抗回路の第一の出力端子に前記故障検出電流を流す第一のスイッチと、
前記抵抗回路の第二の端子から前記故障検出電流を流す第二のスイッチと、
を備えたことを特徴とする二次電池監視装置。
It is a secondary battery monitoring device that detects abnormalities in the secondary battery.
A resistance circuit in which both ends of the secondary battery are connected, an overdischarge detection voltage is output from the first output terminal, and an overcharge detection voltage is output from the second output terminal.
An over-discharge detection circuit that detects the over-discharge of the secondary battery based on the over-discharge detection voltage,
An overcharge detection circuit that detects overcharge of the secondary battery based on the overcharge detection voltage, and
A voltage-current conversion circuit in which both ends of the secondary battery are connected and the voltage of the secondary battery is converted into a current.
A current-voltage conversion circuit that converts the current of the voltage-current conversion circuit into a voltage,
A first current generation circuit that generates a first current proportional to the voltage of the secondary battery based on the voltage of the current-voltage conversion circuit.
A second current generation circuit that generates a second current proportional to the voltage for making the first output terminal and the second output terminal of the resistance circuit a voltage for failure diagnosis, and
A current mirror circuit that flows a failure detection current corresponding to the first current and the second current, and
A first switch that allows the failure detection current to flow through the first output terminal of the resistance circuit,
A second switch that allows the failure detection current to flow from the second terminal of the resistance circuit,
A secondary battery monitoring device characterized by being equipped with.
前記第一のスイッチがオンし、前記第二のスイッチがオフした時に前記過放電検出回路の故障を診断し、
前記第一のスイッチがオフし、前記第二のスイッチがオンした時に前記過充電検出回路の故障を診断する
ことを特徴とする請求項2に記載の二次電池監視装置。
When the first switch is turned on and the second switch is turned off, a failure of the overdischarge detection circuit is diagnosed.
The secondary battery monitoring device according to claim 2, wherein the failure of the overcharge detection circuit is diagnosed when the first switch is turned off and the second switch is turned on.
前記過放電検出回路の故障を診断する時と、前記過充電検出回路の故障を診断する時で、
前記第一の電流生成回路は、前記第一の電流を切替えて出力し、
前記第二の電流生成回路は、前記第二の電流を切替えて出力する
ことを特徴とする請求項2または3に記載の二次電池監視装置。
At the time of diagnosing the failure of the overdischarge detection circuit and at the time of diagnosing the failure of the overcharge detection circuit.
The first current generation circuit switches and outputs the first current, and outputs the current.
The secondary battery monitoring device according to claim 2 or 3, wherein the second current generation circuit switches and outputs the second current.
第一の二次電池の両端が接続され、出力端子から第一の検出電圧を出力する第一の抵抗回路と、
前記第一の検出電圧に基づいて、前記第一の二次電池の異常を検出する第一の検出回路と、
前記第一の二次電池の両端が接続され、前記第一の二次電池の電圧を電流に変換する第一の電圧電流変換回路と、
前記第一の二次電池と直列に接続された第二の二次電池の両端が接続され、出力端子から第二の検出電圧を出力する第二の抵抗回路と、
前記第二の検出電圧に基づいて、前記第二の二次電池の異常を検出する第二のの検出回路と、
前記第二の二次電池の両端が接続され、前記第二の二次電池の電圧を電流に変換する第二の電圧電流変換回路と、
入力端子が第一のスイッチを介して前記第一の電圧電流変換回路と、第二のスイッチを介して前記第二の電圧電流変換回路と接続され、前記第一または第二の電圧電流変換回路の電流を電圧に変換する電流電圧変換回路と、
前記電流電圧変換回路の電圧に基づいて、前記二次電池の電圧に比例した第一の電流を生成する第一の電流生成回路と、
前記第一または第二の抵抗回路の前記出力端子を故障診断用の電圧とするための電圧に比例した第二の電流を生成する第二の電流生成回路と、
前記第一の電流と前記第二の電流に応じた故障検出電流を流すカレントミラー回路と、
前記第一の抵抗回路の前記出力端子に前記故障検出電流を流す第三のスイッチと、
前記第二の抵抗回路の前記出力端子に前記故障検出電流を流す第四のスイッチと、
を備えた二次電池の異常を検出する二次電池監視装置の故障診断方法であって、
前記第二の二次電池の両端が接続される端子に外部電源から電圧を印加し、
前記第一のスイッチをオフ、前記第二のスイッチをオン、前記第三のスイッチをオン、前記第四のスイッチをオフして、
前記第一の検出回路の検出結果によって、前記二次電池監視装置の故障を診断する二次電池監視装置の故障診断方法。
The first resistance circuit, which is connected to both ends of the first secondary battery and outputs the first detection voltage from the output terminal,
A first detection circuit that detects an abnormality in the first secondary battery based on the first detection voltage, and
A first voltage-current conversion circuit in which both ends of the first secondary battery are connected and the voltage of the first secondary battery is converted into a current.
A second resistance circuit in which both ends of the second secondary battery connected in series with the first secondary battery are connected and a second detection voltage is output from the output terminal.
A second detection circuit for detecting an abnormality in the second secondary battery based on the second detection voltage, and a second detection circuit.
A second voltage-current conversion circuit in which both ends of the second secondary battery are connected and the voltage of the second secondary battery is converted into a current.
The input terminal is connected to the first voltage-current conversion circuit via the first switch and the second voltage-current conversion circuit via the second switch, and the first or second voltage-current conversion circuit. A current-voltage conversion circuit that converts the current of
A first current generation circuit that generates a first current proportional to the voltage of the secondary battery based on the voltage of the current-voltage conversion circuit.
A second current generation circuit that generates a second current proportional to the voltage for making the output terminal of the first or second resistance circuit a voltage for failure diagnosis, and a second current generation circuit.
A current mirror circuit that flows a failure detection current corresponding to the first current and the second current, and
A third switch that allows the failure detection current to flow through the output terminal of the first resistance circuit,
A fourth switch that allows the failure detection current to flow through the output terminal of the second resistance circuit,
It is a failure diagnosis method of the secondary battery monitoring device that detects the abnormality of the secondary battery equipped with.
A voltage is applied from an external power source to the terminals to which both ends of the second secondary battery are connected.
The first switch is turned off, the second switch is turned on, the third switch is turned on, and the fourth switch is turned off.
A method for diagnosing a failure of a secondary battery monitoring device based on the detection result of the first detection circuit.
JP2017216008A 2016-12-15 2017-11-09 Secondary battery monitoring device and failure diagnosis method Active JP7014565B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170172621A KR102431408B1 (en) 2016-12-15 2017-12-14 Secondary battery monitoring apparatus and fault diagnosis method
US15/842,268 US10288694B2 (en) 2016-12-15 2017-12-14 Secondary battery monitoring device and method for diagnosing failure
CN201711349460.5A CN108226794B (en) 2016-12-15 2017-12-15 Secondary battery monitoring device and failure diagnosis method
EP17207553.3A EP3336565B1 (en) 2016-12-15 2017-12-15 Secondary battery monitoring device and method for diagnosing failure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016243667 2016-12-15
JP2016243667 2016-12-15

Publications (2)

Publication Number Publication Date
JP2018099020A JP2018099020A (en) 2018-06-21
JP7014565B2 true JP7014565B2 (en) 2022-02-01

Family

ID=62633213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216008A Active JP7014565B2 (en) 2016-12-15 2017-11-09 Secondary battery monitoring device and failure diagnosis method

Country Status (3)

Country Link
JP (1) JP7014565B2 (en)
KR (1) KR102431408B1 (en)
CN (1) CN108226794B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978268B1 (en) * 2018-07-03 2019-08-28 현대오트론 주식회사 Fault diagnosis circuit of battery management system
CN109921116B (en) * 2019-04-12 2024-03-15 无锡商业职业技术学院 Fault setting circuit and method for new energy automobile power battery for practical training
JP7297549B2 (en) 2019-06-21 2023-06-26 エイブリック株式会社 VOLTAGE-CURRENT CONVERSION CIRCUIT AND CHARGE/DISCHARGE CONTROL DEVICE
CN111064176B (en) * 2019-11-28 2021-02-02 中国地质大学(武汉) Digital control turn-off and self-starting low-power consumption voltage monitoring circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164881A1 (en) 2007-01-05 2008-07-10 Nec Electronics Corporation Battery voltage monitoring apparatus
US20090179650A1 (en) 2007-09-14 2009-07-16 Texas Instruments Incorporated Cell voltage abnormality detector and cell voltage monitoring device for a multi-cell series battery
US20140055896A1 (en) 2012-08-24 2014-02-27 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780977B2 (en) 2002-05-27 2006-05-31 日産自動車株式会社 Failure diagnosis device and failure diagnosis method for cell voltage detection circuit
JP3894086B2 (en) 2002-10-01 2007-03-14 日産自動車株式会社 Abnormality detection device for battery pack
JP4886588B2 (en) * 2007-05-10 2012-02-29 ルネサスエレクトロニクス株式会社 Voltage sensor module and voltage monitoring device
JP5747498B2 (en) * 2010-01-06 2015-07-15 セイコーエプソン株式会社 Sensor device and electronic equipment
JP6030817B2 (en) * 2010-06-04 2016-11-24 エスアイアイ・セミコンダクタ株式会社 Battery state monitoring circuit and battery device
JP2012032236A (en) 2010-07-29 2012-02-16 Panasonic Corp Abnormality detection circuit, and battery power supply system
CN202929168U (en) * 2012-11-29 2013-05-08 无锡中星微电子有限公司 Overcharge voltage detection circuit for cell protective circuit
EP2779452B1 (en) * 2013-03-13 2018-08-15 Nxp B.V. Switchable current source circuit and method
JP6370137B2 (en) * 2014-07-09 2018-08-08 エイブリック株式会社 Charge / discharge control circuit and battery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164881A1 (en) 2007-01-05 2008-07-10 Nec Electronics Corporation Battery voltage monitoring apparatus
US20090179650A1 (en) 2007-09-14 2009-07-16 Texas Instruments Incorporated Cell voltage abnormality detector and cell voltage monitoring device for a multi-cell series battery
US20140055896A1 (en) 2012-08-24 2014-02-27 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device

Also Published As

Publication number Publication date
KR20180069741A (en) 2018-06-25
CN108226794A (en) 2018-06-29
KR102431408B1 (en) 2022-08-10
CN108226794B (en) 2021-06-22
JP2018099020A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
JP7014565B2 (en) Secondary battery monitoring device and failure diagnosis method
JP6477593B2 (en) Battery pack monitoring system
JP7081225B2 (en) Battery monitoring device
JP2009069056A (en) Cell voltage abnormality detecting device and cell voltage monitoring device for multi-cell in-series battery
US10215810B2 (en) Battery monitoring system
US9030853B2 (en) Power conversion equipment having a capacitor failure detecting circuit
JP5605143B2 (en) Current control circuit
JP6939744B2 (en) Battery monitoring device
US9812743B2 (en) Battery state monitoring circuit and battery device
US8922218B2 (en) Detection circuits for batteries
JP6016754B2 (en) Battery voltage detector
JP6675022B2 (en) Current / voltage calibration method for charge / discharge power supply and load device for calibration
JP2004127663A (en) Abnormality detection device of battery pack
JP7297549B2 (en) VOLTAGE-CURRENT CONVERSION CIRCUIT AND CHARGE/DISCHARGE CONTROL DEVICE
KR20210104458A (en) Battery apparatus and current sensor diagnosis method
JP6955951B2 (en) Discharge device
JP6507989B2 (en) Battery monitoring device
JP7331543B2 (en) BUILD BATTERY MONITORING SYSTEM AND BATTERY FAILURE DETERMINATION METHOD
JP6477845B1 (en) Battery control circuit
WO2023223698A1 (en) Insulation resistance detection device and insulation resistance detection method
JP2024123704A (en) Battery monitoring device, resistance value deriving method, and cell voltage deriving method
JP2016103444A (en) Battery monitoring apparatus
JP6695214B2 (en) Semiconductor device, battery monitoring system, and diagnostic method
JP2015119578A (en) Current abnormality detection device, battery pack, current abnormality detection method, and its program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7014565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350