JP3776856B2 - プラズマ処理装置およびプラズマ処理方法 - Google Patents

プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
JP3776856B2
JP3776856B2 JP2002268095A JP2002268095A JP3776856B2 JP 3776856 B2 JP3776856 B2 JP 3776856B2 JP 2002268095 A JP2002268095 A JP 2002268095A JP 2002268095 A JP2002268095 A JP 2002268095A JP 3776856 B2 JP3776856 B2 JP 3776856B2
Authority
JP
Japan
Prior art keywords
plasma
frequency power
power source
electrode
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002268095A
Other languages
English (en)
Other versions
JP2004111432A (ja
Inventor
誠浩 角屋
尚輝 安井
智行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002268095A priority Critical patent/JP3776856B2/ja
Priority to US10/364,464 priority patent/US20040050495A1/en
Publication of JP2004111432A publication Critical patent/JP2004111432A/ja
Priority to US11/043,971 priority patent/US20050126712A1/en
Application granted granted Critical
Publication of JP3776856B2 publication Critical patent/JP3776856B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ処理装置およびプラズマ処理方法に係り、特にプラズマを用いて半導体素子等の試料の表面処理を行うのに好適なプラズマ処理装置およびプラズマ処理方法に関する。
【0002】
【従来の技術】
プラズマを用いてエッチング処理を行う場合、処理ガスを電離し活性化することで処理の高速化を図り、また被処理材に高周波バイアス電力を供給してプラズマ中のイオンを被処理材に垂直に入射させることで、異方性形状などの高精度エッチング処理を実現している。
【0003】
このような処理を行うプラズマ処理装置の一例として、真空容器外側の外周部に空心コイルを設け、真空容器内に設けた試料台に対向させて円形導体板を設け、円形導体板にUHF帯電源と第2の高周波電源を接続し、試料台に第1の高周波電源を接続し、円形導体板にUHF帯の周波数の電界とそのUHF帯の周波数とは異なる周波数の電界を重畳して供給し、UHF帯電源による電磁波と空心コイルによる磁場との相互作用を用いてプラズマを形成し、重畳した第2の高周波電源による高周波電圧によって円形導体板(例えばSi製)とプラズマとを反応させ、エッチングに寄与する活性種をより多く生成できるようにし、試料台に接続した第1の高周波電源によりプラズマ中のイオンの試料への入射エネルギーを制御する装置が知られている(例えば、特許文献1または特許文献2参照)。
【0004】
すなわち、従来のプラズマ処理装置は、図4に示すように、真空容器101に、処理容器102,アンテナ電極103,誘電体窓104を気密に設け、内部に処理室を形成している。処理容器102の外周部には処理室を囲んで磁場発生用コイル105が設けてある。アンテナ電極103はエッチングガスを流すための多孔構造となっており、ガス供給装置107が接続されている。また、真空容器101には真空排気装置124が接続されている。
【0005】
アンテナ電極103上部には同軸線路108が設けられ、同軸線路108,フィルター109,整合器110を介してプラズマ生成用のUHF帯電源111が接続されている。また、アンテナ電極103には同軸線路108,フィルター112,整合器113を介して第2の高周波電源114が接続されている。
【0006】
真空容器101内の下部には被処理材116を配置可能な基板電極115が設けられている。基板電極115にはフィルター117,整合器118を介して第1の高周波電源119が接続されている。また、基板電極115にはフィルター120を介して被処理材116を静電吸着させるための静電チャック電源121が接続されている。
【0007】
【特許文献1】
特開平9−321031号公報
【特許文献2】
米国特許第5891252号明細書
【0008】
【発明が解決しようとする課題】
近年、半導体集積回路の集積度が高まるにつれ、スループット向上の観点から量産現場において大口径ウエハ(12インチ)が使用されている。そのため処理の均一性を高めることが急務となっている。
【0009】
また、従来の装置では、バイアスにより上昇したプラズマ電位と、接地された真空容器の間でイオンが加速され、真空容器内壁にイオンが衝突することによるスパッタなどが生じ、これにより異物の発生量が増加する可能性があった。
【0010】
さらに、半導体素子の微細化に伴い、加工精度についてもマスク選択比を向上させることが要求され、そのためには好ましいプラズマ組成を形成することが重要となっている。
【0011】
本発明の第1の目的は、プラズマ処理における均一性を向上することのできるプラズマ処理装置およびプラズマ処理方法を提供することにある。
【0012】
本発明の第2の目的は、異物発生量を少なくできるプラズマ処理装置およびプラズマ処理方法を提供することにある。
【0013】
本発明の第3の目的は、高精度表面処理を行うことのできるプラズマ処理装置およびプラズマ処理方法を提供することにある。
【0014】
【課題を解決するための手段】
上記第1の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く、位相を制御した高周波電力を印加することにより、達成される。さらに、前記両電極にそれぞれ印加する高周波の位相差は0°から360°である。また、前記プラズマは高周波電力と磁場を用いて生成される。さらに、位相をステップ的に切替えまたは時間的に変調することも有効である。
【0015】
上記第2の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く、位相を180°±45°に制御した高周波電力を印加することにより、達成される。また、処理室内壁に炭素を含む膜およびカバーを併用することが有効である。
【0016】
上記第3の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く、位相を制御した高周波電力を印加することにより、達成される。さらに、前記両電極にそれぞれ印加する高周波の位相差は0°から360°である。また、処理室内壁に炭素を含む膜およびカバーを併用することが有効である。
【0017】
【発明の実施の形態】
以下、本発明の第一の実施例を図1から図8を用いて説明する。図1は、本発明を適用するプラズマ処理装置の一例であるエッチング装置の縦断面図である。真空容器101の上部開口部には、円筒状の処理容器102,導電体でなる平板状のアンテナ電極103,電磁波を透過可能な誘電体窓104を気密に設け、内部に処理室を形成している。処理容器102の外周部には処理室を囲んで磁場発生用コイル105が設けてある。アンテナ電極103はエッチングガスを流すための多孔構造となっており、ガス供給装置107が接続されている。また、真空容器101には真空排気装置124が接続されている。
【0018】
アンテナ電極103上部には同軸線路108が設けられ、同軸線路108,フィルター109,整合器110を介してプラズマ生成用の高周波電源111(例えば、周波数450MHz)が接続されている。また、アンテナ電極103には同軸線路108,フィルター112,整合器113を介してアンテナバイアス電源(第2の高周波電源)114(例えば、周波数2MHz)が接続されている。ここで、フィルター109は高周波電源111からの高周波電力を通過させ、アンテナバイアス電源114からのバイアス電力を効果的にカットする。フィルター112はアンテナバイアス電源114からのバイアス電力を通過させ、高周波電源111からの高周波電力を効果的にカットする。
【0019】
真空容器101内の下部には被処理材116を配置可能な基板電極115が設けられている。基板電極115にはフィルター117,整合器118を介して基板バイアス電源(第1の高周波電源)119(例えば、周波数2MHz)が接続されている。また、基板電極115には被処理材116を静電吸着させるための静電チャック電源121がフィルター120を介して接続されている。ここで、フィルター117は基板バイアス電源119からのバイアス電力を通過させ、高周波電源111からの高周波電力を効果的にカットする。なお、通常、高周波電力はプラズマ中で吸収されるため基板電極115側へ流れることはないが、安全のためフィルター117を設けてある。フィルター120は静電チャック電源121からのDC電力を通過させ、高周波電源111,アンテナバイアス電源114,基板バイアス電源119からの電力を効果的にカットする。
【0020】
アンテナバイアス電源114と基板バイアス電源119は位相制御器122に接続されており、アンテナバイアス電源114および基板バイアス電源119から出力する高周波の位相を制御可能となっている。この場合、アンテナバイアス電源114と基板バイアス電源119の周波数は同一周波数とした。
【0021】
位相制御器122は、アンテナバイアス電源114側のフィルター112と整合器113との間および基板バイアス電源119側のフィルター117と整合器118との間からそれぞれ電圧波形を取り込み、位相制御器122内でそれぞれの電圧波形の位相が所望の位相差になるように、アンテナバイアス電源114と基板バイアス電源119とに位相をずらした小振幅の信号を出力する。この場合のアンテナバイアス電源114および基板バイアス電源119はアンプ機能を有するのみで良い。
【0022】
また、位相制御器122が、アンテナバイアス電源114側のフィルター112と整合器113との間および基板バイアス電源119側のフィルター117と整合器118との間からそれぞれ電圧波形を取り込み、電力の出力タイミングを制御するトリガー信号のみを出力するものである場合には、アンテナバイアス電源114および基板バイアス電源119はオシレータ機能を有するものとする。この場合、2つの高周波電源の出力タイミングを調整しても、あるいは1つの高周波電源の出力タイミングのみを調整しても良い。さらには、1方の高周波電源はオシレータ機能を有し、もう1方の高周波電源はアンプ機能のみとして、位相制御器122がオシレータ機能を有する高周波電源の出力信号を基準に、位相をずらした小振幅の信号をアンプ機能のみを有する高周波電源に供給するようにしても良い。
【0023】
上記のように構成された装置において処理室内部を真空排気装置124により減圧した後、ガス供給装置107によりエッチングガスを処理室内に導入し所望の圧力に調整する。高周波電源111より発振された、例えば、周波数450MHzの高周波電力は、同軸線路108を伝播し、上部電極103および誘電体窓104を介して処理室内に導入される。
【0024】
処理室内に導入された高周波電力による電界は、磁場発生用コイル105(例えば、ソレノイドコイル)により処理室内に形成された磁場との相互作用により、処理室内に高密度プラズマを生成する。また、アンテナバイアス電源114より高周波電力(例えば周波数2MHz)が同軸線路108を介してアンテナ電極103に供給される。また基板電極115に載置された被処理材116は、基板バイアス電源119より高周波電力(例えば周波数2MHz)が供給され、表面処理(例えばエッチング処理)される。
【0025】
アンテナ電極103に所望の材料を用いた場合、アンテナバイアス電源114によってアンテナ電極103に高周波電圧を印加することにより、該材料とプラズマ中のラジカルとが反応し、生成されるプラズマの組成を制御できる。例えば、酸化膜エッチングの場合、アンテナ電極103の材料にSiを用いることによって、酸化膜のエッチング特性に影響するプラズマ中のFラジカル量を調整することが可能となる。
【0026】
本構成の装置では、450MHzの高周波電源111によって主としてプラズマを生成し、アンテナバイアス電源114によってプラズマ組成あるいはプラズマ分布を制御し、基板バイアス電源119によってプラズマ中のイオンの被処理材116への入射エネルギーを制御している。このような装置では、プラズマ生成(イオン量)とプラズマ組成(ラジカル濃度比)を独立に制御できるというメリットがある。
【0027】
従来の方式では、プラズマ分布は主に磁場形状を変化させ、UHF電磁波のプラズマへの吸収効率を面内で変化させることにより調整していた。
【0028】
図2を用いて、エッチングレートの面内分布と位相差および磁場との関係を説明する。図2の縦軸はエッチングレート、横軸はウエハ中心からの距離である。図2によれば、磁場形状1の場合は、位相差180°の場合緩やかな凸分布となっているが、位相差を90°、0°と変化するとともに、フラット、凹分布へと連続的に変化している。また磁場形状2の場合は、位相差180°でフラットの分布が位相差90°、0°と変化するとともにM型分布へと変化する。すなわち、磁場形状だけでなく、磁場形状と位相差の両方を制御することにより、エッチング分布の微調整が可能であり、均一性を向上させる効果がある。
【0029】
半導体素子は一般に多層膜によって形成されている。したがってエッチング工程では、一種類の膜だけでなく、多数の膜を一度にまたは連続してエッチングする必要がある。被処理材の材質(膜種)により、エッチングに最適なガス種、イオンエネルギー、イオン量などが異なるため、異なる膜を一度にエッチングする場合にはガス種や投入電力などを段階的に変化させるステップエッチングを用いる。通常使用するガス種や投入電力などを変化させると、プラズマの分布が僅かに変化するので、ステップ毎に磁場等の最適化が必要である。しかし、磁場によるプラズマ分布の制御はプラズマ分布の変化が大きい。図2によれば、位相差を変化させることにより、分布を僅かに変化させることができることから、ステップ間の微小な分布制御に対しては、位相差による調整が有効である。
【0030】
また、図2の位相差を(例えば位相差0°から180°)時間的に変調すると(例えば周波数1kHz)位相差0°から180°の間の連続して変化する分布のほぼ平均値を得ることができる。このように位相差を時間的に変調した場合には、エッチングのステップ間での分布の調整は必要なくなることから、エッチングの均一性を向上させることが可能である。
【0031】
また、高アスペクト比のホールあるいはトレンチエッチングの場合、プラズマにより生成されるラジカルの付着係数の違いにより、ホール底部あるいはトレンチ底部に到達するラジカル量が、アスペクト比に応じて変化し、かつラジカル種により異なる。ラジカル自体も寿命を有するため、ラジカルのウエハ面内均一性もラジカル種ごとに異なる。図2に示すように、位相差によりプラズマ分布を変化させることができることから、アスペクト比に応じて位相差を制御することにより、高均一で高アスペクト比の加工が可能であるという効果がある。
【0032】
図3を用いて、位相差と被処理材116の電圧の最大値(最大電極電圧)を説明する。この場合、電極には約1kV振幅の電圧を印加した。一般にプラズマ電位は、この電極電圧によって押し上げられ、接地された処理容器側壁には、このプラズマ電位によって加速されたイオンが入射する。このイオンの衝撃により処理室内壁がスパッタされ、異物の原因となる可能性がある。図3によれば位相差180°とした場合に、最大電極電圧は極小となることから、位相差180°近傍の位相差を用いることによりプラズマから側壁に入射するイオンエネルギーが減少するので、側壁へのスパッタを抑制することが可能である。
【0033】
図5を用いて、図4に示す従来装置と本発明の場合のプラズマ電位と電極電位を説明する。すなわち、従来の方式では、UHF帯のアンテナ電位が電極電位に重畳され、プラズマ電位は、UHF帯のリップルが重畳された半波整流波形状で変化するが、本発明においては、アンテナ電位と電極電位にの位相差が0°のときは、プラズマ電位は半波整流波形状で変化するが、位相差が180°の時は、プラズマ電位をほぼ一定の低い値に維持することができる。この場合プラズマ電位には、アンテナ電位の高周波(例えば450MHz)が重畳されるが、問題はない。特に位相差180°±45°の場合が、従来装置と比較して効果的である。
【0034】
処理室の側壁がアルミニウム製で表面がアルマイト(Al)処理されている場合、CF系のエッチングガスを使用すると、側壁に入射するイオンエネルギーが高いと、アルマイト膜もスパッタされて削れたり、表面にAlFが形成される。スパッタされたアルマイト成分のAlは、処理室の壁面に付着し、Fと反応してAlFが形成される。このようにして形成されたAlFは、蒸気圧が低く安定であるため、次第に堆積し異物源となる場合が多い。このAlF異物はウエハのロット処理数が増加するとともに増加し、ウエハの歩留まりを低下させるため、ある管理限界値を超えると処理室を大気開放し、パーツ交換やウェット洗浄を実施する。このため装置稼働率の低下や消耗部品コストの増加などCOC増加を引き起こす。
【0035】
AlF異物を低減するには、処理室内壁面にAlを使用しないようにすることや、側壁に入射するイオンのエネルギーを低くし、側壁のスパッタを防止することが有効である。前者の具体的方法としては、AlF異物低減には処理室側壁を炭素を含む材料でカバーしたりコーティングすることが有効である。本実施例では耐熱性も考慮してポリイミドカバー、ポリイミドコーティングを実施した。図5に示すように、従来装置ではプラズマ電位が高いことから、図6(a)に示すように処理室下部近くまでプラズマ127が拡散する。従来方式で、絶縁材であるポリイミドカバー、ポリイミドコーティング125,126を処理室側壁および電極側面に使用すると、図6(b)に示すように、プラズマ127はプラズマ電位の基準となるアースの存在する処理室下部へさらに拡散する。処理室下部の材料はアルマイトであるためここでAlF異物が生成される。しかしながら図6(c)に示す本発明の場合(位相差180°)には、対向する電極が交互にアースとして機能し、図5に示すようにプラズマ電位が低く抑制されるために、プラズマ127を処理室上部に閉じ込めることができる。このため処理室下部のアルマイト部材へのプラズマ127の拡散を抑制できるためAlF異物の発生を抑制することができる。
【0036】
図7を用いて、従来方式と本発明の場合の処理ロット数と異物数の関係を説明する。30ロット処理後では、従来方式では粒径0.2μm以上の異物数は15個だったが、本発明では2個に減少した。したがって、対向する二つの電極に位相差180°の高周波電圧を印加し、ポリイミドで処理室側壁、電極側面をカバーあるいはコーティングすることにより、異物が低減できるという効果がある。特に位相差180°±30°とする場合が効果的である。
【0037】
本発明は、対向する二つの電極に印加する高周波電圧の位相差を180°±30°とすることによりプラズマの拡散を抑制し、側壁をポリイミドコーティングすることで、側壁に堆積する異物低減が可能となった。さらに、本発明では、プラズマ電位が従来装置に比較して低いので、ポリイミド表面に入射するイオンエネルギーも小さく、スパッタされにくい。そのためポリイミドコーティング膜の寿命が長いという効果もある。
【0038】
図8を用いて、プラズマ中のC発光強度と位相差との関係を説明する。プラズマ中のC発光強度は、プラズマ中の炭素原子量を示し、マスク選択比やエッチストップなどのエッチング特性と相関がある。図8によれば位相差を変化させることにより、プラズマ中のC発光強度が変化している。これは位相差によりプラズマ電位が変化するために、側壁に付着する炭素系の膜に入射するイオンのエネルギーが変化し、壁からプラズマ中へ脱離する炭素系ラジカル量が変化していることを示している。微細なパターンのエッチングを行う場合には、プラズマ中の組成の微調整が必要であるが、本方式ではガス種およびガス量だけでなく、位相差によってより微小なプラズマ中の組成を制御することが可能である。
【0039】
本発明の第2の実施例を、図9を用いて説明する。本図において図1または図6と同符号は同一部材として説明を省略する。本図が図1または図6と異なる点を以下説明する。真空容器101の上部開口部には、円筒状の処理容器102、導電体でなる平板上の上部電極203、誘電体104を気密に設け、内部に処理室を形成する。上部電極203は、フィルター209、整合器210を介して例えば27MHz、60MHzのプラズマ生成電源211に接続されている。上部電極203より処理容器102内に供給される高周波電力によりプラズマが生成される。処理室内壁には、炭素を含むカバー(例えばポリイミドカバー)125、126を設置、または炭素を含む膜をコーティングした内壁(例えばポリイミドコーティングを施した内壁)125、126を設置する。第一の実施例中で示した図6と同様に、本実施例においても、上下電極203,115に位相差180°で高周波電圧を印加することにより、プラズマ127を処理室上部に閉じ込めることが可能である。したがって第一の実施例と同様に、対向する二つの電極に位相差180°の高周波電圧を印加し、ポリイミドで処理室側壁、電極側壁をカバーあるいはコーティングすることにより、異物が低減できるという効果がある。
【0040】
また、上記実施例ではエッチング装置について述べたが、アッシング装置、プラズマCVD装置など、基板電極へ高周波電力を供給する他のプラズマ処理装置においても同様の効果がある。
【0041】
【発明の効果】
本発明によれば、基板電極と該電極に対向する電極にそれぞれ印加する高周波バイアスの位相を制御することにより、プラズマ分布を変化させることができることから、エッチング処理の均一性を向上することができるという効果がある。
【0042】
さらに、高周波バイアスの位相を制御することにより、壁へのイオン衝撃を高周波電圧の位相により自由に制御できるので、装置内壁からの異物の発生を低減でき、クリーニング周期を長くできるのでスループットの向上が可能となる。
【0043】
また、高周波バイアスの位相を制御することにより、プラズマ組成の微調整が可能なため、高精度なエッチング処理が可能である。
【図面の簡単な説明】
【図1】本発明を用いた第1の実施例であるエッチング装置を示す縦断面図。
【図2】エッチング分布と高周波電圧の位相差の関係を示す特性図。
【図3】基板電極の最大値と高周波電圧の位相差の関係を示す特性図。
【図4】従来方式のエッチング装置を示す縦断面図。
【図5】従来方式および本発明の場合のプラズマ電位と電極電圧波形。
【図6】従来方式および本発明の場合のポリイミドカバー、ポリイミドコーティングを使用した時のプラズマ拡散を示す概念図。
【図7】従来方式および本発明の場合の処理ロット数と異物数の関係。
【図8】プラズマ組成と高周波電圧の位相差を示す特性図。
【図9】本発明を用いた第2の実施例であるエッチング装置を示す縦断面図。
【符号の説明】
101…真空容器、102…処理容器、103…アンテナ電極、104…誘電体窓、105…磁場発生用コイル、107…ガス供給装置、108…同軸線路、109,112,117,120…フィルター、110,113,118…整合器、111…プラズマ生成電源(高周波電源)、114…アンテナバイアス電源(第2の高周波電源)、115…基板電極、116…被処理材、119…基板バイアス電源(第1の高周波電源)、121…静電チャック電源、122…位相制御器、124…真空排気装置、125,126…ポリイミドカバー/コーティング、127…プラズマ、203…上部電極

Claims (5)

  1. 真空排気装置が接続され内部を減圧可能な処理室、該処理室内へガスを供給するガス供給装置、被処理材を載置可能な基板電極、該基板電極に対向するプラズマを生成するためのアンテナ電極、該アンテナ電極へ接続されたプラズマ生成用高周波電源、前記基板電極へ接続されたバイアス用の第1の高周波電源および該アンテナ電極へ接続されたバイアス用の第2の高周波電源を有し、第1の高周波電源と第2の高周波電源から印加する高周波の周波数が等しく、かつ2つの高周波の位相差を制御する位相制御手段と、前記処理室を囲んで設けた磁場形状を制御可能な磁場形成手段を有するプラズマ処理装置において、
    前記位相差制御手段は、被処理材の処理中に第1の高周波電源と第2の高周波電源との高周波の位相差を時間的に連続して変化させる手段であることを特徴とするプラズマ処理装置。
  2. 請求項1記載のプラズマ処理装置において、処理室の内壁を炭素を含む膜でコーティングしたことを特徴とするプラズマ処理装置。
  3. 請求項1記載のプラズマ処理装置において、処理室の内側に炭素を含むカバーを設置することを特徴とするプラズマ処理装置。
  4. 請求項または請求項記載のプラズマ処理装置において、炭素を含む膜および炭素を含むカバーの材質がポリイミドであることを特徴とするプラズマ処理装置。
  5. 真空排気装置が接続され内部を減圧可能な処理室、該処理室内へガスを供給するガス供給装置、被処理材を載置可能な基板電極、該基板電極に対向するプラズマを生成するためのアンテナ電極、該アンテナ電極へ接続されたプラズマ生成用高周波電源、該基板電極へ接続されたバイアス用の第1の高周波電源および該アンテナ電極へ接続されたバイアス用の第2の高周波電源を有し、かつ二つの高周波の位相差を制御する位相制御手段と、前記処理室を囲んで設けた磁場形状を制御可能な磁場形成手段を有するプラズマ処理装置における積層膜のプラズマエッチング処理方法において、
    第1の高周波電源と第2の高周波電源から印加する高周波の周波数を等しく、かつ被処理材の処理中に第1の高周波電源と第2の高周波電源との二つの高周波の位相差を時間的に連続して変化させることを特徴とする積層膜のプラズマエッチング処理方法
JP2002268095A 2002-09-13 2002-09-13 プラズマ処理装置およびプラズマ処理方法 Expired - Fee Related JP3776856B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002268095A JP3776856B2 (ja) 2002-09-13 2002-09-13 プラズマ処理装置およびプラズマ処理方法
US10/364,464 US20040050495A1 (en) 2002-09-13 2003-02-12 Plasma processing apparatus and plasma processing method
US11/043,971 US20050126712A1 (en) 2002-09-13 2005-01-28 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268095A JP3776856B2 (ja) 2002-09-13 2002-09-13 プラズマ処理装置およびプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2004111432A JP2004111432A (ja) 2004-04-08
JP3776856B2 true JP3776856B2 (ja) 2006-05-17

Family

ID=31986742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268095A Expired - Fee Related JP3776856B2 (ja) 2002-09-13 2002-09-13 プラズマ処理装置およびプラズマ処理方法

Country Status (2)

Country Link
US (2) US20040050495A1 (ja)
JP (1) JP3776856B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW514996B (en) * 1999-12-10 2002-12-21 Tokyo Electron Ltd Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film
US20040081746A1 (en) * 2000-12-12 2004-04-29 Kosuke Imafuku Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment
US7147749B2 (en) * 2002-09-30 2006-12-12 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system
US7137353B2 (en) * 2002-09-30 2006-11-21 Tokyo Electron Limited Method and apparatus for an improved deposition shield in a plasma processing system
US7166200B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate in a plasma processing system
US6798519B2 (en) 2002-09-30 2004-09-28 Tokyo Electron Limited Method and apparatus for an improved optical window deposition shield in a plasma processing system
US6837966B2 (en) * 2002-09-30 2005-01-04 Tokyo Electron Limeted Method and apparatus for an improved baffle plate in a plasma processing system
US7204912B2 (en) * 2002-09-30 2007-04-17 Tokyo Electron Limited Method and apparatus for an improved bellows shield in a plasma processing system
US7166166B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved baffle plate in a plasma processing system
CN1249789C (zh) * 2002-11-28 2006-04-05 东京毅力科创株式会社 等离子体处理容器内部件
WO2004095532A2 (en) * 2003-03-31 2004-11-04 Tokyo Electron Limited A barrier layer for a processing element and a method of forming the same
US20050199183A1 (en) * 2004-03-09 2005-09-15 Masatsugu Arai Plasma processing apparatus
US20050241762A1 (en) * 2004-04-30 2005-11-03 Applied Materials, Inc. Alternating asymmetrical plasma generation in a process chamber
DE102004039969A1 (de) * 2004-08-18 2006-02-23 Leybold Optics Gmbh Plasmaquellenvorrichtung, Anordnung mit einer Plasmaquellenvorrichtung sowie Abstrahleinheit für eine Plasmaquellenvorrichtung
JP4773079B2 (ja) 2004-11-26 2011-09-14 株式会社日立ハイテクノロジーズ プラズマ処理装置の制御方法
US7552521B2 (en) * 2004-12-08 2009-06-30 Tokyo Electron Limited Method and apparatus for improved baffle plate
US7601242B2 (en) * 2005-01-11 2009-10-13 Tokyo Electron Limited Plasma processing system and baffle assembly for use in plasma processing system
US20060225654A1 (en) * 2005-03-29 2006-10-12 Fink Steven T Disposable plasma reactor materials and methods
JP4628900B2 (ja) * 2005-08-24 2011-02-09 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4593413B2 (ja) * 2005-09-15 2010-12-08 株式会社日立ハイテクノロジーズ プラズマ処理方法及び処理装置
US7401673B2 (en) * 2005-09-15 2008-07-22 Komatsu Ltd. Frame structure for construction machine
JP4928816B2 (ja) * 2006-03-31 2012-05-09 株式会社日立ハイテクノロジーズ 半導体製造装置
JP2008187062A (ja) * 2007-01-31 2008-08-14 Hitachi High-Technologies Corp プラズマ処理装置
JP5063154B2 (ja) * 2007-03-20 2012-10-31 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
GB2459103A (en) * 2008-04-09 2009-10-14 Univ Sheffield Biased plasma assisted processing
JP5890609B2 (ja) * 2011-03-22 2016-03-22 東京エレクトロン株式会社 プラズマ処理装置
JP5198616B2 (ja) * 2011-03-28 2013-05-15 株式会社日立ハイテクノロジーズ プラズマ処理装置
CN103327723A (zh) * 2012-03-23 2013-09-25 中微半导体设备(上海)有限公司 一种电容耦合等离子反应器及其控制方法
KR101932169B1 (ko) 2012-03-23 2018-12-27 삼성디스플레이 주식회사 기판 처리 장치 및 방법
US20130284369A1 (en) * 2012-04-26 2013-10-31 Applied Materials, Inc. Two-phase operation of plasma chamber by phase locked loop
US9161428B2 (en) 2012-04-26 2015-10-13 Applied Materials, Inc. Independent control of RF phases of separate coils of an inductively coupled plasma reactor
US9312106B2 (en) * 2013-03-13 2016-04-12 Applied Materials, Inc. Digital phase controller for two-phase operation of a plasma reactor
JP6113647B2 (ja) * 2013-12-19 2017-04-12 三菱重工業株式会社 真空処理装置及び膜厚分布調整方法
JP7018288B2 (ja) * 2017-10-10 2022-02-10 東京エレクトロン株式会社 成膜方法
CN108899275B (zh) * 2018-07-20 2021-03-02 北京北方华创微电子装备有限公司 一种等离子体刻蚀方法
CN111020533B (zh) * 2018-10-09 2022-02-18 上海理想万里晖薄膜设备有限公司 相位调制改变pecvd放电腔内电磁场分布的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414057A (en) * 1982-12-03 1983-11-08 Inmos Corporation Anisotropic silicide etching process
JP3576188B2 (ja) * 1993-08-31 2004-10-13 株式会社半導体エネルギー研究所 気相反応装置および気相反応方法
JP3144969B2 (ja) * 1993-11-17 2001-03-12 東京エレクトロン株式会社 プラズマエッチング方法
TW312815B (ja) * 1995-12-15 1997-08-11 Hitachi Ltd
JPH11354501A (ja) * 1998-05-29 1999-12-24 E I Du Pont De Nemours & Co ライナー用樹脂成形体の装着方法およびその装着治具
US6703092B1 (en) * 1998-05-29 2004-03-09 E.I. Du Pont De Nemours And Company Resin molded article for chamber liner
JP2000124197A (ja) * 1998-10-16 2000-04-28 Hitachi Ltd プラズマ処理装置
JP4408313B2 (ja) * 1999-10-29 2010-02-03 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
WO2001052303A1 (en) * 2000-01-11 2001-07-19 E.I. Dupont De Nemours And Company Liner for semiconductor etching chamber
US6875366B2 (en) * 2000-09-12 2005-04-05 Hitachi, Ltd. Plasma processing apparatus and method with controlled biasing functions
JP3621900B2 (ja) * 2000-09-12 2005-02-16 株式会社日立製作所 プラズマ処理装置および方法
US6806201B2 (en) * 2000-09-29 2004-10-19 Hitachi, Ltd. Plasma processing apparatus and method using active matching
JP3599670B2 (ja) * 2001-01-12 2004-12-08 株式会社日立製作所 プラズマ処理方法および装置

Also Published As

Publication number Publication date
US20050126712A1 (en) 2005-06-16
JP2004111432A (ja) 2004-04-08
US20040050495A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3776856B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP4566789B2 (ja) プラズマ処理方法およびプラズマ処理装置
US6089181A (en) Plasma processing apparatus
JP5205378B2 (ja) Rf変調によって弾道電子ビームの均一性を制御する方法及びシステム
US5851600A (en) Plasma process method and apparatus
US20120145186A1 (en) Plasma processing apparatus
US20020038631A1 (en) Plasma processing apparatus and method using active matching
WO1997036461A1 (fr) Procede et dispositif de traitement plasmique
JP3561080B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP3319285B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP3621900B2 (ja) プラズマ処理装置および方法
WO2000031787A1 (fr) Dispositif de gravure a sec et procede de gravure a sec
JPH11297679A (ja) 試料の表面処理方法および装置
JP2012222225A (ja) プラズマ処理装置
JP4238050B2 (ja) プラズマ処理装置及び処理方法
JP4653395B2 (ja) プラズマ処理装置
JP2000164582A (ja) プラズマ処理装置
JP3599670B2 (ja) プラズマ処理方法および装置
JP3563054B2 (ja) プラズマ処理装置および方法
JP2002319577A (ja) プラズマ処理装置
JP4640939B2 (ja) プラズマ処理装置およびプラズマ処理方法
JPH11204297A (ja) プラズマ処理装置及びプラズマ処理方法
JP3940467B2 (ja) 反応性イオンエッチング装置及び方法
JP2006114933A (ja) 反応性イオンエッチング装置
JP3379506B2 (ja) プラズマ処理方法及び装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees