JP3775334B2 - High-strength steel sheet with excellent workability, manufacturing method and processing method thereof - Google Patents
High-strength steel sheet with excellent workability, manufacturing method and processing method thereof Download PDFInfo
- Publication number
- JP3775334B2 JP3775334B2 JP2002116104A JP2002116104A JP3775334B2 JP 3775334 B2 JP3775334 B2 JP 3775334B2 JP 2002116104 A JP2002116104 A JP 2002116104A JP 2002116104 A JP2002116104 A JP 2002116104A JP 3775334 B2 JP3775334 B2 JP 3775334B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- tensile
- workability
- tensile steel
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車用部材の素材に適した加工性に優れた高張力鋼板ならびにその製造方法および加工方法に関する。
【0002】
【従来技術】
環境保全につながる燃費向上の観点から、自動車用鋼板の高強度薄肉化が強く求められている。自動車用部材はプレス成形により得られる複雑な形状のものが多く、高強度でありながら加工性の指標である伸びと伸びフランジ性がともに優れた材料が必要である。また、鋼板をより軽量化する観点からさらなる薄肉化が指向されており、板厚2.5mm以下の薄物に対する要望も強くなってきている。
【0003】
従来、この種の鋼板は種々提案されており、例えば、特開平6−172924号公報には、転位密度の高いベイニティック・フェライト組織が生成した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板は、転位密度の高いベイニティック・フェライト組織を含むため伸びが乏しいという欠点がある。また、ベイニティック・フェライト生成のためにランナウトテーブル上での強冷却が不可避であり薄物製造時にはランナウトテーブルでのストリップの走行性に問題が生じるため、板厚2.5mm以下といった薄物を生産するには不向きである。
【0004】
特開平6−200351号公報には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物で高張力化するには多量のTi添加を必要とし、寸法の大きい析出物が生成しやすく、特性が不安定になりやすいという欠点がある。また、この鋼は特性向上のために圧延荷重を増大させるSiを積極的に用いているため、薄物の製造において圧延荷重が増大し、鋼板形状確保が難しい。
【0005】
特開平7−11382号公報には、微細なTiCおよび/またはNbCが析出したアシキュラー・フェライト組織を有した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板も、先に述べた特開平6−172924号公報に提案された鋼板同様、アシキュラー・フェライトという転位密度の高い組織であるため十分な伸びが得られていない。また、この鋼は特開平6−200351号公報に開示された鋼と同様に、特性向上のために圧延荷重を増大させるSiを積極的に用いているため、薄物の製造において圧延荷重が増大し、鋼板形状確保が難しい。
【0006】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、自動車用部材のようにプレス時の断面形状が複雑な用途に適した、加工性の指標である伸びと伸びフランジ性がともに優れた高張力鋼板ならびにその製造方法および加工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を行った結果、以下の知見を得た。
(i)転位密度が低い組織とし、微細析出物で強化すると、強度−伸びバランスが向上する。
(ii)実質的に単相組織とし、微細析出物で強化すると、強度−伸びフランジ性バランスが向上する。
(iii)WまたはWとMoの両者、およびTiを含む複合析出物は微細に析出する。
(iv)複合析出物中のWまたはW+Moの割合が低くなると、析出物が粗大化するため、伸びと伸びフランジ性がともに低下する。
【0008】
本発明はこれらの知見に基づいて完成されたものであり、以下の(1)〜(20)を提供する。
【0009】
(1)フェライト相の面積比率が98%以上(ただし、98%を除く)であり、原子%でW/(Ti+W)≧0.25を満たす範囲でTiおよびWを含む析出物が分散析出していることを特徴とする、引張強度が590MPa以上の加工性に優れた高張力鋼板。
【0010】
(2)上記(1)において、前記析出物はTi、Wに加え、NbおよびVの1種以上を含むことを特徴とする加工性に優れた高張力鋼板。
【0011】
(3)上記(2)において、前記析出物は、原子%で、W/(Ti+Nb+V+W)≧0.25を満たすことを特徴とする加工性に優れた高張力鋼板。
【0012】
(4)上記(1)において、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、W:0.1〜1.0%、Ti:0.03〜0.2%を含み、残部がFeおよび不可避不純物からなることを特徴とする加工性に優れた高張力鋼板。
【0013】
(5)上記(4)において、C、Ti、Wを以下の(1)式を満足するように含有することを特徴とする加工性に優れた高張力鋼板。
0.5≦(C/12)/{(Ti/48)+(W/184)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Wは各成分の質量%を表す。
【0014】
(6)上記(2)または(3)において、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、W:0.1〜1.0%、Ti:0.03〜0.2%を含み、さらにNb≦0.08%およびV≦0.15%のうち1種以上を含み、残部がFeおよび不可避不純物からなることを特徴とする加工性に優れた高張力鋼板。
【0015】
(7)上記(6)において、C、Ti、Nb、V、Wを以下の(2)式を満足するように含有することを特徴とする加工性に優れた高張力鋼板。
0.5≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)}≦1.5 …(2)
ただし、上記(2)式中、C、Ti、Nb、V、Wは各成分の質量%を表す。
【0016】
(8)フェライト相の面積比率が98%以上(ただし、98%を除く)であり、原子%で(W+Mo)/(Ti+W+Mo)≧0.25を満たす範囲でTi、W、およびMoを含む析出物が分散析出していることを特徴とする、引張強度が590MPa以上の加工性に優れた高張力鋼板。
【0017】
(9)上記(8)において、前記析出物はTi、W、Moに加え、NbおよびVの1種以上を含むことを特徴とする加工性に優れた高張力鋼板。
【0018】
(10)上記(9)において、前記析出物は、原子%で、(W+Mo)/(Ti+Nb+V+W+Mo)≧0.25を満たすことを特徴とする加工性に優れた高張力鋼板。
【0019】
(11)上記(8)において、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、W≦1.0%、Mo≦0.5%、Ti:0.03〜0.2%を含み、残部がFeおよび不可避不純物からなることを特徴とする加工性に優れた高張力鋼板。
【0020】
(12)上記(11)において、C、Ti、W、Moを以下の(3)式を満足するように含有することを特徴とする加工性に優れた高張力鋼板。
0.5≦(C/12)/{(Ti/48)+(W/184)+(Mo/96)}≦1.5 …(3)
ただし、上記(3)式中、C、Ti、W、Moは各成分の質量%を表す。
【0021】
(13)上記(9)または(10)において、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、W≦1.0%、Mo≦0.5%、Ti:0.03〜0.2%を含み、さらにNb≦0.08%およびV≦0.15%のうち1種以上を含み、残部がFeおよび不可避不純物からなることを特徴とする加工性に優れた高張力鋼板。
【0022】
(14)上記(13)において、C、Ti、Nb、V、W、Moを以下の(4)式を満足するように含有することを特徴とする加工性に優れた高張力鋼板。
0.5≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)+(Mo/96)}≦1.5 …(4)
ただし、上記(4)式中、C、Ti、Nb、V、W、Moは各成分の質量%を表す。
【0023】
(15)上記(1)から(14)のいずれかにおいて、板厚2.5mm以下の薄物熱延鋼板であることを特徴とする加工性に優れた高張力鋼板。
【0024】
(16)上記(1)から(15)のいずれかにおいて、表面に溶融亜鉛系めっき皮膜を有することを特徴とする加工性に優れた高張力鋼板。
【0025】
(17)上記(1)から(15)のいずれかの高張力鋼板を製造するに際し、熱間圧延を、仕上圧延終了温度800℃以上、巻取温度570℃以上の条件で行うことを特徴とする加工性に優れた高張力鋼板の製造方法。
【0026】
(18)上記(1)から(16)のいずれかの高張力鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高張力鋼板の加工方法。
【0027】
(19)上記(18)において、プレス成形品は、自動車用部品、特に自動車用足廻り部材である高張力鋼板の加工方法。
【0028】
(20)上記(1)から(16)のいずれかに記載の高張力鋼板により製造された自動車用部品。
【0029】
【発明の実施の形態】
以下、本発明について、金属組織、化学成分等、および製造方法に分けて具体的に説明する。
【0030】
[金属組織]
本発明に係る高張力鋼板は、フェライト相の面積比率が98%以上であり、原子%でW/(Ti+W)≧0.25を満たす範囲でTiおよびWを含む析出物が分散析出している。この析出物はTi、Wに加え、NbおよびVの1種以上を含んでいてもよく、その場合には、原子%で、Mo/(Ti+Nb+V+Mo)≧0.25であることが好ましい。この析出物としては、原子%で(W+Mo)/(Ti+W+Mo)≧0.25を満たす範囲でTi、W、およびMoを含むものであってもよい。この析出物はTi、W、Moに加え、NbおよびVの1種以上を含んでいてもよく、その場合には、原子%で、(W+Mo)/(Ti+Nb+V+W+Mo)≧0.25であることが好ましい。以下、これらについて説明する。
【0031】
・フェライト相の面積比率が98%以上:
マトリックスをフェライト相の面積比率が98%以上と実質的にフェライト単相組織としたのは、伸びの向上には転位密度の低いフェライトが有効であり、また、伸びフランジ性の向上には単相組織とすることが有効であり、特に延性に富むフェライト単相組織でその効果が顕著であるためである。
【0032】
・原子%で、W/(Ti+W)≧0.25の範囲でTiおよびWを含む析出物、または(W+Mo)/(Ti+W+Mo)≧0.25の範囲でTi、W、およびMoを含む析出物:
TiとWとを含む析出物は微細となるため鋼を強化するのに有効である。従来は、析出物としてTiCを用いることが主流であったが、Tiは析出物形成傾向が強いためWを含まない場合、粗大化しやすく、強化に対する効果が低くなることから、必要な強化量を得るには加工性を劣化させるまでの析出物が必要となる。これに対し、TiとWとを含む複合析出物は微細に析出して加工性を劣化させずに鋼を強化することができる。これは、Wの析出物形成傾向がTiと比べて弱いため、安定的に微細に存在できることで強化に対する効果が高く、加工性を良好に維持できる析出物量で必要な強化量が得られるためと考えられる。特に、この複合析出物の平均粒径を10nm未満とすることで、析出物周囲の歪みが転位の移動の抵抗にとってより効果的となり、良好な鋼の強度が得られるため、平均粒径10nm未満の複合析出物とすることが好ましい。さらに好ましくは、平均粒径5nm以下である。析出物が安定的に微細に存在できるためには、析出物の組成が影響し、析出物の組成が、原子比で、W/(Ti+W)≧0.25となると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。MoもWと同様の効果を有するため、TiとWにさらにMoを含む複合析出物も微細に析出して加工性を劣化させずに鋼を強化することができる。この場合に、析出物が安定的に微細に存在できるためには、析出物の組成が、原子比で(W+Mo)/(Ti+W+Mo)≧0.25となると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。
【0033】
・TiとWまたはTiとWとMoに加え、NbまたはVの1種以上を含む析出物:
析出物がTiとWまたはTiとWとMoに加え、NbおよびVの1種以上が複合して析出したものであっても、WおよびMoの析出物形成傾向はNb、Vと比べて弱いため、その複合析出物はTiとWの複合析出物またはTiとWとMoの複合析出物と同様に、安定的に微細に存在できる。このため、析出物としては、TiとWまたはTiとWとMoの他にNbおよびVの1種以上が複合析出したものであってもかまわない。
【0034】
・原子%で、W/(Ti+Nb+V+W)≧0.25または(W+Mo)/(Ti+Nb+V+W+Mo)≧0.25:
複合析出物が、TiとWまたはTiとWとMoに加え、NbおよびVの1種以上を含むものである場合、その組成が、原子比で、W/(Ti+Nb+V+W)≧0.25または(W+Mo)/(Ti+Nb+V+W+Mo)≧0.25であることが好ましい。この範囲であれば、複合析出物の粗大化を抑制する効果が高く、加工性を良好に維持することができる析出物量で必要な強化量を得ることができる。
【0035】
[化学成分等発明]
本発明では、上記金属組織さえ満たしていれば所望の伸びおよび伸びフランジ性および590MPa以上の強度が得られ、化学成分は特に限定されないが、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、W:0.1〜1.0%、Ti:0.03〜0.2%を含み、残部がFeおよび不可避不純物からなることが好ましい。また、Moを含む場合には、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、W≦1.0%、Mo≦0.5%、Ti:0.03〜0.2%を含み、残部がFeおよび不可避不純物からなることが好ましい。さらに、上述のように複合析出物にNbおよびVの1種以上を含有させる場合には、上記成分に加えNb≦0.08%、V≦0.15%のうち1種以上を含有し、残部がFeおよび不可避不純物からなることが好ましい。以下、これら各成分について説明する。
【0036】
C:0.01〜0.1%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.01%未満では、鋼の強化が不十分であり、0.1%を超えて添加するとパーライトが形成されることと析出物が粗大化することから伸びと伸びフランジ性を損なうおそれがある。このため、C含有量は0.01〜0.1%が好ましい。
【0037】
Si:0.3%以下
Siは固溶強化には有効な元素であるが、0.3%を超えて添加すると、フェライトからのC析出が促進されて粒界に粗大な鉄炭化物が析出しやすくなり、伸びフランジ性が低下する傾向となる。また、本発明においては、従来積極的に用いられてきたSiを低減することによりオーステナイトの圧延荷重を低減し、薄物の製造を容易化することができ、0.3%を超えて添加すると厚さ2.5mm以下の材料の圧延が不安定となる。また、Si添加で圧延負荷が増大し、圧延材の形状が悪くなる。これらの理由により、Si含有量は0.3%以下が好ましい。さらに好ましくは0.15%以下であり、望ましくは0.05%以下である。
【0038】
Mn:0.2〜2.0%
Mnは固溶強化により鋼を強化する観点からは0.2%以上が好ましいが、2.0%を超えて添加すると偏析し、かつ硬質相が形成され、伸びフランジ性が低下する。このため、Mnの含有量は0.2〜2.0%が好ましい。
【0039】
P:0.06%以下
Pは固溶強化に有効であるが、0.06%を超えて添加すると偏析して伸びフランジ性が低下するおそれがあるため、0.06%以下とすることが好ましい。
【0040】
S:0.01%以下
Sは少ないほど好ましく、0.01%を超えると伸びフランジ性を低下させるおそれがあるため、0.01%以下が好ましい。さらに好ましくは0.005%以下であり、望ましくは0.003%以下である。
【0041】
Al:0.1%以下
Alは脱酸剤として添加される。しかし、0.1%を超えると伸びおよび伸びフランジ性がともに低下する傾向にあるため0.1%以下が好ましい。
【0042】
N:0.006%以下
Nは少ないほど好ましく、0.006%を超えると粗大な窒化物が増え、伸びフランジ性が低下する傾向にあるため0.006%以下が好ましい。
【0043】
W:0.1〜1.0%
Wは本発明において重要な元素であり、Moを添加しない場合、0.1%以上含有させることで、パーライト変態を抑制しつつ、Tiとの微細な複合析出物、または、Tiに加えNbおよびVのうち1種以上を含む微細な複合析出物を形成し、優れた伸びおよび伸びフランジ性を確保し、かつ鋼を強化することができる。しかし、1.0%を超えて添加すると硬質相が形成され伸びフランジ性が低する傾向にある。このため、Wの含有量はMoを添加しない場合は0.1〜1.0%が好ましい。なお、Moを添加する場合には、MoがWと同様の作用を有するため、Moの含有量に応じて好ましい下限の値が決まる。
【0044】
Ti:0.03〜0.2%
Tiは本発明において重要な元素である。Wと複合析出物を形成することで、優れた伸びおよび伸びフランジ性を確保しつつ、鋼を強化することができる。また、Moを添加する場合には、WおよびMoと複合析出物を形成して同様の効果を奏する。しかし、0.03%未満では、鋼を強化する効果が不十分であり、0.2%を超えると伸びフランジ性が低下する傾向にある。したがって、Tiの含有量は0.03〜0.2%が好ましい。
【0045】
Mo:0.5%以下
MoはWと同様パーライト変態を抑制しする効果を有し、Wとともに添加されることによりTiおよびWとの微細な複合析出物、または、これらに加えNbおよびVのうち1種以上を含む微細な複合析出物を形成し、優れた伸びおよび伸びフランジ性を確保し、かつ鋼を強化することができる。しかし、0.5%を超えて添加すると硬質相が形成され伸びフランジ性が低する傾向にある。このため、Mo含有量は0.5%以下が好ましい。
【0046】
Nb:0.08%以下
Nbは組織の細粒化に有効であり、かつTiおよびW、またはTi、WおよびMoとともに複合析出して複合析出物を形成し、優れた伸びと伸びフランジ性を得ることに寄与するため、必要に応じて添加する。しかし、Nb量が0.08%を超えると伸びが劣化する傾向にあるため、Nbを含有させる場合には0.08%以下が好ましい。なお、Nbの組織の細粒化効果を得る観点からは0.005%以上が好ましい。
【0047】
V:0.15%以下
Vは組織の微細化に有効であり、かつTiおよびW、またはTi、WおよびMoとともに複合析出して複合析出物を形成し、優れた伸びと伸びフランジ性を得ることに寄与するため、必要に応じて添加する。しかし、V量が0.15%を超えると伸びが劣化する傾向にあるため、Vを含有させる場合には0.15%以下が好ましい。なお、Vの組織の細粒化効果を得る観点からは0.001%以上が好ましい。
【0048】
なお、Cr:0.15%以下、Cu:0.15%以下、Ni:0.15%以下の1種類以上を含んでいても特性上問題はない。
【0049】
また、本発明では、上記組成に加えて、以下の(1)式を満たすことが好ましい。
0.5≦(C/12)/{(Ti/48)+(W/184)}≦1.5 …(1)
(ただし、上記(1)式中、C、Ti、Wは各成分の質量%を表す)
これは、鋼中のCと(Ti+W)との原子数比が0.5〜1.5となるように、C、Ti、Wの含有量を調整することにより、TiとWとを含む炭化物が微細に析出しやすくなり、10nm未満の微細析出物の形成が容易となるからである。(C/12)/{(Ti/48)+(W/184)}の値は、0.8〜1.3がより望ましい。
【0050】
また、TiおよびWに加え、Nb、Vの1種以上を添加する場合には、以下の(2)式を満たすことが好ましい。
0.5≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)}≦1.5 …(2)
(ただし、上記(2)式中、C、Ti、W、Nb、Vは各成分の質量%を表す)
この場合にも、鋼中のCと(Ti+Nb+V+W)との原子数比が0.5〜1.5となるように、C、Ti、Nb、V、Wの含有量を調整することにより、TiとWに加え、NbおよびVの1種以上が複合して析出した複合析出物が微細に分散析出しやすくなるからである。(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)}の値は、0.8〜1.3がより望ましい。
【0051】
なお、Moを添加する場合には、同様に、以下の(3)式または(4)式を満たすことが好ましい。
0.5≦(C/12)/{(Ti/48)+(W/184)+(Mo/96)}≦1.5 …(3)
0.5≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)+(Mo/96)}≦1.5 …(4)
(ただし、上記(3)、(4)式中、C、Ti、W、Mo、Nb、Vは各成分の質量%を表す。)
これら(C/12)/{(Ti/48)+(W/184)+(Mo/96)}および(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)+(Mo/96)}についても、0.8〜1.3がより望ましい。
【0052】
本発明の高張力鋼板は、表面に溶融亜鉛系めっき皮膜を形成し、溶融亜鉛系めっき鋼板とすることも可能である。溶融亜鉛系めっきを行った後に、合金化反応を続けて行った合金化溶融亜鉛系めっき鋼板も含む。ここで、溶融亜鉛系めっきとは、めっき皮膜が実質的にZnからなる溶融めっき、またはZnを主体する溶融めっきであり、亜鉛の他にCr、Mn等の合金元素が含まれていてもよい。
【0053】
本発明の高張力鋼板は、伸びおよび伸びフランジ性がともに優れているため、薄肉化が容易であり、強度も高いため、厚さ2.5mm以下という薄肉化の要求を満足する。
【0054】
[製造方法]
本発明では、上記高張力鋼を製造するに際し、熱間圧延を、仕上圧延終了温度800℃以上、巻取温度570℃以上の条件で行うことが好ましい。以下、これら条件について説明する。
【0055】
・仕上圧延終了温度800℃以上
仕上圧延終了温度は伸びおよび伸びフランジ性と圧延荷重を低減するのに重要である。800℃未満では、粗大粒が発生して伸びフランジ性が損なわれるとともに、圧延荷重が増大して薄物の熱間圧延が困難となる。そのため、仕上圧延終了温度は800℃以上が好ましい。
【0056】
・巻取温度570℃以上
フェライト組織を得るため、およびランナウトテーブル上での注水量を抑えて薄物を安定的に通板させるため、巻取温度を570℃以上とする。これらに加えさらにランナウトテーブル上の鋼板の走行安定性を確保するには600℃以上が好ましい。
【0057】
なお、本発明の鋼板は、黒皮ままでも酸洗材でもその特性に差違はない。調質圧延についても通常行われているものであれば特に規定はない。また、電気めっきも可能であり、化成処理についても特に問題はない。鋳造後直ちにもしくは補熱を目的とした加熱を施した後にそのまま熱間圧延を行う直送圧延を行っても本発明の効果に影響はない。さらに、粗圧延後に仕上圧延前で、圧延材を加熱しても、粗圧延後、圧延材を接合して行う連続圧延を行っても、さらには圧延材の加熱と連続圧延を同時に行っても本発明の効果は損なわれない。
【0058】
本発明の高張力鋼板は、加工性に優れ、特に伸びフランジ性に優れているのでこれをプレス成形した場合、その特質が活かされ、自動車用部材、特にサスペンションアーム等の足廻り部材のようなプレス時の断面形状が複雑な部材を良好な品質で製造することができ、特に、プレス成形品の軽量化に資することができる。以下に具体的に、本発明に係る高張力鋼板の加工方法、換言すればプレス成形品の製造方法について説明する。
【0059】
図1は、本発明に係る高張力鋼板の加工方法の作業フローの一例を示すフローチャートである。この作業フローは、通常、本発明に係る鋼板を製造することまたはその製造された鋼板を例えばコイルにして目的場所に搬送することを前工程としており、まず、本発明に係る高張力鋼板を準備することから始まる(S0、S1)。この鋼板に対してプレス加工を施す前に、鋼板に対して前処理的な加工を施すこともあれば(S2)、裁断機により所定の寸法や形状に加工することもある(S3)。前者のS2の工程では、例えば鋼板の幅方向の所定箇所に切り込みや穿孔を行い、引き続くプレス加工を終えた段階またはそのプレス加工の過程で、所定の寸法および形状のプレス成形品または被プレス加工部材として切り離すことができるようにしておく。後者のS3の工程では、最終的なプレス成形品の寸法、形状等を予め考慮して、所定の寸法および形状の鋼板部材に加工(したがって裁断)するようにしておく。その後、S2およびS3の工程を経由した部材には、プレス加工が施され、最終的に目的とする寸法・形状の所望のプレス成形品が製造される(S4)。このプレス加工は、通常は多段階で行われ、3段階以上7段階以下であることが多い。
【0060】
S4の工程は、S2およびS3の工程を経由した部材に対してさらに所定の寸法や形状に裁断する工程を含む場合もある。この場合の「裁断」という作業は、例えば、少なくともプレス加工の過程で、S2およびS3の工程を経由した部材の端部のような最終的なプレス成形品には不要部分を切り離す作業であっても構わないし、また、S2の工程で設けられた鋼板の幅方向の切り込みや穿孔に沿って被プレス加工部材を切り離す作業であっても構わない。
【0061】
なお、図1中、N1ないしN3は、鋼板、部材、プレス成形品を、機械的にあるいは作業員による搬送作業である場合がある。
【0062】
こうして製造されるプレス成形品は、必要に応じて次工程に送られる。次工程としては、例えば、プレス成形品にさらに機械加工を施し、寸法や形状を調整する工程、プレス成形品を所定場所に搬送し、格納する工程、プレス成形品に表面処理を施す工程、プレス成形品を用いて自動車のような目的物を組み立てる組立工程がある。
【0063】
図2は、図1に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図である。この図においては、本発明に係る高張力鋼板はコイル状で準備されており、プレス加工機によりプレス成形品が製造される。プレス加工機は多段プレスを行う機種のものであるが、本件発明はこれに限定されない。
【0064】
プレス加工機の前段に、裁断機その他の前処理機械を設置する場合(図2の(a))もあれば、設置しない場合(図2の(b))もある。裁断機が設置される場合には、コイルから供給される長尺の本発明に係る鋼板から、必要な寸法または形状の部材を裁断し、この部材がプレス加工機においてプレス加工され、所定のプレス成形品となる。鋼板の幅方向に切り欠きや穿孔を施す前処理機械が設置される場合には、プレス加工機においてその切り欠きや穿孔に沿って裁断が行われても構わない。前処理機械を設置しない場合には、プレス加工機において鋼板がプレス加工される過程で、裁断が行われ、最終的に所定の寸法、形状を有するプレス成形品が製造される。なお、図2における「裁断」の意味は、図1における裁断と同じである。
【0065】
こうして製造されるプレス成形品は、その原材料として加工性に優れ、特に伸びフランジ性に優れている本発明に係る高張力鋼板を使用しているので、プレス時の断面形状が複雑であっても、良好な品質で製造することができ、軽量なものとなる。このような特長は、プレス成形品が自動車用部材、特にサスペンションアーム等の足廻り部材である場合に特に有用である。
【0066】
【実施例】
表1に示す化学成分を有する鋼片を、1250℃に加熱し、通常の熱間圧延工程によって表1の仕上温度と巻取温度で板厚2.0mmに圧延した。得られた鋼板を酸洗後、鋼板から作製した薄膜を透過型電子顕微鏡(TEM)によって観察し、析出物寸法を測定した。また、エネルギー分散型X線分光装置(EDX)を用いて析出物を構成する元素分析を行った。さらに、ピーク値より各元素の濃度を算出した。
【0067】
また、得られた鋼板からJIS5号引張試験片および穴広げ試験片を採取した。引張試験片は圧延垂直方向から採取し、穴広げ試験は、日本鉄鋼連盟規格に沿って行った。また、得られた鋼板を2m長さに切断し、その形状を定盤の上で評価した。評価は目視で行い、その際の評価基準は耳波や中伸びの見られないものを○、これらがひどく、平板として使用できないものを×とした。
【0068】
表1に、組織、析出物の組成((W+Mo)/(Ti+Nb+W+Mo)の値(表中、析出物組成と記載))、炭化物、および析出物サイズ(平均粒径)を併記する。また、機械的性質および板形状を表2に示す。
【0069】
表1中、No.1〜3、7、8は本発明例、No.4〜6は比較例である。これらのうち、No.1〜6は780MPa級の熱延鋼板の例である。No.1と3はWとMoのうちWのみが添加された例であり、No.2はWとMoが添加された例である。No.1〜3のいずれも組織はフェライト単相であり、No.1と3はTiとWを含んだ炭化物が析出し、No.2はTiとWとMoを含んだ炭化物が析出した。これらの伸び(EL)は16%を超え、穴広げ率(λ)も100%を超えており、優れた加工性を示すことが確認された。
【0070】
これに対し、比較例のNo.4〜6のうち、No.4は析出物の種類、および組織が本発明の範囲外であり、析出物サイズが大きく、圧延荷重が高く板形状も悪く、使用に耐え得なかった。ELも15%と低い値であった。No.5も析出物の種類、および組織が本発明の範囲外であり、ELが15%以下と低く、板形状も悪かった。No.6は組織がフェライト単相であるものの、析出物がTiC、NbCであり粗大であった。No.6は材質変動が大きく加工性がばらついていたため、ELおよびλとして最大値をとったが、ELが15%、λが90%と低く、ばらつきの最大値をとっても加工性は乏しかった。板形状もプレスできないほど悪かった。
【0071】
No.7、8はそれぞれ590MPa級、980MPa級の本発明例であるが、各強度レベルに応じて良好なELおよびλを示した。また、板形状も良好であった。
【0072】
【表1】
【0073】
【表2】
【0074】
【発明の効果】
以上説明したように、本発明によれば、加工性の指標である伸びおよび伸びフランジ性に優れた高張力鋼板を提供することができ、自動車部材の軽量化に寄与する効果が顕著である。
【図面の簡単な説明】
【図1】本発明に係る高張力鋼板の加工方法の作業フローの一例を示すフローチャート。
【図2】図1に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet excellent in workability suitable for a material for automobile members, and a manufacturing method and processing method thereof.
[0002]
[Prior art]
From the viewpoint of improving fuel efficiency leading to environmental conservation, there is a strong demand for reducing the strength and thickness of automotive steel sheets. Many automotive members have complicated shapes obtained by press molding, and materials that have both high strength and excellent elongation and stretch flangeability, which are indexes of workability, are required. Further, from the viewpoint of reducing the weight of the steel sheet, further thinning is directed, and a demand for a thin object having a thickness of 2.5 mm or less is also increasing.
[0003]
Conventionally, various steel sheets of this type have been proposed. For example, Japanese Patent Application Laid-Open No. 6-172924 proposes a steel sheet excellent in stretch flangeability formed by a bainitic ferrite structure having a high dislocation density. However, this steel sheet has a drawback that it has poor elongation because it contains a bainitic ferrite structure with a high dislocation density. In addition, strong cooling on the run-out table is inevitable for the production of bainitic ferrite, and there is a problem with the runnability of the strip on the run-out table when producing thin products. Not suitable for.
[0004]
Japanese Patent Laid-Open No. 6-200351 proposes a steel plate having excellent stretch flangeability, in which most of the structure is polygonal ferrite and precipitation strengthening and solid solution strengthening are performed centering on TiC. However, in order to increase the tension with generally well-known precipitates used in this steel plate, it is necessary to add a large amount of Ti, and precipitates having large dimensions are likely to be formed, and the characteristics are likely to be unstable. There is a drawback. Moreover, since this steel positively uses Si that increases the rolling load for improving the characteristics, the rolling load increases in the production of thin objects, and it is difficult to ensure the shape of the steel sheet.
[0005]
Japanese Laid-Open Patent Publication No. 7-11382 proposes a steel sheet having an acicular ferrite structure in which fine TiC and / or NbC is precipitated and having excellent stretch flangeability. However, since this steel sheet is a structure having a high dislocation density called acicular ferrite as well as the steel sheet proposed in Japanese Patent Laid-Open No. 6-172924, sufficient elongation cannot be obtained. Further, this steel, like the steel disclosed in JP-A-6-200351, actively uses Si for increasing the rolling load for improving the characteristics, so that the rolling load increases in the production of thin materials. It is difficult to ensure the shape of the steel plate.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and is suitable for an application having a complicated cross-sectional shape at the time of pressing, such as an automobile member. It is an object of the present invention to provide a tension steel sheet and a manufacturing method and a processing method thereof.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
(I) When the structure has a low dislocation density and is strengthened with fine precipitates, the strength-elongation balance is improved.
(Ii) When a substantially single phase structure is formed and strengthened with fine precipitates, the strength-stretch flangeability balance is improved.
(Iii) W or both W and Mo, and the composite precipitate containing Ti precipitate finely.
(Iv) When the ratio of W or W + Mo in the composite precipitate is lowered, the precipitate is coarsened, so that both elongation and stretch flangeability are lowered.
[0008]
The present invention has been completed based on these findings and provides the following (1) to (20).
[0009]
(1) The area ratio of the ferrite phase is 98% or more (however, excluding 98%) , and precipitates containing Ti and W are dispersed and precipitated in a range satisfying W / (Ti + W) ≧ 0.25 in atomic%. A high-tensile steel sheet excellent in workability having a tensile strength of 590 MPa or more, characterized in that
[0010]
(2) In the above (1), the precipitate contains one or more of Nb and V in addition to Ti and W, and is a high-tensile steel plate excellent in workability.
[0011]
(3) In the above (2), the precipitate is an atomic% and satisfies W / (Ti + Nb + V + W) ≧ 0.25.
[0012]
(4) In the above (1), by mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, W: 0.1 to 1.0%, Ti: 0.03 to 0.2%, the balance being Fe and inevitable impurities high-tensile steel sheet having excellent workability, characterized in that it consists of.
[0013]
(5) A high-tensile steel sheet excellent in workability, characterized in that, in (4) above, C, Ti and W are contained so as to satisfy the following expression (1).
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, and W represent the mass % of each component.
[0014]
(6) In the above (2) or (3), by mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0. 06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, W: 0.1 to 1.0%, Ti: 0.03 to 0.2%, and Nb A high-tensile steel sheet excellent in workability, comprising one or more of ≦ 0.08% and V ≦ 0.15%, the balance being Fe and inevitable impurities .
[0015]
(7) A high-tensile steel plate excellent in workability characterized by containing C, Ti, Nb, V, and W in (6) so as to satisfy the following expression (2).
0.5 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 (2)
However, in said Formula (2), C, Ti, Nb, V, and W represent the mass % of each component.
[0016]
(8) Precipitation including Ti, W, and Mo within a range where the area ratio of the ferrite phase is 98% or more (excluding 98%) and atomic percent satisfies (W + Mo) / (Ti + W + Mo) ≧ 0.25 A high-tensile steel sheet excellent in workability having a tensile strength of 590 MPa or more, characterized in that a product is dispersed and precipitated.
[0017]
(9) In the above (8), the precipitate contains one or more of Nb and V in addition to Ti, W, and Mo, and is a high-tensile steel sheet excellent in workability.
[0018]
(10) In the above (9), the precipitate is an atomic% and satisfies (W + Mo) / (Ti + Nb + V + W + Mo) ≧ 0.25.
[0019]
(11) In the above (8), in mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, W ≦ 1.0%, Mo ≦ 0.5%, Ti: 0.03 to 0.2%, the balance being Fe And a high-tensile steel sheet excellent in workability, characterized by comprising inevitable impurities .
[0020]
(12) A high-tensile steel plate excellent in workability characterized by containing C, Ti, W, and Mo in (11) so as to satisfy the following expression (3).
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} ≦ 1.5 (3)
However, in said Formula (3), C, Ti, W, and Mo represent the mass % of each component.
[0021]
(13) In the above (9) or (10), in mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0. Including 06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, W ≦ 1.0%, Mo ≦ 0.5%, Ti: 0.03 to 0.2% Further, a high-tensile steel sheet excellent in workability, characterized by further including at least one of Nb ≦ 0.08% and V ≦ 0.15%, and the balance being made of Fe and inevitable impurities .
[0022]
(14) A high-tensile steel sheet excellent in workability, characterized by containing C, Ti, Nb, V, W, and Mo in (13) so as to satisfy the following expression (4).
0.5 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184) + (Mo / 96)} ≦ 1.5 (4)
However, in said Formula (4), C, Ti, Nb, V, W, and Mo represent the mass % of each component.
[0023]
(15) A high-tensile steel plate excellent in workability, which is a thin hot-rolled steel plate having a thickness of 2.5 mm or less in any one of (1) to (14).
[0024]
(16) A high-tensile steel sheet excellent in workability, characterized in that in any one of the above (1) to (15), the surface has a hot dip galvanized film.
[0025]
(17) When producing the high-tensile steel plate according to any one of (1) to (15) above, hot rolling is performed under conditions of a finish rolling end temperature of 800 ° C. or higher and a winding temperature of 570 ° C. or higher. The manufacturing method of the high-tensile steel plate excellent in workability.
[0026]
(18) A first step of preparing a member made of the high-tensile steel plate according to any one of (1) to (16) above, and a second step of pressing the member into a press-formed product having a desired shape. The processing method of the high-tensile steel plate which has these processes.
[0027]
(19) In the method (18), the press-formed product is a method for processing a high-tensile steel sheet, which is an automobile part, particularly an automobile suspension member.
[0028]
(20) An automotive part manufactured from the high-tensile steel sheet according to any one of (1) to (16).
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described by dividing it into a metal structure, chemical components, and the like, and a production method.
[0030]
[Metal structure]
In the high-tensile steel sheet according to the present invention, the ferrite phase area ratio is 98% or more , and precipitates containing Ti and W are dispersed and precipitated in a range satisfying W / (Ti + W) ≧ 0.25 in atomic%. . This precipitate may contain at least one of Nb and V in addition to Ti and W. In that case, it is preferable that Mo / (Ti + Nb + V + Mo) ≧ 0.25 in atomic%. This precipitate may contain Ti, W, and Mo in the range satisfying (W + Mo) / (Ti + W + Mo) ≧ 0.25 in atomic%. This precipitate may contain one or more of Nb and V in addition to Ti, W, and Mo. In that case, (W + Mo) / (Ti + Nb + V + W + Mo) ≧ 0.25 in atomic%. preferable. Hereinafter, these will be described.
[0031]
・Area ratio of ferrite phase is 98% or more :
The reason why the matrix has a ferrite single-phase structure with a ferrite phase area ratio of 98% or more is that ferrite with a low dislocation density is effective for improving elongation, and single-phase for improving stretch flangeability. This is because it is effective to form a structure, and the effect is particularly remarkable in a ferrite single-phase structure rich in ductility.
[0032]
Precipitates containing Ti and W in the range of W / (Ti + W) ≧ 0.25 in atomic%, or precipitates containing Ti, W, and Mo in the range of (W + Mo) / (Ti + W + Mo) ≧ 0.25 :
Since the precipitate containing Ti and W becomes fine, it is effective for strengthening the steel. Conventionally, TiC was mainly used as a precipitate. However, since Ti has a strong tendency to form precipitates, when it does not contain W, it is easy to coarsen and the effect on strengthening is reduced. In order to obtain, the precipitate until it degrades workability is required. On the other hand, the composite precipitate containing Ti and W precipitates finely and can strengthen steel without deteriorating workability. This is because the tendency of W to form precipitates is weak compared to Ti, so that the effect of strengthening is high because it can exist stably and finely, and the required amount of strengthening can be obtained with the amount of precipitates that can maintain good workability. Conceivable. In particular, by making the average particle size of this composite precipitate less than 10 nm, the strain around the precipitate becomes more effective for the resistance of dislocation movement, and good steel strength can be obtained. It is preferable to use a composite precipitate. More preferably, the average particle size is 5 nm or less. In order for the precipitates to exist stably and finely, the composition of the precipitates affects, and when the composition of the precipitates becomes W / (Ti + W) ≧ 0.25 in terms of atomic ratio, the precipitates become coarse. The effect of suppressing becomes high, and a desired fine precipitate can be obtained. Since Mo has the same effect as W, the composite precipitate further containing Mo in Ti and W can be finely precipitated and the steel can be strengthened without degrading workability. In this case, in order for the precipitate to exist stably and finely, if the composition of the precipitate is (W + Mo) / (Ti + W + Mo) ≧ 0.25 in atomic ratio, the effect of suppressing the coarsening of the precipitate And the desired fine precipitate can be obtained.
[0033]
A precipitate containing one or more of Nb or V in addition to Ti and W or Ti, W and Mo:
Even if precipitates are precipitated in combination with one or more of Nb and V in addition to Ti and W or Ti and W and Mo, the tendency of W and Mo to form precipitates is weaker than that of Nb and V. Therefore, the composite precipitate can exist stably and finely like the composite precipitate of Ti and W or the composite precipitate of Ti, W and Mo. For this reason, as a precipitate, in addition to Ti and W or Ti, W and Mo, one or more of Nb and V may be combined and precipitated.
[0034]
Atomic%, W / (Ti + Nb + V + W) ≧ 0.25 or (W + Mo) / (Ti + Nb + V + W + Mo) ≧ 0.25:
When the composite precipitate contains one or more of Nb and V in addition to Ti and W or Ti and W and Mo, the composition is W / (Ti + Nb + V + W) ≧ 0.25 or (W + Mo) in atomic ratio /(Ti+Nb+V+W+Mo)≧0.25 is preferable. If it is this range, the effect which suppresses the coarsening of a composite precipitate will be high, and a required reinforcement | strengthening amount can be obtained with the amount of precipitates which can maintain workability favorable.
[0035]
[Invention of chemical components, etc.]
In the present invention, as long as the above metal structure is satisfied, desired elongation and stretch flangeability and strength of 590 MPa or more can be obtained, and the chemical composition is not particularly limited, but in mass% , C: 0.01 to 0.1% , Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, W: 0 It is preferable that 0.1 to 1.0% and Ti: 0.03 to 0.2% are included, and the balance is Fe and inevitable impurities . Further, when Mo is contained, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.06%, S in mass %. ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, W ≦ 1.0%, Mo ≦ 0.5%, Ti: 0.03 to 0.2%, the balance being Fe And preferably composed of inevitable impurities . Furthermore, in the case where one or more of Nb and V are contained in the composite precipitate as described above, in addition to the above components, one or more of Nb ≦ 0.08% and V ≦ 0.15% are contained, The balance is preferably composed of Fe and inevitable impurities . Hereinafter, each of these components will be described.
[0036]
C: 0.01 to 0.1%
C forms carbides and is effective for strengthening steel. However, if it is less than 0.01%, the steel is not sufficiently strengthened, and if added over 0.1%, pearlite is formed and precipitates are coarsened, so that elongation and stretch flangeability may be impaired. There is. For this reason, the C content is preferably 0.01 to 0.1%.
[0037]
Si: 0.3% or less Si is an effective element for solid solution strengthening, but if added over 0.3%, C precipitation from ferrite is promoted and coarse iron carbide precipitates at grain boundaries. It becomes easy, and it becomes the tendency for stretch flangeability to fall. Further, in the present invention, it is possible to reduce the rolling load of austenite by reducing Si that has been actively used in the past, facilitating the production of thin materials. Rolling of materials with a thickness of 2.5 mm or less becomes unstable. Moreover, rolling load increases with Si addition, and the shape of a rolling material worsens. For these reasons, the Si content is preferably 0.3% or less. More preferably, it is 0.15% or less, and desirably 0.05% or less.
[0038]
Mn: 0.2 to 2.0%
Mn is preferably 0.2% or more from the viewpoint of strengthening the steel by solid solution strengthening, but if added over 2.0%, segregation occurs, a hard phase is formed, and stretch flangeability deteriorates. For this reason, the content of Mn is preferably 0.2 to 2.0%.
[0039]
P: 0.06% or less P is effective for solid solution strengthening, but if added over 0.06%, segregation may occur and stretch flangeability may decrease, so 0.06% or less may be used. preferable.
[0040]
S: 0.01% or less S is preferably as small as possible. If it exceeds 0.01%, the stretch flangeability may be deteriorated, so 0.01% or less is preferable. More preferably, it is 0.005% or less, desirably 0.003% or less.
[0041]
Al: 0.1% or less Al is added as a deoxidizer. However, if it exceeds 0.1%, both elongation and stretch flangeability tend to decrease, so 0.1% or less is preferable.
[0042]
N: 0.006% or less N is preferably as small as possible, and if it exceeds 0.006%, coarse nitrides increase and stretch flangeability tends to deteriorate, so 0.006% or less is preferable.
[0043]
W: 0.1 to 1.0%
W is an important element in the present invention. When Mo is not added, it is contained in an amount of 0.1% or more, so that fine composite precipitates with Ti or Nb and Ti are added while suppressing pearlite transformation. Fine composite precipitates containing one or more of V can be formed, excellent elongation and stretch flangeability can be ensured, and steel can be strengthened. However, if added over 1.0%, a hard phase is formed and the stretch flangeability tends to be low. For this reason, the content of W is preferably 0.1 to 1.0% when Mo is not added. In addition, when adding Mo, since Mo has the effect | action similar to W, the value of a preferable minimum is determined according to content of Mo.
[0044]
Ti: 0.03-0.2%
Ti is an important element in the present invention. By forming a composite precipitate with W, the steel can be strengthened while ensuring excellent elongation and stretch flangeability. Moreover, when adding Mo, a composite precipitate is formed with W and Mo, and there exists the same effect. However, if it is less than 0.03%, the effect of strengthening steel is insufficient, and if it exceeds 0.2%, the stretch flangeability tends to deteriorate. Therefore, the content of Ti is preferably 0.03 to 0.2%.
[0045]
Mo: 0.5% or less Mo has the effect of suppressing pearlite transformation like W, and when added together with W, fine composite precipitates with Ti and W, or in addition to these, Nb and V A fine composite precipitate containing one or more of them can be formed, excellent elongation and stretch flangeability can be secured, and steel can be strengthened. However, if added over 0.5%, a hard phase is formed and the stretch flangeability tends to be low. For this reason, the Mo content is preferably 0.5% or less.
[0046]
Nb: 0.08% or less Nb is effective for refining the structure, and forms a composite precipitate with Ti and W or Ti, W and Mo to form a composite precipitate, and has excellent elongation and stretch flangeability. In order to contribute to obtaining, it is added as necessary. However, when the Nb content exceeds 0.08%, the elongation tends to deteriorate. Therefore, when Nb is contained, 0.08% or less is preferable. From the viewpoint of obtaining the effect of refining the Nb structure, 0.005% or more is preferable.
[0047]
V: 0.15% or less V is effective for refining the structure, and forms a composite precipitate by combining with Ti and W, or Ti, W, and Mo to obtain excellent elongation and stretch flangeability. In order to contribute to this, it is added as necessary. However, when the amount of V exceeds 0.15%, the elongation tends to deteriorate. Therefore, when V is contained, 0.15% or less is preferable. In addition, from the viewpoint of obtaining the effect of refining the V structure, 0.001% or more is preferable.
[0048]
In addition, there is no problem in characteristics even if one or more of Cr: 0.15% or less, Cu: 0.15% or less, and Ni: 0.15% or less are included.
[0049]
In the present invention, in addition to the above composition, the following formula (1) is preferably satisfied.
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184)} ≦ 1.5 (1)
(However, in the above formula (1), C, Ti, and W represent mass % of each component)
This is a carbide containing Ti and W by adjusting the contents of C, Ti and W so that the atomic ratio of C to (Ti + W) in the steel is 0.5 to 1.5. This is because fine particles are easily precipitated and formation of fine precipitates of less than 10 nm is facilitated. The value of (C / 12) / {(Ti / 48) + (W / 184)} is more preferably 0.8 to 1.3.
[0050]
Moreover, when adding 1 or more types of Nb and V in addition to Ti and W, it is preferable to satisfy | fill following (2) Formula.
0.5 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 (2)
(However, in the above formula (2), C, Ti, W, Nb, and V represent mass % of each component)
Also in this case, by adjusting the contents of C, Ti, Nb, V, and W so that the atomic ratio between C and (Ti + Nb + V + W) in the steel is 0.5 to 1.5, Ti This is because a composite precipitate in which one or more of Nb and V are combined and precipitated in addition to W and W tends to be finely dispersed and precipitated. The value of (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184)} is more preferably 0.8 to 1.3.
[0051]
In addition, when adding Mo, it is preferable to satisfy | fill the following (3) Formula or (4) Formula similarly.
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} ≦ 1.5 (3)
0.5 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184) + (Mo / 96)} ≦ 1.5 (4)
(However, in the above formulas (3) and (4), C, Ti, W, Mo, Nb, and V represent mass % of each component.)
These (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} and (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51 ) + (W / 184) + (Mo / 96)} is also more preferably 0.8 to 1.3.
[0052]
The high-tensile steel sheet of the present invention can also be formed as a hot-dip galvanized steel sheet by forming a hot-dip galvanized film on the surface. An alloyed hot dip galvanized steel sheet that has been subjected to an alloying reaction after hot dip galvanizing is also included. Here, the hot dip galvanizing is hot dip plating in which the plating film is substantially made of Zn or hot dip plating mainly composed of Zn, and may contain alloy elements such as Cr and Mn in addition to zinc. .
[0053]
Since the high-tensile steel sheet of the present invention is excellent in both elongation and stretch flangeability, it is easy to reduce the thickness and has high strength, and therefore satisfies the demand for thickness reduction of 2.5 mm or less.
[0054]
[Production method]
In this invention, when manufacturing the said high strength steel, it is preferable to perform hot rolling on the conditions of finish rolling completion temperature 800 degreeC or more and coiling temperature 570 degreeC or more. Hereinafter, these conditions will be described.
[0055]
-Finishing rolling end temperature of 800 ° C or higher Finishing rolling end temperature is important for reducing elongation and stretch flangeability and rolling load. If it is less than 800 degreeC, a coarse grain will generate | occur | produce and stretch flangeability will be impaired, a rolling load will increase and it will become difficult to hot-roll a thin material. Therefore, the finish rolling finish temperature is preferably 800 ° C. or higher.
[0056]
-The coiling temperature is set to 570 ° C or higher in order to obtain a ferrite structure at a coiling temperature of 570 ° C or higher, and to suppress the amount of water injection on the run-out table and to allow a thin material to pass through stably. In addition to these, 600 ° C. or higher is preferable in order to ensure the running stability of the steel sheet on the run-out table.
[0057]
In addition, the steel plate of this invention does not have a difference in the characteristic even if it is a black skin or a pickling material. There is no particular restriction on temper rolling as long as it is usually performed. Also, electroplating is possible, and there is no particular problem with chemical conversion treatment. The effect of the present invention is not affected even if direct feed rolling, in which hot rolling is performed directly after casting or after heating for the purpose of supplementary heating, is performed. Furthermore, even if the rolled material is heated after the rough rolling and before the finish rolling, the continuous rolling performed by joining the rolled material after the rough rolling may be performed, or the heating and continuous rolling of the rolled material may be performed simultaneously. The effect of the present invention is not impaired.
[0058]
The high-strength steel sheet of the present invention is excellent in workability, particularly in stretch flangeability, so when it is press-molded, its characteristics are utilized, such as automobile members, particularly suspension members such as suspension arms. A member having a complicated cross-sectional shape at the time of pressing can be manufactured with good quality, and in particular, can contribute to weight reduction of a press-formed product. The processing method of the high-tensile steel plate according to the present invention, in other words, the manufacturing method of the press-formed product will be described below specifically.
[0059]
FIG. 1 is a flowchart showing an example of a work flow of a method for processing a high-strength steel sheet according to the present invention. This work flow usually has a pre-process of manufacturing a steel plate according to the present invention or transporting the manufactured steel plate to a destination place as a coil, for example. First, a high-tensile steel plate according to the present invention is prepared. (S0, S1). Before pressing the steel sheet, the steel sheet may be pre-processed (S2), or may be processed into a predetermined size or shape by a cutting machine (S3). In the former step S2, for example, cutting or drilling is performed at a predetermined position in the width direction of the steel sheet, and a press-formed product having a predetermined size and shape or pressed processing is performed at the stage where the subsequent press processing is completed or in the process of the press processing. It can be separated as a member. In the latter step of S3, the final press-molded product is processed (and thus cut) into a steel plate member having a predetermined size and shape in consideration of the size and shape of the final press-formed product in advance. Thereafter, the member that has undergone the steps S2 and S3 is subjected to press working, and finally a desired press-formed product having a desired size and shape is manufactured (S4). This press working is usually performed in multiple stages, and often has 3 stages or more and 7 stages or less.
[0060]
The step S4 may include a step of further cutting the member that has passed through the steps S2 and S3 into a predetermined size and shape. The operation of “cutting” in this case is, for example, an operation of cutting an unnecessary portion in a final press-formed product such as an end portion of a member that has passed through steps S2 and S3 at least in the process of pressing. Alternatively, it may be an operation of cutting the member to be pressed along the cutting or perforation in the width direction of the steel plate provided in the step S2.
[0061]
In FIG. 1, N1 to N3 may be a work of conveying a steel plate, a member, or a press-formed product mechanically or by an operator.
[0062]
The press-formed product manufactured in this way is sent to the next step as necessary. As the next process, for example, a further process is performed on the press-molded product to adjust dimensions and shape, a process of transporting and storing the press-molded product to a predetermined place, a process of subjecting the press-molded product to surface treatment, a press There is an assembly process for assembling an object such as an automobile using a molded product.
[0063]
FIG. 2 is a block diagram showing the relationship between the apparatus that actually performs the operation shown in FIG. 1 and the flow of steel plates, members, and press-formed products. In this figure, the high-tensile steel plate according to the present invention is prepared in a coil shape, and a press-formed product is manufactured by a press machine. The press machine is of a type that performs multi-stage pressing, but the present invention is not limited to this.
[0064]
In some cases, a cutting machine or other pre-processing machine is installed in the front stage of the press machine (FIG. 2A), and in some cases, it is not installed (FIG. 2B). When a cutting machine is installed, a member having a required size or shape is cut from a long steel sheet according to the present invention supplied from a coil, and this member is pressed by a press machine, and a predetermined press It becomes a molded product. In the case where a pre-processing machine that performs notches and perforations in the width direction of the steel sheet is installed, the press machine may cut along the notches and perforations. When the pretreatment machine is not installed, cutting is performed in the process of pressing the steel plate in the press machine, and finally a press-formed product having a predetermined size and shape is manufactured. The meaning of “cutting” in FIG. 2 is the same as the cutting in FIG.
[0065]
The press-formed product produced in this way uses the high-tensile steel plate according to the present invention that is excellent in workability as a raw material, particularly excellent in stretch flangeability, so even if the cross-sectional shape at the time of pressing is complicated Can be manufactured with good quality and light weight. Such a feature is particularly useful when the press-formed product is a member for an automobile, particularly a suspension member such as a suspension arm.
[0066]
【Example】
A steel slab having the chemical composition shown in Table 1 was heated to 1250 ° C. and rolled to a thickness of 2.0 mm at the finishing temperature and the winding temperature shown in Table 1 by a normal hot rolling process. After pickling the obtained steel plate, the thin film produced from the steel plate was observed with the transmission electron microscope (TEM), and the deposit size was measured. Moreover, the elemental analysis which comprises a precipitate was performed using the energy dispersive X-ray spectrometer (EDX). Furthermore, the concentration of each element was calculated from the peak value.
[0067]
Moreover, a JIS No. 5 tensile test piece and a hole expansion test piece were collected from the obtained steel plate. Tensile specimens were taken from the vertical direction of rolling, and the hole expansion test was conducted in accordance with the Japan Iron and Steel Federation standard. Moreover, the obtained steel plate was cut | disconnected to 2 m length, and the shape was evaluated on the surface plate. Evaluation was carried out visually, and the evaluation criteria at that time were ○ where no ear waves or medium elongation were seen, and those that were bad and could not be used as a flat plate.
[0068]
In Table 1, the structure, the composition of the precipitate (value of (W + Mo) / (Ti + Nb + W + Mo) (denoted as the precipitate composition in the table)), the carbide, and the precipitate size (average particle diameter) are also shown. Table 2 shows the mechanical properties and plate shape.
[0069]
In Table 1, No. 1-3, 7 and 8 are examples of the present invention, No. 4 to 6 are comparative examples. Of these, No. 1 to 6 are examples of hot rolled steel sheets of 780 MPa class. No. Nos. 1 and 3 are examples in which only W of W and Mo is added. 2 is an example in which W and Mo are added. No. Nos. 1 to 3 have a ferrite single phase structure. In Nos. 1 and 3, carbides containing Ti and W are precipitated. In No. 2, carbide containing Ti, W and Mo was precipitated. These elongations (EL) exceeded 16%, and the hole expansion ratio (λ) also exceeded 100%, confirming excellent workability.
[0070]
In contrast, No. of the comparative example. 4-6, no. In No. 4, the type and structure of the precipitates were outside the scope of the present invention, the precipitate size was large, the rolling load was high, the plate shape was bad, and the product could not be used. EL was also as low as 15%. No. No. 5, the kind and structure of the precipitates were outside the scope of the present invention, the EL was as low as 15% or less, and the plate shape was poor. No. No. 6 was coarse, although the structure was a ferrite single phase, but the precipitates were TiC and NbC. No. Since the material variation was large and the workability varied in No. 6, the maximum values were taken as EL and λ. However, EL was as low as 15% and λ was as low as 90%, and the workability was poor even when the maximum variation was taken. The plate shape was too bad to be pressed.
[0071]
No. 7 and 8 are examples of the present invention of 590 MPa class and 980 MPa class, respectively, but showed good EL and λ according to each strength level. The plate shape was also good.
[0072]
[Table 1]
[0073]
[Table 2]
[0074]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high-tensile steel sheet having excellent elongation and stretch flangeability, which are indexes of workability, and the effect of contributing to weight reduction of automobile members is remarkable.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a work flow of a method for processing a high-tensile steel plate according to the present invention.
FIG. 2 is a block diagram showing the relationship between an apparatus that actually performs the work shown in FIG. 1 and the flow of steel plates, members, and press-formed products.
Claims (20)
0.5≦(C/12)/{(Ti/48)+(W/184)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Wは各成分の質量%を表す。The high-tensile steel sheet having excellent workability according to claim 4, wherein C, Ti, and W are contained so as to satisfy the following expression (1).
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, and W represent the mass % of each component.
0.5≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)}≦1.5 …(2)
ただし、上記(2)式中、C、Ti、Nb、V、Wは各成分の質量%を表す。C, Ti, Nb, V, W are contained so that the following (2) Formula may be satisfied, The high-tensile steel plate excellent in workability of Claim 6.
0.5 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 (2)
However, in said Formula (2), C, Ti, Nb, V, and W represent the mass % of each component.
0.5≦(C/12)/{(Ti/48)+(W/184)+(Mo/96)}≦1.5 …(3)
ただし、上記(3)式中、C、Ti、W、Moは各成分の質量%を表す。The high-tensile steel sheet excellent in workability according to claim 11, wherein C, Ti, W, and Mo are contained so as to satisfy the following expression (3).
0.5 ≦ (C / 12) / {(Ti / 48) + (W / 184) + (Mo / 96)} ≦ 1.5 (3)
However, in said Formula (3), C, Ti, W, and Mo represent the mass % of each component.
0.5≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(W/184)+(Mo/96)}≦1.5 …(4)
ただし、上記(4)式中、C、Ti、Nb、V、W、Moは各成分の質量%を表す。The high-tensile steel sheet with excellent workability according to claim 13, wherein C, Ti, Nb, V, W, and Mo are contained so as to satisfy the following expression (4).
0.5 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (W / 184) + (Mo / 96)} ≦ 1.5 (4)
However, in said Formula (4), C, Ti, Nb, V, W, and Mo represent the mass % of each component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002116104A JP3775334B2 (en) | 2002-04-18 | 2002-04-18 | High-strength steel sheet with excellent workability, manufacturing method and processing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002116104A JP3775334B2 (en) | 2002-04-18 | 2002-04-18 | High-strength steel sheet with excellent workability, manufacturing method and processing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003306746A JP2003306746A (en) | 2003-10-31 |
JP3775334B2 true JP3775334B2 (en) | 2006-05-17 |
Family
ID=29397066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002116104A Expired - Fee Related JP3775334B2 (en) | 2002-04-18 | 2002-04-18 | High-strength steel sheet with excellent workability, manufacturing method and processing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3775334B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9410231B2 (en) | 2010-01-29 | 2016-08-09 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet and method of manufacturing steel sheet |
EP2762579B2 (en) | 2011-09-30 | 2021-03-03 | Nippon Steel Corporation | High-strength hot-dip galvanized steel sheet and process for producing same |
-
2002
- 2002-04-18 JP JP2002116104A patent/JP3775334B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003306746A (en) | 2003-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5076394B2 (en) | High-tensile steel plate and manufacturing method thereof | |
JP3888128B2 (en) | High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof | |
KR100968013B1 (en) | High strength steel sheet and method for manufacturing the same | |
JP3882577B2 (en) | High-tensile hot-rolled steel sheet excellent in elongation and stretch flangeability, and manufacturing method and processing method thereof | |
JP3637885B2 (en) | Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof | |
JP4507851B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
KR101986033B1 (en) | High strength steel sheet and manufacturing method therefor | |
JP2003089848A5 (en) | ||
JP4924052B2 (en) | High yield ratio high tensile cold-rolled steel sheet and method for producing the same | |
JP3591502B2 (en) | High-tensile steel sheet excellent in workability, and its manufacturing method and processing method | |
JP3821043B2 (en) | Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof | |
JP4006974B2 (en) | High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof | |
JP3760888B2 (en) | High-tensile cold-rolled steel sheet with excellent workability, manufacturing method and processing method thereof | |
JP2002322543A5 (en) | ||
JP4710558B2 (en) | High-tensile steel plate with excellent workability and method for producing the same | |
JP4905147B2 (en) | Thin high tensile hot-rolled steel sheet and manufacturing method thereof | |
JP3775341B2 (en) | High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof | |
JP3775340B2 (en) | High-tensile hot-rolled steel sheet with excellent workability and processing method | |
JP3775337B2 (en) | High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof | |
JP3637888B2 (en) | High tensile hot-rolled steel sheet with excellent peel strength and processing method thereof | |
JP3821042B2 (en) | High-formability high-tensile steel sheet with excellent strength stability and method for producing and processing the same | |
JP3775334B2 (en) | High-strength steel sheet with excellent workability, manufacturing method and processing method thereof | |
JP3775339B2 (en) | High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof | |
JP3726773B2 (en) | High-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method and processing method thereof | |
JP2004043978A (en) | High tensile strength steel sheet having excellent workability, and production method and working method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140303 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |